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ABSTRACT: A car suspension system is widely applied as it provides a smooth ride and steering stability. 

With its usefulness, developments and creations of new suspensions are being continuously conducted. This 

results in drivers and passengers having a better experience when driving on rough roads. In this study, an 

active suspension is developed by analyzing a working process of a car suspension using the fundamental 

equations of constrained motion and Lyapunov Theory. MATLAB software is used to analyze the data and to 

examine the accuracy of the results. The results obtained from the analyzing process were found to be 

satisfactory. The research is conducted according to the objectives and limitations of the study which are 

successful in finding a mathematical model for the controller design of an active suspension system. 

Analyzing the functions of the controller, it was found that spring constant of choke, spring constant of tire, 

and damping constant affect the smoothness of a car suspension system. 
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1. INTRODUCTION

Nowadays, smooth driving is the main 

objective in developing modern cars and is the key 

to customer satisfaction. If cars show a good 

suspension response, the passengers’ satisfaction 

would be higher with those particular cars. The 

currently favored type of suspension for further 

development is an Active Suspension [1-3]. This is 

due to its ability to constantly adjust forces applied 

to the suspension system by calculating suitable 

forces for each type of road at any period of time. 

In the study model, it is assumed that the 

suspension could apply forces to both sprung mass 

and unsprung mass, which are comparable to a car 

cabin and a car suspension, respectively. 

According to many studies related to the active 

suspension [4-5], it is easier to consider a dynamic 

model of a quarter car and to control the system 

with feedback controller [6-7]. With that in mind, 

if errors were to be found, the controller would try 

to return the system back to the equilibrium point. 

In this paper, the fundamental equations of 

constrained motion [8-11] are used to solve the 

dynamic equations of the quarter car mathematical 

model in order to verify the stability of the 

controller. In addition, Lyapunov Theory is applied 

to determine the stability constraint of the system. 

The linear constraint function in the form of 

acceleration is then received. Its condition helps 

diminish the energies in the system to zero or close 

to the equilibrium point, which meets the designed 

expectation. The verification of the effectiveness 

of the proposed controller is done by a numerical 

computation in MATLAB to find the displacement 

and velocity in each period of time of the sprung 

and unsprung masses of the quarter car. This is to 

prove that the system meets the stability’s 

expectations and design objectives. 

2. DYNAMICS

The fundamental equations of constrained 

motion are used to analyze the target system. The 

approach is divided into three steps [11-15]. 

2.1 Unconstrained System 

First, Newton second law of motion is used to 

create a non-constrained system’s equation of 

motion. 

.F ma (1) 

Eq. (1) can be rearranged and written as 

.Mq Q (2) 

where 
M is a mass matrix (kg) 

 q is a generalized acceleration (
2m/s ) 

 Q is a generalized force (N). 

In pre-multiplied Eq. (2) with
1,M -

 we can find

the unconstrained system’s acceleration as 
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1: .a q M Q     (3) 

2.2 Constraint Equation 

In this part, a constraint function (or a part 

which forces the system back to a desired stage) is 

defined for the system to be back to the 

equilibrium point: 

( , , ) 0q q t  . (4) 

After differentiating Eq. (4) and rewriting it in 

acceleration form [12], we get: 

( , , ) ( , , )A q q t q b q q t (5) 

where 

A is a constraint matrix 

b  is a constant vector. 

2.3 Constrained System 

In order for the system to satisfy the constraint 

(5), based on the Newton second law of motion 

(Eq. (2)), we use forces from the feedback 

controller as a control force [13,14]: 

( , , ) ( , , ).CMq Q q q t Q q q t  (6) 

where 
CQ is the control force (N), which is computed 

as [9]: 

1( ) ( )C T TQ A AM A b Aq    (7) 

where + is the Moore-Penrose inverse matrix [9]. 

Then, Eq. (7) is substituted with Eq. (6) and the 

equation is pre-multiplied with 1-M . Finally, the

dynamic equations are obtained in the form of 

acceleration: 

1 1( ) ( ).T Tq a M A AM A b Aa    
(8) 

In order to verify the motions of the 

constrained dynamic system, Eq. (8) is integrated 

twice to compute the velocity and displacement of 

the system in any period of time. After that, the 

obtained values were used to calculate errors in 

satisfying the constraints. They were also used to 

have a guideline for adjusting the design 

parameters for the controller to achieve the desired 

goal of the constrained system.  

3. METHOLOGY

3.1 Analyzing the Unconstrained System 

In this work, a quarter car is modeled with an 

active suspension as seen in Fig.1.  

In its free body diagram, a vertical movement 

of a two-degree of freedom system is considered. 

By the virtue of the unconstrained motion, the 

Newton second law of motion [4] yields 

mathematical models of the system without any 

control force from hydraulic ( cQ ) (as shown in

Eq. (2)): 

Fig.1 Quarter car 

For sprung mass 

 

( ) ( ),s s s s u s s um z k z z b z z    
(9) 

and for unsprung mass 

( ) ( )

( ),

u u s s u s s u

t r u

m z k z z b z z

k z z

   



(10) 

where 

sm is sprung mass (kg) 

um is unsprung mass (kg) 

sz is displacement of sprung mass (m) 

uz is displacement of unsprung mass (m) 

sz is velocity of sprung mass (m/s) 

uz is velocity of unsprung mass (m/s) 

sk is spring constant of sprung mass (N/m) 
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sb is damping constant of sprung mass(N/m2) 

tk is spring constant of tire (N/m) 

rz is displacement from road (m). 

Rearranging Eq. (9) and (10) into a matrix 

form, the following was obtained: 

0

0

( ) ( )
.

( ) ( ) ( )

s s

u u

s u s s u s

s s u s s u t r u

m z

z

k z z b z z

k z z b z z k z z

   
   
   

   
  

     
(11) 

The matrix in front of the acceleration is 

considered as the mass matrix ( M ) and another 

one on the right side of the equation is the 

generalized force vector ( Q ). Therefore, these two 

parameters of the unconstrained system are 

obtained: 

0
( , ) :

0

s

u

M
m

q t
m

 
  
 

, 

( , , )

( ) ( )
: .

( ) ( ) ( )

s u s s u s

s s u s s u t r u

Q q q t

k z z b z z

k z z b z z k z z

   
 

     
(12) 

3.2 Assigning a Constraint Equation 

This step is to define a function that controls 

the system. Let us begin with the constraint 

equation from Eq. (4). Since the movement 

stability of the sprung and unsprung masses is 

considered, Lyapunov stability criterion is used in 

this study [7]. 

Regarding Lyapunov stability criterion, it 

composes of a function of V , which is also known 

as a Lyapunov candidate function. In the present 

work, it is assumed as a function of displacement, 

velocity and time. Stability in Lyapunov sense is 

satisfied with two conditions: 

1. A positive definite function of the Lyapunov

candidate 

( , , ) 0.V q q t  (13) 

2. A negative definite function of the

Differentiation of the Lyapunov candidate 

( ( , , )) 0
d

V q q t
dt

 . (14)

Satisfying the first condition is not a challenge; 

however, it is not easy to find a positive definite 

function having negative definite differential 

function. Thus, any positive definite functionV
that satisfies 

 

( , , , ) ( , , )V q q q t V q q t   (15)

as a constraint is considered. 

In Eq. (15), V  is a Lyapunov candidate which 

is a function of generalized coordinate, generalized 

velocity and time. is any positive constant 

parameter which is to show the speed where the 

system can return to equilibrium. 

The purpose of this study is to reduce the 

system’s energies and return the displacement and 

velocity of the sprung and unsprung masses to 

equilibrium. Eq. (15) is solved to prove that this 

constraint equation satisfies the goal. So, we can 

get the solution of this equation as: 

0.tV e V     (16)

     

This equation is in the form of an exponential

decay. When the time goes to ･ , the function will 

bring V back to zero. So, the parameters 

(  and )q q that are defined as the function of V are 

also brought back to zero, which is the equilibrium 

point. 

In the present study, the Lyapunov candidate 

function [7] is used as:  

1 2 12

1

2

T T TV a q q a v v a q v   ,

(17) 

where 1a , 2a , 12a  are positive constants that satisfy 

1 20,  0 > >a a and 

12

2
12 1 2

2
,0 =< <

a

a
a a a a
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(as shown in Eq. (15)), 

:
s

u

z
q

z

 
  
 

’ : : ,
s

u

z
v q

z

 
   

 

: :
s

u

z
a q

z

 
  

 
, 

where q is the generalized displacement, v  is the 

generalized velocity, and a  is the generalized 

acceleration. The derivatives of Eq. (17) are: 

 

 

 

 

1

2

12

12 .

s

s u

u

s

s u

u

s

s u

u

s

s u

u

z
V a z z

z

z
a z z

z

z
a z z

z

z
a z z

z

 
  

 

 
  

 

 
  

 

 
  

 
(18)

From this part, Eq. (17) and Eq. (18) are placed 

into Eq. (15): 

   

 

 

1 2

12

12 .

s s

s u s u

u u

s

s u

u

s

s u

u

z z
a z z a z z

z z

z
a z z

z

z
a z z V

z


   
   

   

 
  

 

 
   

 
(19) 

Rearranging Eq. (19) into the acceleration form 

(as shown in Eq. (5)), we have: 

2 12

2 12

0

0

s s s

u u u

a z a z z

a z a z z

   
   

   

1 1

2 2

12 12

.
s s u u

s u

a z z a z z
V

a z a z


 
   

  
 

(20) 

From Eq. (20), parameters A   and b   which 

are the constraint matrix and the constraint vector, 

respectively, are found as: 

2 12

2 12

0
: ,

0

s s

u u

a z a z
A

a z a z


  

 

1 1

2 2

12 12

: .
s s u u

s u

a z z a z z
b V

a z a z



   

  
(21) 

3.3 Computing Control Forces of the 

Constrained System 

Substituting M, Q from the unconstrained 

system and A, b from the constraint equation with 

Eqs. (6) and (7), the dynamic equation of the 

constrained suspension system with control forces 

was: 

1

( , , )

( ) ( )T T

Mq Q q q t

A AM A b Aa 



 
. 

  (22) 

Having the dynamic equation of the

constrained system, its displacement and velocity 

can be verified in any period of time by using 

MATLAB to compute and validate the results. 

4. RESULT

The parameters of the system and the controller 

are considered as sm = 208 kg, um = 28 kg, sk = 

18709 N/m, tk = 127200 N/m, sb = 1300 Ns/m, 1a

= 1, 2a = 8, 12a = 1, and  = 0.25. 

Given the system’s mathematical model, both 

masses are considered to have separate equilibrium 

points related to CG of their particular masses. 

In the experiment, the values of 1a , 2a , 12a , and 

 are varied until the suitable values are found. 
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In the simulation, the values of the initial 

conditions of the system are defined as [ sz = 0, uz

=0, sz = 0.01, uz = 0.05]. 

 These values might not be the correct initial 

values related to the constraint equation of the 

system. Therefore, the nonlinear solver fsolve 

command in MATLAB is used to solve the right 

initial conditions of the non-linear system. The 

initial conditions that met with the constraint 

equation were found as 
sz = -0.0028, 

uz = -0.0140, 

sz = 0.0014, 
uz = 0.0070. 

It could be seen that the initial conditions have 

changed since it is calculated with the equation 

related to the constraint of the system. Therefore, 

the accurate initial conditions are received and 

could be used in the next step of calculation. 

In this work, the proposed active suspension 

controller is tested with three types of road: 

1. A sinusoidal wave road with the height of slope

equals to 0.075 meters and frequency equals to 

0.242 Hz (as shown in Fig.2). This model 

represents a normal road condition. 

2. A sinusoidal wave road with natural frequency

with the height of slope equals to 0.015 meters and 

frequency equals to 0.625 Hz, the value of natural 

frequency of the system (as shown in Fig.5). This 

case shows that the model has the least suitable 

frequency for the car of the designed system. 

3. A random road with all random heights of the

slope and frequency by MATLAB function rand 

(as shown in Fig.8) yields the example model of an 

unexpected road type. 

The results only show the displacements of the 

sprung mass of each road type (as shown in 

Figs.3,6, and 9), which are comparable to the 

trembling in the car cabin and the additional 

control forces (as shown in Figs.4, 7, and 10) and 

they negate with the given forces of the system. 

Figs.3, 6, and 9 show that the sprung mass 

which is considered as a car cabin goes back to the 

equilibrium set point within a short period of time 

while Figs.4,7, and 10 verify the possibility in 

generating control forces. 

If the force which controls the system is close 

to the force generated by the system, there is a 

possibility that we could in reality control the 

system using the calculated control force. 

4.1 Response from Sinusoidal Wave 

Fig.2 Road distribution of sinusoidal wave input 

Fig.3 Displacement of sprung mass of sinusoidal 

wave input 

Fig.4 C Q  of sinusoidal wave input 
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4.2 Response from Sinusoidal Wave with 

Natural Frequency 

Fig.5 Road distribution of sinusoidal wave with 

natural frequency input 

Fig.6 Displacement of sprung mass of sinusoidal 

wave with natural frequency input 

Fig.7 CQ Q  of sinusoidal wave with natural 

frequency input 

4.3 Response from Random Road Distribution 

Fig.8 Road distribution of random road 

distribution input 

Fig.9 Displacement of sprung mass of random road 

distribution input 

Fig.10 CQ Q  of random road distribution input 



International Journal of GEOMATE, Dec., 2020, Vol.19, Issue 76, pp. 110–117 

116 

In addition, to conclude our assumption on 

choosing , we try to increase the value of  to 

1.5 (the original was 0.25). 

 
Fig.11 Displacement of sprung mass of sinnuisodal 

wave input with 1.5   

 

Fig.12 C Q of sinnuisodal wave input with 

1.5   

The results show that the value of CQ Q  is 

increased for the same sinusoidal wave input 

(Observing from the comparison between Fig.12 

and Fig.4) and the displacement of the sprung 

mass returns to its equilibrium faster (Noticing 

from the comparison between Fig.11 and Fig.3). 

However, this result trades-off with the bigger 

control force
CQ . 

5. CONCLUSION

In this work, the fundamental equations of 

constrained motion are applied to a quarter active 

suspension car. The Lyapunov Stability Theory is 

used in the constraint equation because this theory 

is based on energy reduction of the system to its 

equilibrium. Eventually, the dynamic equation of 

the constrained system that guarantees constraint-

following is achieved. Then, the displacement 

results of the sprung and unsprung masses are 

verified by numerically computing the dynamic 

constrained equation using MATLAB Program.  

The results showed that the displacements of 

the sprung mass and unsprung mass could return to 

the equilibrium. Moreover, with the 

experimentation, it is found that the speed of the 

system when it reaches the equilibrium point could 

be adjusted by varying the constant parameter . 

The greater of   makes the system return to 

equilibrium faster but the control forces (
CQ ) 

might increase respectively to . The bigger the 

control force is from the generalized force, the less 

opportunity is there to succeed in applying the 

physical part to the suspension system. Therefore, 

the best solution is to choose a suitable value of 

  , which complies with physical parts while still 

maintaining the efficiency of the controller. 

Future research can be conducted on 
simulations with many other road types and more 

realistic inputs. Also, equipment that can work in 

accordance with the designed controller can be 

developed to make this suspension system 

applicable to real life.  
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