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ABSTRACT: Regular inspection and maintenance work is required to ensure the structural integrity of historic 
structures, especially the masonry structures which are deteriorating due to ageing and man-made activities. 
The structures are typically examined by visual inspection, which is a costly and laborious procedure, and often, 
the inspection results are subjective. In this study, an automatic image-based crack detection system using 
Convolutional Neural Network (CNN) for masonry structures is proposed to aid the inspection procedure. 
Previous crack detection systems generally involve handcrafted features, which are then classified by 
classification algorithms. This approach relies heavily on feature extraction stage, which may not offer accurate 
results as some hidden features may not be extracted. In this paper, the feature extraction process is done by 
CNN from RGB images, and then the softmax layer is replaced by other classifiers to improve classification 
accuracy. Three classifiers are studied, namely the CNN itself, Support Vector Machines (SVM) and Random 
Forest (RF). A dataset containing images of cracks from masonry structures was created using a digital camera 
and an unmanned aerial vehicle. The images were used in training and validating the proposed system. The 
collected images were also used to build a 3D model using the technique based on Structure from Motion 
(SFM), which allowed images containing cracks to be located in 3D world coordinates. It was found that the 
combined CNN and SVM model performs the best among other methods with the detection accuracy of 
approximately 86% in the validation stages and 74% in the testing stage. As shown in this paper, the integration 
of CNN and other classifiers can improve detection accuracy. In addition, it was shown that the system can be 
used to detect cracks automatically for the images of masonry structures, which is useful for the inspection of 
heritage structures. 

Keywords: Convolutional Neural Networks, Support Vector Machine, Random Forest, Crack Detection, 
Masonry Structures.  

1. INTRODUCTION

Historic structures are vital to Thailand’s tourist 
industry as they are the country’s cultural heritage. 
With the threat of changing the environment (e.g. 
flooding) and unforeseen natural disasters (e.g. 
earthquake), the country requires expertise and 
research to establish ways to properly maintain 
historical structures. A number of heritage 
structures in Thailand urgently need constant 
inspection and monitoring as they are currently 
being exposed to damages from environmental 
changes, such as flooding. Some damages can be 
found in Wat Chai Wattanaram (shown in Fig. 1(a)), 
a temple dated back to 16th century in a historic 
province of Ayutthaya, a former capital of Thailand. 
Fig. 1(b) and (c) exemplified damages commonly 
found in the masonry structures in Ayutthaya. Some 
temples have been deteriorating due to natural 
causes, such as ground subsidence, or manmade 
activities such as vibration from the nearby roads. 
Monitoring and inspection of heritage structures in 
Thailand are in urgent need as it requires a 
systematic approach to maintain the structures. 
Failure in doing so can lead to the loss of these 
important heritage properties forever, which will 

result in the loss of Thailand’s culture and its 
national identity. 

Visual inspection is a common procedure to 
examine and assess the current state of historical 
buildings. However, this procedure is laborious and 
time-consuming as it normally involved inspectors 
traveling to interesting sites to assess the structures 
conditions based on the visual appearance of 
structures. Hence, the process cannot be conducted 
frequently due to high labor cost, and it is also prone 
to human-error. Often, sites cannot be inspected due 
to inaccessibility, especially the temples in 
Ayutthaya, where the tops of many stupas are 
extremely high and cannot be easily accessed for 
inspection. Failure to detect problems can lead to 
disastrous effects such as temple collapse. Many 
temples in Ayuthaya are visibly tilting, possibly due 
to the settlement from the flood. The tilt angle of 
Wat Yai Chai Mongkol was studied in [5] and these 
structures require frequent monitoring and 
inspection. In this paper, an automatic image-based 
crack detection system based on the convolutional 
neural network is proposed for the inspection of 
masonry structures.   
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Fig. 1 (a) Wat Chai Wattanaram, a temple located 
in the historical park in Ayutthaya, Thailand, (b) 
and (c) Example images of cracks found around 
Wat Chai Wattanaram. 
 

Generally, crack detection is done by either 
technique related to feature extraction or by 
automatic feature learning, i.e. a deep learning, 
which is a technique proposed in this paper. The 
technique based on feature extraction generally 
consists of two main steps, feature extraction, and 
classification. In the feature extraction step, various 
types of crack features are extracted, such as edges 
[1], percolation-based features [31,32] or multi-
features [24], and then classifiers, including 
Support Vector Machines (SVM) [7] and Neural 
Networks [29] are used in classifying the extracted 
features. This approach, however, can fail as some 
hidden crack features may not be extracted due to 
their complexity. Therefore, deep learning 
technique is a better approach in the crack detection 
problem as crack features are learned automatically 
from raw images, and complex features can be built 
from low-level features. Deep learning has been 
applied to many problems as it proves to be a better 
technique in the classification task [6,27].  

In this paper, an image-based system to inspect 
masonry structures is proposed. The system 
integrates Convolutional Neural Network (CNN) 
with a classifier to improve classification accuracy.  
Three types of classifiers are explored, CNN, 
Support Vector Machine (SVM) and Random 
Forest (RF). The image data was collected using an 
Unmanned Aerial Vehicle (UAV) and a handheld 
DSLR camera from various locations around 
historical temples in Ayutthaya. The images were 
also used in creating a 3D model so that the 
locations of detected cracks can be located in 3D 
space.  

The contribution of this paper is two-fold. 

Firstly, an automatic inspection system for 
historical structures is demonstrated. Secondly, a 
CNN-based system is shown to be a good technique 
for detecting cracks in masonry structures. The rest 
of the paper is organized as follows, Section 2 
presents literature review about automatic crack 
detection. Section 3 and 4 describe the methodology, 
and Section 5 shows the experiments of the 
proposed system and image-based 3D modeling. 
Discussion and conclusion are drawn in Section 6 
and Section 7, respectively. 
 
2. LITERATURE REVIEW 
 
2.1 Inspection of heritage structures 

 
Non-invasive inspection is required when 

assessing damage in vulnerable historic buildings to 
prevent further damage [27]. Fregonese et. al. [18] 
applied terrestrial laser scanner (TLS) to monitor 
out-of-plane displacement of an ancient building by 
registering two sets of laser scan data to geo-
referenced control points. Mogahed et. al. [20] 
transformed control points from a laser scan data to 
a total station data using a series of transformation 
to find a discrepancy between two sets of data and 
displacements for heritage structures.   Tapete et.  al. 
[8] integrated ground-based synthetic aperture radar 
interferometry (GBInSAR) to detect deformation of 
objects from SAR images. Armesto et. al. [15] 
applied TLS to a masonry bridge and estimated the 
bridge deformation an algorithm based on the arch 
symmetry. Bhakapong et. al. [5] applied 
photogrammetry technique to compare the cross-
sectional profile of temples in order to assess the 
building inclination.  Costanzo et. al. [3] presented 
a methodology that combined TLS and infrared 
thermal images for inspecting St. Augustine 
Monumental in Calabria (South Italy). Achille et. 
al. [2] demonstrated the application of 
photogrammetry using unmanned aerial vehicle 
(UAV) to survey the historical structure “Santa 
Barbara” bell tower in mantua (Italy). Pesci et. al. 
[4] applied TLS with digital images to detect the 
trace of restoration in the ancient part of palazzo 
d’Accursio in Bologna, Italy.  

Image-based photogrammetry techniques were 
used to create 3D models of historical buildings. 
The techniques rely on automatic control points and 
Structure from Motion (SfM) allowing 3D models 
to be created from images taken with arbitrary 
motions. Bhakapong et. al. [5] applied an image-
based technique to estimate the tilt angle of Wat Yai 
Chai Monkol from 3D point cloud. 
 
2.2 Autonomous crack detection system  

 
Visual inspection is a common procedure for 

examining the current conditions of structural 
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components. The guideline from Federal highway 
administration and federal transit administration 
[13] suggests that inspection should be carried out 
within an inspector arm’s length, which can be 
impossible in inaccessible areas. Crack detection is 
the first stage in inspection, and once cracks are 
found, they will require systematic monitoring. 
Current visual inspection procedures have a number 
of issues, including high labor costs, time-
consuming and subjectivity. Visual inspection can 
be highly subjective as it relies on inspectors’ 
experience. Crack detection remains one of the 
most difficult tasks, which is a major concern in 
inspection as discussed in [33].  

The robotic system can be used to automatically 
acquire images as shown in [26], who used a robotic 
system for bridge inspection. The system is pre-
programmed to navigate around a pavement to 
detect cracks using automatic crack detection 
algorithm. Loupos et. al. [16] built an intelligent 
robotic system for tunnel inspection. The system 
incorporated many sensors, including laser scanner, 
infrared and vision camera, to improve the robot’s 
navigation and detection system although the 
system was still not completely autonomous. 

Unmanned Aerial Vehicles (UAVs) are ideal 
tools in applications that require rapid and effective 
views of the site, for example, in archaeological 
sites or in a post-earthquake zone [19]. The use of 
image-based techniques with UAVs for the 
condition assessment of infrastructure, particularly 
crack detection is exemplified in [27]. In his work, 
a UAV was used for image acquisition, then image 
processing algorithm was applied to inspect cracks 
across the building surface. Similarly, Pereira et. al. 
[11] applied embedded an image-based system for 
the automatic recognition of crack in building 
facades using UAVs.  

Many automatic crack detection systems are 
based on extracting handcrafted features. Ellenberg 
et. al. [10] discussed several algorithms, including 
percolation approach, fractal method and tensor 
voting for crack detection. Abdel-Qader et. al.  [1] 
applied four different edge detection techniques, i.e. 
Fast Haar Transform (FHT), Fast Fourier 
Transform, Sobel and Canny detectors for concrete 
bridges. The FHT was the best one among other 
detectors in the study. The limitation of edge 
detection algorithms is generally due to noise. Liu 
et. al.  [17] applied image intensity features and 
Support Vector Machine (SVM) for tunnel crack 
detection. This method is prone to error due to 
noise. For different types of cracks and images 
containing noise, the techniques based on 
handcrafted features fail to perform. Hence, 
automatic feature extraction based on learning 
techniques such as deep learning performs well 
when compared to the techniques based on 
handcrafted features. Zhang et. al.  [34] applied 

deep convolutional neural network for road crack 
detection from images collected using a low-cost 
smart phone. Cha et. al. [6] used the deep 
convolutional neural network (DCNN) for 
automatic concrete crack detection and presented 
98% accuracy, which is much better and more 
accurate than techniques relying on handcrafted 
feature extraction techniques.  

As observed in the previous literature, the 
research trend in the area of infrastructure 
inspection is to achieve a completely automated 
system based on automatic defects detection 
incorporated with an autonomous robotic system. 
However, the performance of these systems, such as 
accuracy, reliability, robustness and efficiency, still 
requires a great deal of improvement if they are to 
be adopted by the industry. A combination of the 
detection system, sensors and robotic systems are 
the key success and to also ensure that most defects 
are detected and monitored.  
 
3. PROPOSED METHODOLOGY  
 

The outline of the proposed system is shown in 
Fig. 2. The system consists of 3 modules as 
explained in detail below, (1) Image acquisition via 
a drone and DSLR camera (2) Crack detection using 
CNN, and (3) Image-based 3D modeling. The 
output from the system is a 3D model and its 
associated images containing cracks. 

 
 

 
Fig. 2 Outline of the proposed system 

 
 
3.1 Image acquisition 
 

In recent years, UAVs have been utilized in 
surveying as an alternative to conventional 
surveying methods since they are faster, simpler 
and cheaper. In this research, a drone DJI Phantom 
4 and DSLR was used to acquire all images, the 
specification of the drone’s camera. In order to 
obtain the full coverage of a structure as well as 
achieving a detailed 3D model, two pre-planned 
flight path strategies have been adopted. Fig. 3(a) 
demonstrates the first strategy, the sweeping 
strategy, in which the drone flew in a zig-zag 
motion to sweep an entire area from a specified 
height from the ground level. 

Image-based 
3D modelling

Images

Crack 
Detection

3D Models

Figure 5: Outline of the proposed system

3 Methodology

The outline of the proposed system is shown in Figure 5. The system consists of 3 modules as explained

in detail below, (1) Image acquisition via a drone, (2) image-based 3D modelling and (3) crack detection

system. The output from the system is a 3D model and its associated images containing cracks.

3.1 Image acquisition

In recent years, UAVs have been utilised in surveying as an alternative to conventional surveying methods

since they are faster, simpler and cheaper. In this research project, a drone DJI Phantom 4 was used to

acquire all images, the specification of the drone’s camera and configuration is shown in Table 1. In order

to obtain the full coverage of a structure as well as achieving a detailed 3D model, two pre-planned flight

path strategies have been adopted. Figure 6(a) demonstrates the first strategy, the sweeping strategy, in

which the drone flew in a zig-zag motion to sweep an entire area from specified height from the ground

level. The drone was pre-programmed to take pictures every 2-3 seconds to ensure that an overlap between

consecutive images is at least 50%. Figure 6(b) shows the second strategy, the Point of Interest (POI)

strategy, in which the drone flew around a fixated object in a circular motion. This strategy is suitable

for capturing images of an individual building, and in this method, the drone’s camera was programmed

to fixate its viewing angle to the main pagoda located in the centre of the temple. The drone took

pictures every 2-3 seconds when it moved around the temple at the pre-determined radius. Pictures

were collected at two levels of pre-determined height, and the images at the ground level were collected

manually by researchers who took pictures around the temple in approximate a circular path, similar to

9
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The drone was pre-programmed to take pictures 
every 2-3 seconds to ensure that an overlap between 
consecutive images is at least 50%. Fig. 3(b) shows 
the second strategy, the Point of Interest (POI) 
strategy, in which the drone flew around a fixated 
object in a circular motion. This strategy is suitable 
for capturing images of an individual building, and 
in this method, the drone’s camera was 
programmed to fixate its viewing angle to the main 
pagoda located in the center of the temple. 

The drone took pictures every 2-3 seconds when 
it moved around the temple at the pre-determined 
radius. Pictures were collected at two levels of pre-
determined height, and the images at the ground 
level were collected manually by researchers who 
took pictures around the temple in approximate a 
circular path, similar to the drone motion. In this 
work, the drone flight paths were pre-programmed 
in an IOS application call Auto Flight Logic. The 
application requires input parameters, including 
altitude, radius, velocity, and camera viewing 
angles. It is important to note that the drone flight 
path should be planned carefully so that it can 
complete the tasks within the flight time of 28 
minutes for a single battery pack. It is also worth 
mentioning that a 3D model created from images 
can be registered with GPS, unlike the models 
created from videos. In addition, some close-up 
images are manually collected by using DSLR 
camera so that crack features are more visible in 
images. These images can also be combined with 
the 3D model. The sample images collected using 
UAVs are shown in Fig. 4. 

 
3.2 IMAGE-BASED 3D MODELING  

 
Agisoft is an image-based 3D reconstruction 

system, which takes input as a set of images and the 
output will be a 3D point cloud of an interested 
scene or objects. The software is based on Structure 
from Motion (SFM) and interested readers can refer 
to [21] for more detail of the theory and technology. 

 

 
 
Fig. 3 Shows proposed pre-planned flight paths, (a) 
the sweeping strategy showing the drone flies in a 
zig-zag motion, and (b) circular motion or the POI 
strategy, where the drone flew around the Point of 
  
 

 
 

Fig. 4 Sample images (a) acquired using a UAV 
(Ayutthaya Temple Thailand) 
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4. CRACK DETECTION 
 

Fig. 5 shows an overview of a crack detection 
system. The detection system consists of two main 
modules, feature extraction, and classification. In 
this paper, feature extraction was conducted using 
the convolutional neural network (CNN). CNN is 
currently a state of the art for most vision problem 
and it is expected to outperform the traditional 
feature extraction technique. In the classification 
step, once features are extracted from the previous 
step, a classifier is used to determine whether the 
extracted features belong to a crack class. The 
classification process is also done by using three 
different classifiers in this study, a softmax layer in 
the CNN itself, Randomized Forest (RF) and 
Support Vector Machine (SVM) for comparison 
purpose. In this paper, there are two labels, crack 
and non-crack classes. As shown in the figure, the 
input to the system is an image patch, and the output 
is a label to determine if a patch belongs to as a 
crack or non-crack class. 
 
 

 
Fig. 5 shows an overview of a crack detection 
system 
 
4.1 Feature Extraction 

 
In this paper, CNN is used for feature extraction. 

Convolutional Neural Network (CNN) is a type of 
multilayer feed forward biologically inspired or an 
influenced variant of the artificial neural network, 
which has shown their significance in solving real-
world problems. CNN architecture can be 
considered as a combination of a multi-level deep 
feature extractor and a classifier. As shown in Fig.  
7, the feature extractor contains multiple layers, the 
input for the first layer comes in the form of three 
2D arrays containing image pixel intensity values in 
the RGB color channels, and these layers retrieve 
the variance information at each level in the  

form of discriminative features. The extracted 

features in feature extractor are used to train the 
classifier. In this work, a softmax layer, which is the 
classification step in CNN, is modified by different 
classifiers. The major advantage of the Deep 
Convolutional Neural Network is that it does not 
require any intervention in the design of multiple 
stage layers. These multiple layers are learned from 
raw data using a learning procedure. The 
architecture of CNN consists of a series of layers. In 
our model, we used the Keras sequential model 
[25], for the CNN architecture, which is three-stage 
layers as shown in Fig. 6. The first few stages of 
CNN architecture consists of three types of layers, 
convolutional layers, activation layer (ReLU) and 
max-pooling layers. 

As shown in Fig. 7, in the CNN architecture in 
the proposed work, each stage of convolutional 
layers consists of a convolution as a filter layer, 
non-linearity as an activation layer (ReLU) and 
max-pooling as a down-sampling layer. They are 
stacked together in each convolutional layer and 
fully connected layers are used in computing the 
class scores. In the proposed system, the output 
from a fully connected layer is the input as feature 
vectors for classifiers. 
 
4.2 Classification 
 
4.2.1 Softmax classifier 
 
The Softmax classifier provides normalized class 
probabilities, where the hinge loss is replaced with 
cross-entropy loss with 

𝑳𝒊 = −𝐥𝐨𝐠	
  (
𝒆𝒇𝒚𝒊
𝚺𝒋𝒆𝒇𝒋

) 

where 𝒇𝒋 is the j-th element of the vector of class 
scores 𝒇. The softmax function takes a vector of 
arbitrary real-valued scores and squashes it to a 
vector to values between 0 and 1. In our proposed 
system, the feature vector obtained from the fully 
connected layer is classified by the softmax 
classifier. 

Fig. 6 The diagram shows the architecture of convolutional neural network in a feature extraction step. In the fully 
connected layers, extracted features are input to classifiers. In this project, the extracted features are classified by 
a classifier 
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Fig. 7 The architecture of the convolutional neural 
network in the proposed work 

 
4.2.2 Randomized Forest 
 

A forest 𝑇 can be looked as a composition of 
decision trees 𝑓. Each decision tree 𝑓2(𝑥) produces 
a prediction of a sample x, which is achieved by 
classifying a sample x by recursively branching left 
or right down the tree until the last node of decision 
tthe ree is reached. Randomized Forests (RF) are a 
combination of bagging and random feature space 
algorithms. The random forests are supervised 
learning method for classification, which is applied 
to classify features into different class clusters so 
that the same features within the same class clusters 
are meant to have similar characteristic features in 
order to qualify to be in the same clusters as shown 
in Figure 8. And interestedthe  reader can read [23] 
for more detail. 
 
4.2.3 Support Vector Machine 
 

The main objective in SVM is to find a 
hyperplane that separates the largest fraction of a 

labeled dataset for binary classification. The 
training data is a set of training samples 
pairs{ 𝑥6, 𝑦6 , … , (𝑥:, 𝑦:)}, where 𝑥:the observation 
is or input feature for the 𝑖2= sample and 𝑦: ∈ {1, 0} 
is the associated class label .The SVM classifier is 
the discriminant function that maps an input feature 
space 𝑥: into a class label 𝑦:. An interested reader is 
referred to read [7] for the detail of Support Vector 
Machines. 

 

 
Fig. 8 shows an example of Random Forest 
classification (taken from [3]) 
 
 
5. EXPERIMENTS AND RESULTS 
 
5.1 Image-based 3D Modelling 
 

Fig. 9(a) shows a 3D model of the stupa with 
camera locations. This 3D model can be used as part 
of an inspection report. The crack detection system 
can be applied to images, then the locations of 
images containing cracks can be identified in this 
model. This enables inspectors to know the 
locations of cracks in a 3D sense, which is useful 
for inspection. Three types of collection strategies 
are applied to obtain images to demonstrate the use 
of the image-based 3D modeling technology, 
including sweeping strategy (see Figure 10(a)) and 
(b), POI strategy (see Figure 9(a) and (b)), and 
close-up strategy. The close-up strategy was done 
by taken pictures close to the surface of structures 
to allow more surface details. The model created 
from the sweeping strategy provides an overview of 
an entire site and the model from the POI strategy 
is used to obtain more information from each stupa 
in the site. The models from these two strategies can 
be combined but it is beyond the scope of the study. 

 
5.2 Crack detection 
 
5.2.1. Training and Validation Data 
 

To provide the robustness for the crack 
detection system, multiple sources of data were 
used. This includes images of masonry surface from 
various sites. Sample images of cracks on different 
types of surface enable the crack detection system  
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Fig. 9 shows the 3D point cloud created from the 
image-based 3D modelling techniques using the 
POI flight path strategy, (a) sparse point cloud, and 
(b) dense point cloud. 
 
to be applied to many types of surface. A DSLR 
digital camera and images from the drone were 
employed to capture images near the surface of 
structures from various locations, mainly from 
around Ayutthaya historical park. The crack images 
of structure surface are collected based on their 
visual appearance. The system devised the 
classification framework by having two classes, 
crack and non-crack classes. Moreover, the 
database includes different types of commonly 
found cracks, i.e. longitudinal, transversal and 
others. Fig. 11 (a), (b) and (c) shows an example of 
crack patches on masonry surface and Fig. 11 (d), 
(e) and (f) are non-crack patches. The crack images 
of structure surface are collected based on their 
visual appearance. These images have been used as 
a database for a system. In the proposed system, 
image patches are used instead of an original size. 
For the evaluation of the proposed model, 6002 
crack and non-crack image patches have been 
constructed to classify and detect the cracks in the 
concrete structure. The image patches have been 
split into three sets, i.e. training, validation and 
testing data, with a split ratio 6:2:2. 60% image 
samples were randomly selected for training 
database, 20% for validation database and 20% for 
the testing database. The number of cracks and non-
crack image patches are set equally in all three 
datasets. 

To train CNN, manual labeling operation was 
done on input images. For testing data, images that 
were not in the training and validation data were 
selected. For labeling, one is assigned to patches 
containing crack and zero for non-crack patches. 
The RGB values are used as features in CNN input. 

 
 

 
Fig. 10 shows the 3D point cloud created from the 
image-based 3D modeling techniques using the POI 
flight path strategy, (a) sparse point cloud, and (b) 
dense point cloud. 

 
 

Fig. 11 (a), (b), (c) shows sample images of crack 
patches. (d), (e), (f) shows Sample images of non-
crack patches. 
  
5.2.2. Parameters Estimation 
 
Convolutional neural network   
 

CNN was implemented using the Keras library 
in python. Charles [31] developed the Keras library 
that provides a framework for deep convolutional 
neural network and a collection of backend 
libraries. Training CNN increases features variation 
and can avoid the over-fitting problem. The dropout 
method is used for CNN training to reduce an over 
fitting problem as suggested in [22]. The input to 
CNN is an r × r × d image patch, where r is the 
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height and width of the patch and d = 3, which is the 
RGB channel. The training dataset is {In, yn}, for n 
= 1, 2, ..., m and m is the total number of image 
patches, In is a 28×28 patch and in is {1, 0}, a class 
label. The first convolutional layer consists of 32 
3x3 convolutional filters and the max pooling filters 
have a ratio of 2. CNN training was stopped after 17 
epochs when the loss converged to a fixed value as 
shown in Fig. 12.   
 

 
 
Fig. 12 shows the plot of a loss against the number 
of Epochs for CNN training 
 
Randomized Forest 
 

In the proposed system, the fully connected 
layers of CNN are input as feature vectors for 
Random Forest. To choose suitable parameters of 
the RF classifier, including the number of 
estimators E, the maximum depth of tree D and the 
minimum sample split M, a different combination 
of the values E, D, and M was conducted using the 
training data. The results are shown in Table 1, the 
best accuracy was obtained when E = 70, D = 20 
and M = 2.  

 
Support Vector Machine  

For SVM, the Radial Basis Function (RBF) was 
used as a kernel, hence a cross-validation technique 
was employed to obtain the optimal values for the 
kernel. Table 2 shows a parametric study for SVM, 
where a different combination of C and gamma 
values were tried in the validation dataset to obtain 
the maximum accuracy. As shown in Table 2, the 
best accuracy occurred when C = 4 and gamma = 1. 

 
 
 
 
 
 
 
 
 

Table 1: Parametric study for Random Forest 
 

Estimator Maximum 
Depth 

Minimum 
Split 

Accuracy 

30 10 2 69.15 
50 10 2 69.15 
70 10 2 69.39 
75 10 2 69.32 
80 10 2 69.18 
70 15 2 69.83 
70 20 2 70.51 
70 25 2 70.10 
70 20 4 70.00 
70 20 6 69.66 

 
 Table 2: Parametric study for SVM 

 
C gamma Accuracy 
1 0.5 0.770 
1 1 0.72 
2 1 0.72 
3 1 0.73 
4 1 0.73 
5 1 0.71 

  
5.2.3. Validation Results  
 
Performance metrics 

All methods were compared using the ROC 
curves, and classification results using the 
definition shown below. Table 3 shows the 
definition of True Positive (TP), True Negative 
(TN), False Positive (FP) and False Negative (FN). 
The classification report and ROC curves were 
obtained based on the confusion matrix, which can 
be explained as shown in Table 3. 
 
   

𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚 =
𝑻𝑷 + 𝑻𝑵

𝑻𝑷 + 𝑻𝑵 + 𝑭𝑷 + 𝑭𝑵
	
  

(1) 

 

𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 =
𝑻𝑷

𝑻𝑷 + 𝑭𝑷
	
  

 
(2) 

 

𝑹𝒆𝒄𝒂𝒍𝒍 =
𝑻𝑷

𝑻𝑷 + 𝑭𝑵
	
  

 
(3) 

 

𝑭𝟏𝒔𝒄𝒐𝒓𝒆 =
𝟐×𝑷𝒓𝒆𝒄×𝑹𝒆𝒄𝒂𝒍𝒍
𝑷𝒓𝒆𝒄 + 𝑹𝒆𝒄𝒂𝒍𝒍

	
  

 
(4) 

 
 
 
 



International Journal of GEOMATE, Nov., 2018 Vol.15, Issue 51, pp.240-251 

248 
 

Table 3. Confusion matrix for class classification 
 

Ground 
Truth Label 

Predicted Label 

Positive 
(Crack) 

Negative (Non-
crack) 

Positive 
(Crack) 

True 
Positive (TP) 

False Negative 
(FN) 

Negative 
(Non-crack) 

False 
Positive (FP) 

True Negative 
(TN) 

 
Results  
 

Table 4 shows the results from the validation 
dataset. The experiments were conducted on three 
different methods, 

•   Convolutional neural network for feature 
extraction and classification (CNN). 

•   Convolutional neural network for feature 
extraction and Random forest 
classification (CNN-RF). 

•   Convolutional neural network for feature 
extraction and support vector machine 
classification (CNN-SVM).  
 

It is clear that the combined model, CNN-SVM, 
outperforms both methods, CNN and CNN-RF with 
the accuracy up to 85.94% in the validation step. 
The CNN-SVM method outperforms the other two 
methods in all evaluation metrics. The CNN-SVM 
method performs better than the CNN method alone 
and CNN-RF. This implies that the CNN method is 
good to extract useful information from images and 
a classifier can be used to help to boost the 
classification performance. It is clear from this 
results that the machine learning technique is a 
much better way for the classification problem. Fig. 
13 shows the ROC plot for all the methods. It can 
be seen that the CNN-SVM method has the best 
performance as the ROC curve goes towards the top 
left corner of the graph.  
 
Table 4 Performance of crack detection system on 

validation data 
 

Method Validation 
Accuracy 

Precision Recall F1 
score 

CNN 82.94 0.83 0.71 0.74 

CNN-RF 83.11 0.84 0.85 0.84 

CNN-
SVM  

85.94 0.84 0.79 0.79 

 
 
 
 

 
 
Fig. 13 shows The ROC curves between the CNN 
technique and the combined CNN-RF, CNN-SVM 
model for validation data. 
 
5.2.4. Application to testing dataset  

  
In this section, the crack detection system was 

conducted on the testing dataset, which was images 
of one of a stupa in Wat Chai Wattanaram that 
contains many visible cracks as shown in Fig. 14. 
2934 image patches were used in this experiment, 
which was not included in the training of CNN and 
classifiers. Table 5 shows the performance of each 
method on the testing dataset. It can be seen that the 
CNN-SVM method performs the best with the 
accuracy of up to 74.90%. All other metrics by the 
CNN-SVM method are also better than any other 
methods.  

Fig. 15 shows the results of images with cracks 
detected. The areas inside red boxes indicate that 
cracks are detected inside the area. It can be seen 
that, on the top pair of images, most crack regions 
are correctly identified, and similarly for the middle 
pair of images. However, the middle pair of images 
contains many false negative areas, which may be 
due to the system was confused the grout lines with 
cracks. The bottom pair of images also has many 
false negatives, especially around the grout lines. 
This suggests that the inaccuracy of the system may 
be due to these regions as their appearance are very 
similar to the appearance of cracks. Nevertheless, 
with more training dataset, the result should 
improve. 

 
Table 5 Performance of crack detection system on 

testing data 
 

Method Validation 
Accuracy 

Precision Recall F1 
score 

CNN 67.5 0.80 0.68 0.73 
CNN-

RF 
72.05 0.79 0.72 0.70  

CNN-
SVM  

74.90 0.82 0.78 0.78 
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Fig. 14  shows a sample of cracks image on the 
testing dataset. 
    
 

 
Fig. 15 shows crack localization of selected sample 
images 
 
6. DISCUSSION 

 
The combined model, i.e. CNN-SVM, show an 

increase in accuracy as shown in Table 3 and 5, 
which is in line with the previous research as shown 
in Xue et al. [9]. Xue proved that better 
classification performance can be achieved when 
combining CNN with a classifier, in which in their 
paper, they combined CNN with Support Vector 
Machine. 

It can be seen from the results of this research 
work that crack can be detected automatically using 
images and are useful for inspecting heritage 
structures. The system is based on images, in which 
cracks and damages can be detected based on 

images. This cannot be achieved by the laser scan 
system as the point cloud created by this technology 
is never dense enough for a crack to be detected 
from the 3D point cloud. 

This research shows the usefulness of an 
automated system in inspecting heritage structures. 
The system keeps the database of heritage structures 
as well as providing the current state of the 
structures. 

The system allows structures to be inspected 
more frequently. This system demonstrates the use 
of technology in the inspection of heritage 
structures and shows the advancement in 
automation in this area. The system proposed here 
can be a prototype in a robotic system using a video 
for inspection. 

CNN is capable of extracting discriminative 
features from a large number of images without any 
pre-processing. However, a large amount of 
training images is required, which can be 
considered as a disadvantage. For example, a large 
amount of digital data requires high system 
specification to process a large amount of data. 

Although CNN is extremely good at extracting 
features and classification, it relies on good 
datasets. Good datasets can be difficult to create as 
they rely on human as a gold standard. Images of 
cracks cannot be easily identified and need to be 
verified by experienced inspectors. Therefore, the 
datasets for crack and non-crack classes may need 
to verify by multiple sources, and this process can 
be laborious and time-consuming. In this project, 
due to limited sources, datasets were not verified by 
multiple people, which may result in the accuracy 
of CNN. Therefore, the proposed system can be 
improved by using better training datasets. 

Crack detection on masonry structures is difficult 
as cracks cannot be easily identified in images. 
Cracks in masonry structures have a similar 
appearance to grout lines, which can be mistaken. 
Therefore, it can be difficult to create datasets as the 
scene is quite complex and confusing. Nevertheless, 
good datasets are required for any CNN system. 
 
7. CONCLUSION 
  

As demonstrated in this work, it can be concluded 
that the proposed automated crack detection system 
together with the drone technology can be applied 
in inspecting damages, especially cracks, from 
images in heritage structures in Thailand. The 
system employed the drone technology and a 
standard digital camera to acquire images, which 
are then processed by the crack detection system. 
The 3D model created from acquired images can be 
used for archiving heritage structures as well as for 
creating an inspection report in a form of 3D model 
with associated image locations to provide a better 
view and sense of space for inspectors. This can 
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increase the effectiveness in the long-term 
monitoring of heritage structures. Such procedure 
provides an opportunity for practitioners to 
systematically archive and maintain heritage 
structures in Thailand. 

It can be concluded that, for the crack detection 
problem, the method based on CNN-SVM is better 
than CNN alone and CNN-RF. This is clear in the 
present results that the CNN-SVM method has 
better accuracy in both validation and testing 
dataset. The system also performs better than 
various hand crafted feature based system in which 
feature extraction techniques are usually based on 
some assumptions which sometimes are not a 
generalization and latent variables may not be 
extracted or will be missed. Therefore, it can be said 
that, for the classification problem, CNN should be 
employed instead of the feature extraction 
techniques. 

As shown in this work, CNN is best to be used as 
a feature extractor, and these features can be 
classified by any classifiers. In the future work, 
different classifiers can be explored to see if the 
accuracy of the system can be improved. The 
accuracy of the system can also be improved by 
providing better and bigger training datasets. 
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