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ABSTRACT: A simple long-wave reflection and transmission over an abrupt depth change with constant 
channel width are presented. Firstly, the wave propagation is modeled on a two-step abrupt transition, and the 
waves are reflected and transmitted only once. The model is extended to include more than one re-reflection 
and retransmission as well as depth-limited breaking-wave height criteria. The Dean beach profile is also 
modeled. The profile is a function of the median grain size of the beach material. It is found that the wave 
energy is conserved when the waves are re-reflected and retransmitted more than five times. The breaking 
waves reduce the reflection coefficient by 30%. The results are compared with other research on the 
reflection coefficient occurring in a smooth sloping beach model. On a small sloping beach, an abrupt depth 
change gives a significant difference in the value of the reflection coefficient. The reflection coefficient on 
the smooth small sloping beach is close to zero, while the abrupt depth change can increase the reflection 
coefficient to about 60% in this case. 
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1. INTRODUCTION

A simple long-wave reflection and 
transmission model is presented. The model is 
intended to calculate the reflection coefficient 
resulting from interactions between incident waves 
and reflected waves on a sloping bottom with and 
without a breaking wave. The model follows the 
definitions of reflected and transmitted waves as 
presented by Dean and Dalrymple (1984) with an 
abrupt depth change or a step with constant 
channel width. This model is then extended to 
include multiple steps and depth-limited breaking 
waves [1]. 

Macaskill (1977) presented a method for 
calculating reflected waves of plane waves 
propagating over different constant depths, where 
the intermediate region is considered linear in the 
cross-shore direction [2]. He considered the fluid 
motion as complex velocity potential with the 
kinematic boundary conditions of normal velocity 
and free surface conditions. The reflection 
coefficient of maximum 0.5 was found for a depth 
ratio of 0.5 for one-step abrupt transition case. 

Dhillon et al. (2016) investigated a stepped-
type bottom topography assuming linear theory 
[3]. The relationships of the reflection and 
transmission coefficients with the depth parameter 
and dock lengths were investigated. He found that 
a 1 m increase in dock length produced almost 
25% more reflected waves. Watson (2012) 
conducted 40-day field measurements on a steep 
beach with two different slopes with no 
underwater bars located at Carmel Beach, 
California [4]. The nearshore slope was 1/7.6 and 
the outer slope was 1/19. A highly reflective beach 

was observed regardless of tidal effect. The beach 
experienced long-period, low-amplitude sea-swell 
waves coming from west to northwest. The field 
measurement results showed the highest reflection 
coefficient during the long period and low waves 
are as much as 80%. This high reflected coefficient 
was also found during high tide. 

Shibayama (2009) gives lists of existing 
breaker-height formulas [5]. The mechanism of 
wave breaking during propagation toward the 
nearshore can adequately explain the reflected and 
transmitted waves over abrupt transition studied. 

Walton (1991) studied wave reflection from 
natural beaches [6]. He conducted field 
measurements of random waves reaching the 
nearshore. The reflection coefficient was processed 
from the wave data records in terms of wave 
frequencies. He found that the reflection 
coefficients are produced by the small frequencies. 
Reflection coefficients produced by waves with 
frequencies between 0.01 and 0.05 Hz are 0.75– 
0.95. Waves at bigger wave frequencies have a 
reflection coefficient of around 0.25 on average. 

This paper focuses on propagated waves that 
are reflected and transmitted only once; this model 
is called the progressive model. The model is also 
extended to include waves over a multi-step abrupt 
transition. Then the reflected and transmitted 
waves are retransmitted and re-reflected; this 
model is called the re-reflected wave model. 

Finally, the progressive wave model and re-
reflected wave model are combined to produce a 
complete model in which the total energy of the 
reflected and transmitted waves depends on how 
many times the waves are transformed by being 
either reflected or retransmitted. 
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2. PROGRESSIVE MODEL 
 

This section focuses on waves that are reflected 
and transmitted once. Figure 1 shows the geometry 
of the depth transition region. The fluid domain is 
divided into Regions 1 and 2, as shown. The 
incoming wave iH  will be assumed to propagate 
in the positive x-direction. At the vertical step, 
located at 1x x= , a portion of the wave will be 
reflected, and the remainder is transmitted. 

By assuming linear superposition, the wave in 
Fig.1 is described as follows: 
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where iη , 1tη , and 1rη  are the incident, 
transmitted, and reflected waves, respectively. iε , 

1tε , and 1rε  are the corresponding wave phases. 
The phases are referenced to the incident wave, 
whose phase is set to zero. 1k  and 2k  are the wave 
numbers before and after the step at 1x x= . The 
wave numbers are calculated using the long-wave 
dispersion condition as follows: 
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where are the wave period and h is the water 

depth? There are four unknowns: 1tH , 1rH , 1tε , 
and 1rε . The matching boundary conditions at the 
location of the step as shown in Fig.1 could be 
imposed. The first condition is that the free surface 
is continuous at x = 1x . The condition is given in 

Eq. (3):  
 

1 1 1             ;     i r t x xη η η+ = =   (3) 
 
For the second condition, the linearized 

continuity equation is used: 
 

( )uh
t x
η ∂∂
=

∂ ∂
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where u is the depth-averaged horizontal velocity. 
From (3) and (4), it follows that the volume flux 
must match at the step.  

 
( ) ( )1 2uh uh=   (5) 

 
For a long wave, the depth-averaged velocity 

can be written as [1] 
 

cu
h
η

=   (6) 

 
where c is the wave celerity. In the direction of the 
wave, Eq. (5) can be rewritten to Eq. (7):  

 
( )1 1 2 1 i r tc cη η η− =   (7) 
 
For the shallow water, the celerities are  

Fig.1 Elevation of a section of one-step abrupt transition. 
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Equations (3) and (7) are used to solve the 
unknowns 1tH , 1rH , 1tε , and 1rε . The wave 
heights and phases are written as: 
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The incident, transmitted, and reflected waves 

at first step can be written as: 
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Now consider a second region boundary 

2x x= , where 2 1x x> . This is shown in Fig.2. 
The transmitted wave from the first step becomes 
the incident wave at the second step. The abrupt 
depth change at second step will result in reflected 
and transmitted waves 2rη  and 2tη . These can be 
written as follows: 
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The procedure followed for the first step is 

repeated to solve the system of equations for the 
second step. This technique can be repeated for an 
arbitrary number of steps to obtain the general 
result: 
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If ( )1 0n − = , then ( 1)t n iH H− =  and 

( 1) 0t n iε ε− = = . Using (12) and (13), the general 
free surface equation can be written as Eq. (14): 
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Fig.2 Sketch of second step. 
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3. RE-REFLECTED WAVE MODEL 
 

Up to this point, the determination of reflected 
and transmitted waves from each step is rather 
straightforward. Unfortunately, re-reflection 
occurs between steps, and these are not negligible. 
An example of re-reflection is as follows. The 
incident wave propagates across the first step to 
give a transmitted wave 1tη . This wave is then 
partially reflected from the second step. This 
reflected wave then propagates back to the first 
step, where it is partially reflected again back to 
the second step. It is clear that this process 
develops many reflected waves. Fortunately, with 
each reflection, the importance of this mechanism 
decreases. This is because at each step there is an 
only partial reflection, so multiple reflections tend 
to get smaller with each re-reflection. To conserve 
energy, the re-reflected and retransmitted waves 
must be considered. 

In Fig.3, 3rη  is called the first-order reflected 
wave. The retransmitted and re-reflected waves are 
designated 32rη  and 32tη , respectively. Waves 
resulting from retransmission and re-reflection of 
previously reflected waves are termed second-
order waves. For second-order waves, subscripts r 
and t are used to denote transmitted and reflected 
waves, respectively. Thus, waves propagating in 
the positive x-direction are designated by “t” and 
those propagating in the negative x-direction are 
designated “r”, regardless of the order of the wave. 
The indices (j,n) describe a wave that is 
retransmitted and re-reflected from step n (at nx ), 
which previously originated in a reflection from 
step j (at jx ). The waves shown in Fig.4 can be 

defined as: 
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where 3rη  is known? To solve these equations, 
boundary conditions (3) and (7) are applied. The 
second-order wave heights and phases can be 
written as:  
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31rη  and 31tη  are written as: 
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Applying the boundary conditions, the 

unknowns can be written as: 

Fig.3 An example of retransmission and re-reflection of the waves. 
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and, 
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The repetitive formulation to get the second-

order wave heights and phases can be written as: 
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The above repetitive formulations are valid for 

n j< . The case where n j=  is described by (12), 
(13), and (14). The complete secondary wave 
equations are: 
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The superposition of all waves originating from 

step n is: 
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where j denotes the final step. Figure 5 shows the 
waves over the nth step. 

The reflection coefficient for the total system is 
calculated using the wave envelope method in 
region 1. For this purpose, the width of region 1 is 
extended by several wavelengths. The wave 
envelope is obtained by taking the maximum and 
minimum of the total waves at each location in 
region 1 with respect to time. The reflection 
coefficient is: 
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η η
η η

−
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where maxη and minη  are the maximum and 

minimum of the wave envelope in region 1. Figure 
6a shows the reflection coefficient calculated for 
an abrupt transition containing two steps using the 
wave envelope method over the slope m between 
0.001 and 1. From the figure, the waves have to be 
reflected and transmitted a minimum of nine times 
to obtain a reflection coefficient near to 1.0. A 
calculation including the effects of depth-limited 
breaking waves was also done. The transmitted 
wave height ( )t nH  is subjected to wave breaking 

conditions [5].  
 
( ) 0.8 nt nH h=   (25) 

 

Fig.4  is transmitted and reflected over . It becomes  and . 
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The results are summarized in Fig.6b. Breaking 
waves reduce the reflection coefficient by about 
30%. The average rK  is around 0.7. More steps 
would yield a more realistic reflection coefficient. 
Figure 8 shows that the total energy of the system 
is conserved when the waves are re-reflected and 
retransmitted more than four times, with the 
reflection coefficient approaching one. 

Figure 9 shows that the reflection coefficient 
decreases for beaches with smaller grain sizes. 

Waves dissipate more energy on beaches with 
smaller grain sizes. The slope is milder and the 
waves break farther offshore. Thus, wave energy 
dissipates over a larger area. A beach with a small 
grain size and mild slope is called a dissipative 
beach. When the grain sizes are larger, the beach is 
steeper, and the waves break at a location closer to 
the shore. Energy is dissipated over a limited area 
on the steep beach. A beach with larger grain sizes 
is called a reflective beach. 

Fig.6a Reflection coefficient  over a two-step abrupt transition with different slopes without breaking 
waves. 

 

Fig.5 Summary of waves over step n. 
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4. DISCUSSION AND COMPARISON WITH 

OTHER RESEARCH 
 
The results of the current research were 

compared with the result obtained by Nagashima 
(1971) [10]. He ran a physical model in a wave-
flume 3.3 m long, 30 cm deep, and 8 cm wide. The 
slope was varied from 3/50 to vertical. Several 
harmonic waves with wave steepness of 1.8% were 
modeled. Mei (1989) also gives an empirical 
formula to calculate the reflection coefficient as a 
function of the surf parameter ξ  [11] . The 
formula can be written as: 

 
20.1 rK ξ=   (26) 

 

The formula is obtained by best fitting data 
from Battjes (1974) and is valid for mild slopes 
[12]. Zanuttigh et al. (2008) also give a simple 
empirical formula relating the reflection 
coefficient with the surf parameter for 
impermeable rock slopes [13], and the best fit is 
given by: 

 
0.70.17 rK ξ=   (27) 

 
Figure 10 shows the comparisons. The current 

research shows a significant difference for a small 
slope, where the abrupt transition is introduced 
into the system. It seems that the abrupt change 
leads to significant reflection waves in comparison 
to smooth slopes, as demonstrated by other 
researchers. 
 

Fig.6b Reflection coefficient  over a two-step abrupt transition with different slopes with breaking waves. 

Fig.7 Best fit of 2 steps to the Dean beach profile with D = 1.0 mm. 
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5. CONCLUSION 
 
A simple long-wave reflection and 

transmission model has been presented. The model 
includes multiple steps and depth-limited breaking 
waves. For cases of abrupt transition featuring a 
Dean beach profile with different slopes and 
beach, materials are also demonstrated. The waves 
are re-reflected and retransmitted several times. 
The total energy of the system is conserved when 
the waves are re-reflected and retransmitted more 
than five times. 

The wave breaking causes the reflection 
coefficient to decrease by about 30% since parts of 
the wave energy dissipate on the sloping beach. 
The average reflection coefficient for the breaking-

waves condition is 0.7. From the comparisons in 
Fig.10, it is found that for a small slope, the abrupt 
depth changes give up to 60% more significant 
reflected waves than the smooth slope. 
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