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ABSTRACT: Waste generation has been the result of a growing demand in the construction industry. Thus, 
waste utilization has been one of the considerations in the construction industry towards sustainability. In the 
Philippines setting, many types of research were conducted to support the claim that wastes such as fly ash 
and waste ceramics have properties that are comparable to cement and aggregates. The American Concrete 
Institute standards were referred in the mix design of the specimens. This study incorporated the use of fly 
ash in the replacement of Type 1 Portland Cement and the substitution of waste ceramic tiles in replacing 
gravel as the coarse aggregates. Moreover, specimens were also subjected to varying days of curing to assess 
their strength development. Machine learning, namely Artificial Neural Network (ANN), was considered 
since there was an available wide range of data. This study aimed to provide an Artificial Neural Network 
(ANN) algorithm that will serve as a model to predict the compressive strength of concrete while 
incorporating waste ceramic tiles as a replacement to coarse aggregates while varying the amount of fly ash 
as a partial substitute to cement. The Artificial Neural Network (ANN) model used was validated to ensure 
the predictions are acceptable. 
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1. INTRODUCTION

In Asia, 6.37 Billion ceramics were 
manufactured in the year 2010 and are used in the 
construction industry. Similarly, these ceramic 
tiles also produced most of the construction and 
demolition wastes worldwide, and these materials 
are only disposed of in the landfills [1]. Moreover, 
fly ash as another waste by-product has been 
massively produced in the countries that rely on 
coal-based electricity generation, such as the 
Philippines. These wastes generated have been the 
result of a growing demand in the construction 
industry. Thus, waste utilization has been one of 
the considerations in the construction industry 
towards sustainability. In the Philippines setting, 
many types of research were conducted to support 
the claim that these wastes have properties are 
comparable to cement and aggregates [2-8]. 

Many numerical modeling techniques have 
been introduced in the current technological era, 
and due to the availability of a wide range of data 
gathered during the experiment, machine learning 
model is considered, and one of them is Artificial 
Neural Network (ANN). Artificial Neural Network 
can handle nonlinear relationships between 
variables and incomplete data sets. Neural 
networks are very sophisticated modeling and 
prediction making techniques capable of modeling 
extremely complex functions and data 

relationships. The proposed Artificial Neural 
Network Model will be validated by involving an 
Output-Target plot as a guideline that provides 
insight into the measured variables and as a critical 
part of the analysis [6]. 

Thus, this study aimed to provide an Artificial 
Neural Network (ANN) model to predict the 
compressive strength of concrete incorporating 
waste ceramic tiles as a replacement to coarse 
aggregates while varying the amount of fly ash as 
a partial substitute to cement. 

2. METHODOLOGY

The American Concrete Institute standards 
were referred in the mix design of the specimens.  

This study incorporated the use of fly ash in 
the replacement of Type 1 Portland Cement, 
considering five replacements: 0%, 12.5%, 25%, 
37.5% and 50%. Furthermore, the substitution of 
waste ceramic tiles in replacing gravel as the 
coarse aggregates were also considered with the 
following substitutions: 0%, 18.25%, 37.5%, 
56.25% and 75% [9, 13-15]. Both waste materials 
replace in terms of mass percentage, moreover, a 
control mix was also considered which had pure 
cement and gravel. All of the replacements were 
the output of a rigorous Design of Experiments 
(DOE), thus, producing a total of 17 mixes. 

Furthermore, these mix designs were given 
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Mix IDs in order to have a systematized way of 
labeling the specimens. “F” was used for Fly Ash, 
and “C” was used for waste ceramic tiles. The 
percentage replacement to either cement or gravel 
was represented by the number that immediately 
follows the acronym. For example, the Mix ID 
“F25C37.5” refers to the mix with 25% fly ash, 
75% Type 1 Portland Cement, 37.5% waste 
ceramic tiles and 62.5% gravel. The complete list 
of Mix IDs is shown in Table 1. 
 
Table 1. Mix IDs of the specimen used 

Mix 
No. Mix ID Fly Ash 

Content 

Ceramic 
Tiles 

Content 
M1 F0 C0 0.00% 0.00% 
M2 F50 C0 50.00% 0.00% 
M3 F50 C 37.5 50.00% 37.50% 
M4 F25 C37.5 25.00% 37.50% 
M5 F37.5 C 18.75 37.50% 18.75% 
M6 F25 C0 25.00% 0.00% 
M7 F25 C 18.75 25.00% 18.75% 
M8 F12.5 C 37.5 12.50% 37.50% 
M9 F37.5 C37.5 37.50% 37.50% 
M10 F0 C37.5 0.00% 37.50% 
M11 F37.5 C56.25 37.50% 56.25% 
M12 F12.5 C 18.75 12.50% 18.75% 
M13 F25 C56.25 25.00% 56.25% 
M14 F12.5 C56.25 12.50% 56.25% 
M15 F50 C75 50.00% 75.00% 
M16 F0 C75 0.00% 75.00% 
M17 F25 C75 25.00% 75.00% 

 
Before the mix was prepared, the raw 

materials were subjected to rigorous tests 
following the American Society for Testing and 
Materials (ASTM), such as moisture content, 
specific gravity, and absorption tests [9-10], and 
unit weight and voids [11]. These results of tests 
are shown in Table 2.  

 
Table 2. Summary of material properties 

Description Results 
The dry rodded density of 
gravel 1567.839 kg/m3 

Specific Gravity of Cement 3.150 
Specific Gravity of gravel 2.812 
Specific Gravity of sand 2.505 
Moisture Content of gravel 0.349% 
Moisture Content of sand 1.566% 
Absorption of gravel 1.639% 
Absorption of sand 2.765% 
Fineness modulus of Sand 2.760 

 
It was derived by having a target nominal 

compressive strength of 28 MPa, which is 
typically used in the industry. A total of 306 

specimens were prepared to accommodate the 
curing at 3 ages: 7, 28 and 56 days. The estimated 
mixing water that should be used is 184 kilogram 
per cubic meter of concrete, which considers a 25-
100 mm slump and a maximum size of 19.0 mm of 
the aggregates. The water-cement ratio that was 
considered in this study upon further interpolation 
is 0.478. 

Moreover, compressive tests were performed 
after the specified day of curing to determine the 
physical properties of the specimens. The load was 
applied to the specimen, and the maximum load 
that the specimen could carry was recorded. With 
this, the compressive strength was computed by 
simply dividing the maximum compressive load 
that the specimen was able to carry by its average 
cross-sectional area. 

Once the data are available, Artificial Neural 
Network (ANN) commenced. Each ANN model 
consists of a data case having a set of input 
variables labeled by a set of output variables, the 
research ANN model classification of is shown in 
Figure 1. 

 
Figure 1. ANN model 

 
The input and output variables are continuous. 

In the study the input and output variables are 
shown in Table 3: 

 
Table 3. Input and Output Variables 

Input Variable(s) Output 
Variable(s) 

1. 7-Days Compressive Strength 
2. 28-Days Compressive Strength 
3. 56-Days Compressive Strength 

1. Fly Ash % 
2. Ceramics %  

 
The Artificial Neural Network (ANN) used 

was validated to ensure the predictions are 
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acceptable. 
 
 

3. RESULTS & DISCUSSION 
 
3.1 Compressive Strength  

 
Compressive strength tests followed the 

standard methods stipulated under ASTM C 39 to 
ensure the results garnered are correct. The 
conventional mix attained its target nominal 
strength (28-Day) with 28.302 MPa. The early and 
late compressive strengths of the conventional mix 
at 7 and 56 days of curing periods were 21.645 
MPa and 28.722 MPa, respectively. Among all 
modified mixes, F50C0 and F25C75 resulted to 
the least and highest compressive strengths at all 
ages with 26.343-MPa and 38.112-MPa nominal 
strengths, respectively. The complete compressive 
strengths of all mixes are shown in Table 4: 
 
Table 4. Compressive strengths of all mixes 

MIX 
No. MIX ID 

Compressive 
Strengths (MPa) 

7-day 28-day 56-day 

M1 F0 C0 21.65 28.30 28.72 

M2 F50 C0 19.07 26.34 28.41 

M3 F50 C 37.5 21.68 27.85 33.88 

M4 F25 C37.5 27.29 37.21 39.20 

M5 F37.5 C 18.75 24.97 32.14 35.44 

M6 F25 C0 25.51 33.88 38.09 

M7 F25 C 18.75 27.78 34.51 38.95 

M8 F12.5 C 37.5 30.96 37.44 41.57 

M9 F37.5 C37.5 25.07 33.83 35.97 

M10 F0 C37.5 29.00 32.14 38.00 

M11 F37.5 C56.25 27.46 34.49 38.32 

M12 F12.5 C 18.75 26.00 34.06 37.90 

M13 F25 C56.25 25.15 34.17 38.28 

M14 F12.5 C56.25 27.53 27.23 36.36 

M15 F50 C75 24.53 33.21 41.78 

M16 F0 C75 24.86 33.95 39.66 

M17 F25 C75 32.06 38.11 44.70 

Minimum 19.07 26.34 28.41 
Maximum 32.06 38.11 44.70 

 
Compressive strength tests were conducted at 

three curing periods: 7 days, 28 days and 56 days. 
A sample plot is shown in Figure 2. This was done 
in order to have a representation of the 
compressive strengths of all mixes at early, 
nominal and late stages for further analysis. The 
results are shown in Figure 3. 

All mixes had an increasing nominal 
compressive strength when waste ceramic tiles 
replacement was also increased except for the mix 

with 12.5% fly ash replacement, where the 
strength decreased from 37.5% to 56.25% waste 
ceramic tiles substitution. 

In terms of cement variation, all combinations 
showed an increasing nominal strength up to an 
optimum amount. Based from the experimental 
data, all combinations have shown an optimum 
amount of 20% to 30% fly ash replacement except 
for the mix with 37.5% waste ceramic tiles 
replacement, which had an optimum amount of 
10% to 20% fly ash substitution. Moreover, all 
combinations with 50% fly ash substitution 
attained less compressive strengths relative to 
mixes with 0% fly ash replacement. 

Based on the Student’s T-test conducted with 
95% significance level, the compressive strengths 
of F50C0, F50C37.5 and F12.5C56.25 were found 
out to be statistically similar to the conventional 
mix at the 28th day-period. These mixes had 2-
MPa decrease in strength than the conventional 
mix. 

 
Figure 2. 7-Days Compressive Strength (Early) 

 
The pozzolanic reaction has played a major 

role in the strength development of the modified 
mixes considering that both waste materials used, 
ceramic tiles and fly ash, possessed pozzolanic 
properties as inferred from the related literature. 
Aside from F50C0, all compressive strengths at 
the 56-day period exceeded the strength of the 
conventional mix. On the other hand, F0C37.5 and 
F12.5C56.25 produced compressive strengths less 
than F0C0 at the 28-day period. In terms of the 
modified mixes, 30% to 70% increase in strength 
was observed from the 7 to 56-day span. 

With regards to the bonding of the aggregates, 
the particles of the cement paste of all mixes were 
fibrillating from 7 to 56 days of curing periods. 
This allowed the cement paste to better bond with 
the other aggregates. However, when fly ash was 
introduced into the mix, the particles of cement 
paste became more spherical –as the percentage of 
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fly ash replacement was increased, more spherical 
particles were also observed. These spherical 
particles could have caused a weaker bonding 
among the aggregates thus providing weaker 
strength. 

 

 
Figure 3. Strength development of the mixtures 

 
Optimization results have indicated that the 

optimum combination of fly ash and waste ceramic 
tiles replacements at the 28th day-period was 25% 
fly ash and 75% waste ceramic tiles with 0.92 
desirabilities to attain the maximum compressive 
strength of 37.188 MPa. 
 
3.2 Artificial Neural Network Model 
 

Neural networks have a remarkable ability to 
derive and extract meaning, rules, and trends from 
complicated, noisy, and imprecise data. They can 
be used to extract patterns and detect trends that 
are governed by complicated mathematical 
functions that are too difficult, if not impossible, to 
model using analytic or parametric techniques. 
One of the abilities of neural networks is to 
accurately predict data that were not part of the 
training dataset, a process known as generalization. 
Given these characteristics and their broad 
applicability, neural networks are suitable for 
applications of real-world problems [16]. 

The data garnered were divided into three (3) 
groups: 70% for training the neural network, 15% 
for validation and 15% for testing, shown in Table 
5: 

 
Table 5. Considerations in the Artificial Neural 
Network Model 

Description Value 
Train Size 70% 

Testing Size 15% 
Validation Size 15% 

Seed 1000 

 
Multilayer Perceptron Networks (MLP) 

activation functions were considered for both 
hidden (input-hidden) and output (hidden-output) 
units. The activation functions for the hidden and 
output neurons used are the following, shown in 
Table 6. 

By determining the number of neurons in the 
input and output layers, a number of hidden layers 
and the number of neurons in each hidden layer, 
the best Artificial Neural Network model for the 
mixtures can be garnered. The Multilayer 
Perceptron Networks (MLP) considered minimum 
hidden units of three (3) and maximum hidden 
units of thirteen (13).  

 
Table 6. Activation functions for the hidden and 
output neurons [17] 

Neuron 
Function Description 

Identity 
The activation level is passed 
on directly as the output of the 
neurons 

Logistic 
This is an S-shaped (sigmoid) 
curve, with output in the range 
(0,1). 

Tanh 

The hyperbolic tangent function 
(tanh) is asymmetric S-shaped 
(sigmoid) function, whose 
output lies in the range (-1, +1). 

Exp 
Uses the negative exponential 
activation function 

 
After numerous trial, the ANN structure 2-12-

3 (2 input, 12-nodes and 3 output) with Tanh-
Exponential Activation Functions was determined 
to be the best model to estimate early, nominal and 
late compressive strengths of the mixtures. The 
summary of the network performances is shown in 
Figure 4. 
 

 
Figure 4. Summary of Network Performance 
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The model was able to give acceptable values 

of performance: 0.685130796, 0.801285056, and 
0.606756221 for training, testing and validation, 
respectively. 

To validate, the Target Compressive Strength 
vs. Predicted Compressive Strength Artificial 
Neural Network model were compared. A line that 
shows equality between the variable observed 
(Experimental Data) on the horizontal axis of a 
diagram and the variable predicted (Artificial 
Neural Network model) on the vertical axis. The 
plots should be near the equality line to ensure the 
predictions are acceptable, a sample Equality Line 
for the 7-Day Compressive Strength is shown in 
Figure 5. 
 

 
Figure 5. Equality line of the Artificial Neural 

Network model 
 

4. CONCLUSIONS & 
RECOMMENDATIONS 

 
Compressive strength tests followed the 

standard methods stipulated under ASTM C 39 to 
ensure the results garnered are correct. The 
conventional mix attained its target nominal 
strength (28-Day) with 28.302 MPa. The early and 
late compressive strengths of the conventional mix 
at 7 and 56 days of curing periods were 21.645 
MPa and 28.722 MPa, respectively. Among all 
modified mixes, F50C0 and F25C75 resulted to 
the least and highest compressive strengths at all 
ages with 26.343-MPa and 38.112-MPa nominal 
strengths, respectively. 

All combinations showed an increasing 
nominal strength up to an optimum amount. Based 
from the experimental data, all combinations have 
shown an optimum amount of 20% to 30% fly ash 
replacement except for the mix with 37.5% waste 

ceramic tiles replacement, which had an optimum 
amount of 10% to 20% fly ash substitution. 
Moreover, all combinations with 50% fly ash 
substitution attained less compressive strengths 
relative to mixes with 0% fly ash replacement. 

The pozzolanic reaction has played a major 
role in the strength development of the modified 
mixes considering that both waste materials used, 
ceramic tiles and fly ash, possessed pozzolanic 
properties as inferred from the related literature. 

The Artificial Neural Network provided a 
model that can predict based on extracted patterns 
and detected trends. The Target Compressive 
Strength vs. Predicated Compressive Strength by 
the Artificial Neural Network model was 
compared, and their plots are near the equality line, 
thus, acceptable. 

To further improve the conduct of the study, it 
is recommended to provide superplasticizers or 
other additives in the mixes in order to address the 
high absorption rate of ceramic tiles that lead to 
poor workability. It is also recommended to 
provide other machine learning models. 
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