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ABSTRACT: Frequent road inspections are key to maintaining road quality and avoiding casualties associated 
with poor road conditions. In Taiwan, open contractors conduct inspections of roads and ancillary facilities 
daily or weekly according to the requirements of the agency awarding the contracts. Unfortunately, the 
equipment used for inspections the inspection data lacks follow-up applications and numerical conversions, 
such as the Pavement Condition Index (PCI), to compile a large-scale database to facilitate the long-term 
conservation of roads. In this study, this paper developed back-end image recognition software using existing 
road inspection methods and existing equipment. This was aimed at enhancing inspection efficiency by 
enabling the automatic identification of road damage. Resulting observations can then be converted into PCI 
values in accordance with ASTM D6433-16 to be exported as a numeric value indicative of road quality. A 
vehicle-mounted traffic recorder and imaging device with Wi-Fi transmission capability are used as hardware, 
and the relationship between the captured images and the speed of the car is used to obtain an accurate 
indication of road conditions across the surface. The simple linear iterative clustering (SLIC) Superpixels 
algorithm is used to identify areas with pavement damage as patches, potholes, longitudinal cracking, and 
crocodile cracking. The results of the proposed fully-automated method conform strongly with those obtained 
using semi-automated pavement inspection software. Despite the restrictions imposed by the limited depth 
measurement of 2D images, our method achieved results close to those obtained using manual inspection. 
Future developments will include the application of artificial intelligence to enhance the effectiveness of this 
software.   
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1. INTRODUCTION 
 

The Construction and Planning Department of 
the Ministry of the Interior in Taiwan has adopted 
the pavement condition index (PCI) described in 
ASTM D6433-11 [1] as the primary index for 
monitoring pavement conditions [2]. Unfortunately, 
PCI inspections are time-consuming and laborious, 
and the current inspection method relies on 
contractors recording pavement distress types in 
PCI numerical format. This makes it difficult to 
apply data collected during inspections to the 
calculation of PCI values or to make a long-term 
pavement maintenance plans [3]. This study held 
the following five objectives: 1) improve road 
inspection methods using the superpixels method 
for automated recognition of distress signs; 2) 
develop software based on the superpixels method 
to facilitate pavement distress recognition; 3) use 
clustering to extract indicators of distress from 
images; 4) develop automatic road inspection 
software capable of capturing and analyzing images 
covering the expanse of pavement; 5) compare our 
fully-automated inspection method with semi-
automated methods and conventional manual 
pavement inspection in terms of cost and efficiency.  

The current (semi-automated) road inspection 
method developed by National Central University 
relies on visual inspections of images captured at a 
spacing of 25 m for the recognition of distress signs. 
Specially trained engineers input the captured 
images and determine the severity of the distress, 
whereupon the software calculates the scope of the 
distress and assigns a PCI value for each 100-meter 
section of roadway. This method is based on 
grayscale images using a set threshold value 
obtained from the average grayscale value of every 
pixel or segment in the image [4]. Nonetheless, 
additional image processing techniques are also 
required to differentiate signs of distress from 
traffic markers, shadows, and corrupted images. 
The disadvantage of this method is the fact that it 
processes only grayscale values; i.e., it disregards 
other information from the original image [1,5]. 
Removing arbitrary distractions from images while 
retaining signs can be exceedingly difficult, 
particularly in cases where the pavement images are 
homogeneous. Multiple filtering methods must be 
employed to extract information from the images, 
thereby making it nearly impossible to conduct 
automatic inspections based on this method [6]. 
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2. PAVEMENT IMAGE RECOGNITION 
 

Our primary objective in this research was to 
improve the quality of the road inspection methods 
currently used by contractors. The equipment used 
for road inspections includes an inspection vehicle, 
a driving recorder, and GPS vehicle trajectory 
recorder. This paper developed software for the 
automated identification of pavement distress from 
captured images of roads. This process involves 
capturing and processing images followed by 
analysis. The image capture system provides 
sufficient resolution to improve on the accuracy of 
exiting systems. The primary analysis method used 
in this study was the SLIC superpixels algorithm, 
which is based on lab pixel analysis, K-means pixel 
clustering, and distress identification. Superpixels 
analysis is more efficient than conventional binary 
image thresholding in terms of identifying 
pavement distress. A flowchart of the study is 
presented in Fig. 1. 

 

 

 
Fig.1 Flow Chart 

 
2.1 Equipment and Database 
 

Three cameras were used in this study: two 
inexpensive dash cams (RadiQ R32 and ONPRO 
GT-Z01). The RadiQ R32 provides superior 
performance in terms of image sensing and 
resolution; however, it lacks a GPS system. The 
ONPRO GT-Z01 provides GPS capability. Even 
these inexpensive devices provide high video 
resolution. Data was collected from four types of 
road: a high-speed freeway with no motorcycle 
access (presumed to have pavement conditions with 
the highest quality), a freeway that allows large 
motorcycles (second highest quality), a provincial 
road similar to a city street but with a higher speed 
limit (third highest quality), and a city road (lowest 
quality).  

The authors first obtained video recordings of 

pavement conditions in the form of consecutive 
images appearing at a set frequency expressed in 
frames per second (fps). The human visual system 
is able to process and individually perceive 10 to 12 
images per second. Higher frame rates are 
perceived as motion. Most modern video cameras 
feature frame rates of 30 fps to 240 fps and most 
dash cams record video at 30 fps to 60 fps. Under a 
set frame rate, the driving speed determines the 
distance between images. Fig. 1 indicates the 
distance between images at various speeds and 
frame rates. At a speed of 80 km/h and recording 
frequency of 15 fps, the distance traveled between 
images is 1.5 m. Facilitating inspection of the entire 
road while reducing computational overhead 
requires minimizing the number of images 
necessary for a complete survey. For example, 6 fps 
would be the minimum number of images required 
for a complete survey at 80 km/h, whereas 4 fps 
would be required at 40km/h. In this study, this 
paper assumed that the speed limit on National 
Freeways is 90 km/h, the speed limit on urban roads 
is 50 km/h, and the width of the selected area is 4 
meters. Thus, this paper adopted a frame rate of 6 
fps for national freeways and 4 fps for urban roads. 

 
2.2 Inspection of Pavement Conditions 
 

In this study, the researchers conducted manual 
inspections of a section of Taiwan National 
Freeway No. 3 from km 83 to km 89. This paper 
also conducted inspections on sections of urban 
roads in order to formulate an accurate indication of 
the quantity and severity of damage throughout the 
road sections. Manual inspection of pavement 
conditions is considered the most accurate method; 
however, it is time-consuming and expensive. This 
is the reason that inspections based on the PCI focus 
on specific areas of the road [7]. Manual inspection 
allows the extraction of 19 types of distress, 
including data pertaining to length and depth. 
National  Central University has developed a semi-
automated system for the inspection of pavement 
conditions, wherein an encoder records a road 
image every 20 m from a camera based on GPS 
coordinates. An engineer attempts to identify the 
various types of distress including severity and 
scope but excluding depth, whereas software is used 
to calculate the PCI according to the scope of the 
distress. In this study, This case compared the 
performance of manual, semi-automated, and fully-
automated pavement condition inspection methods. 

 
2.3 Automatic Image Recognition and Image 
Preprocessing 

 
Our objective in this study was to develop 

software for the automated analysis of pavement 
conditions using conventional equipment. A dash 
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cam would be the most practical; however, the 
captured images would include a lot of detail 
unnecessary to distress analysis. This means that the 
images would have to undergo preprocessing, 
including camera calibration, analysis range 
selection, and image pixel calibration. Calculating 
accurate PCI values requires precise distress data, 
including the type of distress, the area, and the 
severity. Thus, images captured from video files 
must be calibrated according to the angle of view, 
the vertical distance from the road, and the image 
distortion imposed by the wide angle lens, as shown 
in Figs. 2 and 3. Following image calibration, the 
pixels in the image provide an accurate indication 
of the damage to the pavement. 

 

 

 
Fig.2 Camera Calibration Theories 
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Fig.3 Calibration Matrixes 

 
This paper set the coordinate system Ω1(X, Y, 

Z) ∈ R3 in the center of the camera focus O, and Z-
axis perpendicular to the object surface Π1. The rays 
coming from the circle Γ1 form a skewed cone on 
surface Π1, the boundary curve C of which can be 
expressed as follows: 

(X − αZ)2 + (Y − βZ)2 = γ2Z2 
Parameters α and β specify the skewness of the 

cone in X and Y directions, whereas parameter γ 
specifies the sharpness of the cone. Thus, if the 
distance from the camera focus to the object surface 
is denoted by d, then the circle equation becomes (X 
− αd)2 + (Y − βd)2 = (γd)2. 

The camera coordinate system Ω2(X, Y, Z) ∈ R3 
is also centered in the camera focus; however, the 
Z-axis is orthogonal to the image plane Π2, and the 
x- and y-axes are parallel to image axes u and v. 
Thus, the transformation from Ω2 to Ω1 can be 
expressed using the following rotation: 

11 12 13

21 22 23

31 32 33

X a a a X
Y a a a Y
Z a a a Z

    
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where vectors ( )11 21 31, , Ta a a , ( )12 22 32, , Ta a a , and 

( )13 23 33, , Ta a a  make for an orthonormal basis. Thus, 
the camera coordinates can be expressed as follows: 
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The part denote the focal length (i.e.orthogonal 
distance between O and Π2) using the symbol f . 
Thus, the intersection Γ2 of C and Π2 is expressed as 
follows: 
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This equation shows that the projection is a 
quadratic curve, the geometrical interpretation of 
which can be a circle, hyperbola, parabola, or 
ellipse. In practice, due to a limited field of view, 
the projection will be a circle or ellipse. From this 
equation the center of the ellipse ( cu , cv ) can be 
expressed as follows: 

 
( )( ) ( )( ) ( )( )

( ) ( ) ( )2 2 2c

kl nl lq pm ks lr tl ms ns pr wp qs
u

kp nl ks lr ns pr

− − − − − − − −
=

− − − − −
 

 
( )( ) ( )( ) ( )( )

( ) ( ) ( )2 2 2c

kl nl mn kq ks lr mr kt ns pr qr nt
v

kp nl ks lr ns pr

− − − − − − − −

− − − − −
 

 
To determine the projection of the circle center, 

let us consider a situation in which the radius of the 
circle is zero; i.e., y = 0. This means that r, s, and t 
also become zero, and we obtain the position of the 
projected point due to the symmetry of the circle as 
well as the projection of the circle center (uc, vc), as 
follows: 
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𝑢𝑢0 =
(𝑙𝑙𝑙𝑙 − 𝑝𝑝𝑝𝑝)
(𝑘𝑘𝑘𝑘 − 𝑛𝑛𝑛𝑛)  

𝑣𝑣0 =
(𝑚𝑚𝑚𝑚 − 𝑘𝑘𝑘𝑘)
(𝑘𝑘𝑘𝑘 − 𝑛𝑛𝑛𝑛)  

 
In the case of a non-zero radius (γ > 0) there are 

some special cases in which the rotation is 
performed around the Z-axis (a31 = a32 = 0). 
Generally, can state that the center of the ellipse and 
projected center of the circle are not the same when 
applied to circular features with a non-zero radius. 

In this study, we developed object-oriented 
programming software for a variety of vehicles and 
cameras. Finding a method by which to transform 
pixel values into actual parameters is the key to 
developing object-oriented programming software. 
Transforming the parameters requires that the scale 
of the image be derived from objects with known 
length. Paved roads generally lack objects by which 
to derive the scale. Thus, most existing PCI 
software measures the angle, elevation, and the 
pixel scale beforehand. The size of traffic signs, 
markings, and lights are strictly regulated; therefore, 
traffic markings can be used as objects from which 
to derive the image scale. Two axes in the images 
require adjustment: the X-axis and Y-axis. The 
distance between traffic marking is 4 m, and the 
width of the traffic lanes on national freeways is 
3.75 m. Using the length and width of known 
objects enabled us to derive the following formula 
to transform images without being influenced by the 
angle or height from which the image was captured. 
The original image presents parallel lane markings, 
which are affected by the filming angle, such that 
extending the lines would cause them to intersect. 
Thus, Eq. 1 transforms the x-axis of the image into 
disjoint parallel lines, as follows: 

( ) ( )0 1

0

. 1 .
x x

F x x y
Y
− 

= + 
 

 

where x is the location of the pixel on the x-axis, 
0x indicates the bottom location of the lane marking 

on the x-axis, 1x indicates the top location of the 
lane marking on the x-axis. L1 is the length of the 
first marking in the photo, and L2 is the length of 
the line at the bottom of the photo. 

1

1 0 0
.

L

yL l N d= − ∫  

3
2 0 . 2L

yL
L l N d= − ∫  

1L  = 2L = Markinglength FindlO 

The next step involves associating each pixel i 
with the center of the nearest cluster, as shown in 
Fig. 4. This is the key to speeding up the algorithm, 
i.e., limiting the size of the search space in order to 

reduce computation time. In contrast, conventional 
k-means clustering would conduct a comparison of 
all cluster centers for every pixel. The search region 
in this study is an area 2S × 2S around the 
superpixel center. As shown in the CIELAB image, 
image pixels are assigned by the clustering cover, 
such that once the clustering is completed, the 
cluster centers are adjusted using the mean [L A B 
X Y] vector of the pixels belonging to that cluster. 
Thus, the cluster region can be considered a new 
segment of the image.  

To summarize, the image is clustered into 200 
segments, for use in executing the 2nd phase of K -
means clustering, in which the image is clustered 
into three groups and presented in different colors. 
One of the colors is then identified as distress, 
depending on the area or the shape of the colored 
region. 

Ensuring computational efficiency requires that 
a limit be placed on the number of images required 
for distress analysis and that the selection of images 
include only those that are likely to include 
indications of stress. Thus, we adopted a distress 
image filter using the RGB Standard Deviation 
(S.D.) of image segments as a standard. Sensitivity 
analysis of the image database involved grayscale 
processing of various parts of the image, marking 
the various colors to differentiate among blocks, 
and then analyzing the blocks indicative of damage. 
Thus, only images with an S.D. value exceeding 20 
would be subjected to distress analysis; i.e., blocks 
indicative of major damage are larger than the 
others. The images are then clustered again. In this 
second-stage of K-means clustering, the basic unit 
of the image is the segments clustered in the first 
stage. Clustering is performed according to the 
mean LAB color value of every segment and the 
specified N2 value, which is generally 2 or 3. 
Overall, the purpose of clustering is to differentiate 
areas of distress from those that are in good 
condition.  

To summarize, camera calibration is used to 
remove distortion, image scaling is derived from the 
length of known markers, and the ROIs are 
differentiated from areas presenting little indication 
of distress. The ROI is then subjected to automated 
superpixels recognition to extract evidence of 
distress. 

 
2.4  Distress Type Classification  

 
Once distress indicators are extracted from the 

image, they are identified as signs of Patching, 
Potholes, Alligator Cracking, or Manholes. Data 
pertaining to the distance, length, and region of the 
distress is then input into PCI. The areas of distress 
are initially separated into large-area distress (e.g., 
patching) and local distress (e.g., cracking) [8]. 
Classifying additional types of distress requires 
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differentiation according to the ratio of vertical and 
horizontal distress segments. Crack connectivity is 
evaluated as follows: The Status Matrix is scanned 
block by block to find crack blocks. They are given 
corresponding id numbers and the length of the 
crack is added to the Length Table of the current 
branch. To improve recognition accuracy, after 
analyzing the damaged blocks in the photos, the 
software automatically retrieves the four previous 
and following photos and analyzes them for damage 
as well. . If only one neighbor shows signs of 
cracking, then the length of the crack is added to the 
corresponding items in the Length Table. Otherwise, 
proceed to the neighboring block and repeat the 
process. If more than one neighboring block shows 
signs of cracking, then select one of them to indicate 
the direction of the current branch and continue to 
check for further extension. As mentioned above, if 
the damaged part appear in multiple photos, then the 
damage progression and calculations are combined. 
If none of the neighboring blocks present 
indications of cracking, then the last block is treated 
as the end of the branch extension. If the length of 
the branch is shorter than a given threshold, then the 
branch is disregarded. The algorithm then finds the 
next candidate branch in the Branch Candidate 
Table, and repeats the extension check iteratively 
until the table is empty. The length of a crack is the 
sum of the length of all of the branches contributing 
to that crack. Finally, if the length of the crack is 
shorter than a given threshold, then it is not 
considered to be considered worthy of concern. The 
threshold for crack ck and branch length are 
adjusted according to the size of the window. In the 
literature, the threshold TC is calculated as follows: 

TC = 1.8s 
where S is the size of the window. Cracks are 

classified into three types: longitudinal, transverse, 
and alligator. The type of crack is determined by 
its angle measured against the horizontal axis (Ω) 
and the number of branches in the crack. Note that 
the angle is calculated according to the start and end 
points of each crack. If there are branches 
(regardless of the angle), then the crack is 
considered a block type. 

 
3. RESULTS ANALYSIS AND DISCUSSION 
 
3.1 Pavement Inspection Recording Database  

 
This paper collected data from three types of 

major road in Taiwan. Our objective in this study 
was to enable the automatic analysis of road 
conditions from video segments without limitations 
in terms of the specific type of camera or vehicle 
used in the inspection.  

 
 
 

3.2 Superpixels Reliability 
 

This paper sought to determine the reliability of 
the proposed superpixels pavement detection 
application by conducting a comparison with semi-
automatic image detection methods based on the 
manual identification of distress regions (via the 
human eye), which is the current inspection method 
in Taiwan. Fig. 4(a) presents an image showing an 
area of asphalt patching used in the performance 
comparison. The patching area is first examined by 
eye to verify that it is as an actual region of distress, 
whereupon the numbers of pixels in the region is 
calculated. The total number of pixels in Fig. 4(b) is 
5,557,948 and the distress ratio is 39.26%. Fig. 4(c) 
presents the results of superpixels analysis, wherein 
the number of pixels in the region of distress in 
14,155,776, resulting in a distress ratio of 39.15%. 
The variables in the superpixels are the initial 
clustering number N1 and the second clustering 
number N2. As shown in Table 1, a high clustering 
number does not have a positive effect on accuracy 
due to the effects of noise. Overall, the accuracy is 
±2% of the true value, with the best performance 
achieved when N1 is 800 and N2 is 2. To account 
for the fact that the resolution of the dash cam is 
lower than that when capturing images from up 
close, this paper selected an N1 value of 100. Based 
on these comparison results, this paper determined 
that the best performance could be achieved by 
adopting an N1 value of less than 500. In 
subsequent analysis, this paper adopted an N1 value 
of 200. 

 

 

(a)                     (b)                         (c) 
 

Fig.4 Indications of distress extracted using 
proposed superpixels application 

 
 3.3 Superpixels Comparison 
 

In the following analysis, this paper focus on 
National Freeway No. 3, Guanxi Section (83km to 
89km). Road conditions were evaluated using 
manual inspection, semi-automated inspection, and 
fully-automated inspection. Our primary objective 
in this study was to improve on current road 
inspection methods, the success of which is 
predicated on the ability to derive an accurate 
impression of road conditions through analysis of 
captured images. 
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Fig.5 Images obtained using automated 
Superpixels recognition 

 
A frame-rate of 60 FPS at a driving speed of 100 

km/h would result in image spacing of 0.5 m. The 
length of the selected area is 4 m, which means that 
15 images would be analyzed for each second of 
video, and 250 images would be required to cover a 
distance of 1 km. The spacing used in the NCU 
semi-automated inspection system is 25 m, which 
means that 40 images would be required to cover a 
distance of 1 km. Table 2 compares the quantity of 
distress regions and PCI values obtained using the 
three inspection methods, clearly indicating that the 
proposed Superpixels extraction scheme 
outperformed semi-automated extraction. Analysis 
of the 2nd Taiwan Provincial Rd. in Keelung, the 
three detection methods varied in the number of 
stress regions identified. This study adopted the 
values from manual inspection as the actual number 
of distress regions, for use as a reference in 
evaluating the performance of the fully-automated 
Superpixels scheme and the semi-automated NCU 
scheme. Table 3 indicates the quantity of patched 
areas, Ravels, potholes, and expansion joints. The 
proposed Superpixels scheme achieved the 
following coincidence rates: patched areas (91%), 
ravels (25%), potholes (100%), and expansion 
joints (100%). The wide image spacing used in the 
semi-automated scheme prevented the accurate 
detection of areas of distress. 

Table 4 presents the analysis results from the 
31th Taiwan Provincial Rd 235 (16km to 13 km). 
Automated Superpixels extraction identified 87.5% 
alligator cracks, 83.3% weathering and raveling, 
77.8% patched areas, 66.7% potholes, and 55.6% 
long/trans cracking. Table 5 presents a comparison 
of automated Superpixels extraction and the semi-
automated extraction in terms of distraction region. 
Clearly, the proposed scheme is effective in 
measuring the area of distress; however, the width 
of cracks cannot be derived due to limited resolution. 
In this analysis, five engineers were asked to 
identify various forms of distress based on visual 
acuity. 

 Using the average distress makes the automatic 

inspection method reproducible. The S.D. (σ) 
values were as follows: potholes (0.3%), patches 
(2.71%), and trans/long cracking (5.3), as shown in 
Table 6. 

 
3.4 Software Development  

 
In this study, Microsoft Visual C++ was used to 

combine the various functions of Matlab including 
video capture, image calibration, superpixels 
clustering, K-means clustering, distress 
classification, and PCI calculation. The user 
performs four actions: Step 1 – selection of road 
inspection video; Step 2 –  camera calibration 
involving the selection of four traffic markers and 
image coordinates (Fig. 5); Step 3 – selection of 
analysis area; Step 4 – input of the frame interval 
based on driving speed and cutting number for 
superpixels clustering (200) and the number for K-
Means Clustering (3). 

 
Fig. 6 True Ratio from Multiple Semi-Auto 

Selection 
Finally, the SD value is input to enable the 

filtering out of unblemished areas in order to 
enhance processing efficiency. 
 
4. CONCLUSION 
 

The automated Superpixels extraction algorithm 
was shown to outperform conventional binary 
methods, as it requires only two parameter settings 
for image extraction. The proposed scheme opens 
the door to the fully-automated inspection of 
pavement conditions. A comprehensive view of the 
road surface can be obtained simply by adjusting the 
number of images captured from video sequences 
based on the driving speed. Six images per second 
is required for video obtained at 90 km/h (freeway 
driving), whereas four images are required for 
video obtained at 50 km/h (urban driving). SD 
values are used to differentiate between damaged 
and undamaged sections of road in order to enhance 
computational efficiency. The fact that the proposed 
Superpixels scheme has 95 percent confidence level 
with the semi-automatic distress recognition 
indicates the efficacy of using software as an 
alternative to current methods. The result in Taiwan 
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31th Provincial Road inspection could match 85.7 
 

 

Table 1. Reliability of automated Superpixels extraction 
 

Pieces Distress pixel snumber Total pixels number Distress pixels rate Accuracyy 
300 4721480 14155776 0.34 98.97% 
400 4836756 14155776 0.34 99.72% 
500 5240733 14155776 0.37 98.81% 
800 5139003 14155776 0.36 99.24% 

1000 4951139 14155776 0.35 100.24% 
1200 5076777 14155776 0.36 100.22% 
1500 5179682 14155776 0.37 102.33% 

 
 

Table 2. Methods Comparison 
 

 Manual NCU Semi-Auto Auto-Superpixel 
Numbers of image  40pic/km 7 

Pothole 8 3 7M 
Severity 5M+2H+1L 3M 54 

PCI 43 71 74.4% 
Accuracy  34.9%  

 
 

Table 3. Coincidence Rate Comparison in 2nd Taiwan Provincial Rd 
 

 Patching Ravels Potholes Expansion Joints 
1.Man-eye 11 4 3 1 

2.NCU Semi-Auto 5 1 1 1 
3.Auto-Superpixel 10 1 3 1 
Coincidence rate 

(1 vs 3) 
91% 25% 1 1 

 
Table 4. Detection Rate of automated Superpixels extraction algorithm 

 

Distress Type Alligator Cracking Weathering & 
Raveling Patching Potholes Long/Transs 

Cracking 
Total 4 6 9 3 9 
Check 3.5 5 7 2 5 

 87.5% 83.3% 77.8% 66.7% 55.6% 
 

Table 5. Comparison of extraction performance: Superpixels algorithm and manual inspection 
 

Distress Type 1 19 11 13 10 
Total 4 6 9 3 9 
Check 3.5 5 7 2 5 

 87.5% 83.3% 77.8% 66.7% 55.6% 
 

Table 6. True Value from Multiple Semi-Auto Selection 
 

Semi-Automated Selection SA1 SA2 SA3 SA4 SA5  Avg.  
Potholes 6.2% 6.92% 7.08% 6.74% 6.56%  6.7% 0.3% 
Patching 35.46% 33.18% 28.95% 29.66% 33.16%  32.08% 2.71% 

Trans/Long Cracking 184.95 196.47 193.55 192.92 184.95  190.57 5.3 
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