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ABSTRACT: The study of internal waves has become important because they are associated with the energy 

transfer mechanism across continental shelf edges. In addition, they also can cause strong localized 

departures from the surrounding ocean conditions, resulting in increased shear stresses on underwater 

structures and large variations in acoustic transmission properties of the ocean. Therefore, the internal waves 

cause problems in many areas such as offshore oil recovery, acoustic propagation in the ocean, and deep 

water outfall. Hence, this paper is conducted to study the two-layer long-waves propagation through 

submerged humps using analytical solution. Equation involved in this study are mild slope equation and the 

methods involve are separation of variables and a series solution. In this study the effect of the geometry of 

the hump when water waves propagating through the humps are also studied. Besides, the density ratio also 

give significance effect to the surface wave elevation. An analytical solutions obtained in this study is useful 

in reviewing applications and condition of the wave amplitude on submerged hump. 
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1. INTRODUCTION

For almost two centuries, the progression of wave 

modeling research has intriguing many researchers. 

With concerns about energy are likely to become 

extinct, the future energy such as renewable wave 

energy are become one of the interest. According to 

Stewart [1] there are several types of flows in the 

ocean, and there is a type of flow which conserves 

forces and restores it with respect to density in 

different underwater depth called internal waves. 

Internal waves is formed by tidal currents propagates 

seamounts, continental slopes and mid-ocean pits 

and the waves projects tidal energy. The internal 

waves contain a large amount of energy, produces 

noises at the surface of the sea, which eventually 

causes cusps in the sea-surface spectrum, as 

discovered by Munk Cartwright [2]. The study of 

internal waves is pioneered by Stokes [3], Lamb [4], 

and Keulegan [5].  The process of wave phenomena 

such as refraction and diffraction of ocean surface 

waves can generate the energy. The famous mild-

slope equation to study the refraction and diffraction 

on the ocean wave was introduced by Berkhoff [6]. 

Then, this equation is widely used by many 

researchers [7-10] for single layer fluid and [11-13] 

for two-layer fluid. Recently, Harun [13] constructed 

the two-layer fluid for waves propagating over a 

bowl-pit. By extending [14] to two-layer fluid the 

analytical solution towards two-layer propagating 

waves over a submerged hump of variable depths is 

discussed. 

2. ANALYTIC SOLUTION

This section present the derivation of the long 

waves propagating in two-layer fluid over a 

submerged hump of variables depths by utilizing the 

solution given by Zhu and Harun[12]  and Niu and 

Yu[14]. Consider, a train of plane long waves 

propagates in two-layer fluids with constant depth, 

ℎ1 and ℎ2 and the densities for upper and lower layer

are denoted by 1 and 2  is refracted by an axi-

symmetric hump-shaped located on the ocean floor 

as depicted in Figure 1. The geometry of the hump 

which located at the lower layer is as described in 

[14] and defined by 
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Here, b is the radius of the hump in the horizontal 

plane,  and   are two independent parameters 

which control the shape of the hump. Here,   must 

always satisfied the relation 
 bhh /)( 02 

and  is considered as a rational number defined by 
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Where p and q are integers and 0q , ,1p  

2q . 

 

 

 

 
Fig. 1 definition sketch of a hump located on the 

floor in two-layer fluid systems. 

 

 

Separation of variables 

 

By extending the solution given by [14] to two-layer 

fluid, the mild-slope equation in two-layer fluid is 

used to find the solution. Thus, when the wavelength 

is much longer than the wave height, the two-layer 

mild slope equation can be written as [12] 
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and g is the gravitational acceleration,  is the 

angular velocity and k is the wave number. 

 

Because our system is axi-symmetric with respect to 

the z -axis, it is convenient to adopt a cylindrical 

coordinates system ),,( zr  . Equation (3) can be 

constructed via separation of variables as   
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where  

 

.

)(

)(2

;)2)((

);)((

;)2)((

;)(

2

2

21107

211016

2

1

2

5

2110212114

211021103

12110212

11

2

211

g

hhw

hhw

w

hhahhw

hhhhw

hhhw

hw

a

a

a

a


































 

 

The Frobenius Method 

 

In this paper, we only consider   as a rational 

number. In order to use the Frobenius method, we 

have to let 
qsr  , substitute this to Eq. (5) we have 
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Eq. (6) is only second-order ordinary differential 

equation, thus, the general solution can be obtained 

using the Frobenius series method: 
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where c  is the root to be determined from the 

indicial equation and ma are the recurrence relation 

to be determined and .00 a . Substituting Eq. (7) 

into Eq. (6) results in: 
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Re-indexing Eq. (8), leads to 
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where )2()(22, ,, qpmpqmpmpm aaaa   and 

qma 2  equal to zero with the negative value of 

subscript. The indicial equation can be obtained by 

letting 0m  in Eq. (9) and leads to  
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By the original variable r , these two distinct roots 

of the indicial equation lead to two sets of linearly 

independent solutions: 
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Since nR2  becomes singular at 0r , it has to be 

discarded with the imposition of the condition that 

water surface elevation must be finite at the origin. 

 

Now, by considering Eq. (11) and when

2,2  qp , Eq. (9) gives 
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where m  denotes the number of recurrence 

solutions for Frobenius series that we have to find 

until our solution is converged to a desire point, 

while n corresponds to the wave propagation modes. 

 

Matched solution 

 

For the general solution in the finite region with 

variable depth br  , the water surface elevation is 

given by 
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where nC is a set of complex constant to be 

determined. In the constant region br   the 

solution is given by  
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where I  corresponds to the incident wave and S  

to the scattered wave which defined by: 
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in which 
IA is the incident wave amplitude,

1i  , 0k is the wave number in the constant 

region, nJ is the Bessel function of the first kind, 

nB  is a set of complex constant to be determined, 

nH1 is the Hankel function of the first kind and n  

is the Jacobi symbol define by 
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The solution in these two sub-regions must be 

matched on the common boundary br  , require 
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Therefore, from Eq. ((16)-(19), the coefficients nC

and nB can be determined as 
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in which the prime denote derivatives. By 

substituting these coefficients back to Eqs. (16)- (19), 

the water surface elevation for entire domain can be 

computed. 

 

3. RESULTS AND DISCUSSION 

 

This section presents a comparison of newly derived 

solution for a special case by taking 0
2

1 


 with 

the single-layer equation discussed in Niu and Yu 

[14]. Then the effect of the density, wave height, and 

hump shaped to the wave refraction are examined.   

 

 

 

Comparison with the single layer fluid  

 

Since the 2-layer fluid model should reduce to 

single-layer model when 01  , it would be 

interesting to compare both model, as part of 

verification process. Let ,5,0 21    

5.0/,8.2,3 021  Lbhhh and L =120.4. 

Figure 2 shows the comparison of the relative 

amplitudes along x-axis for two- and single-layer 

fluid models. As expected, both solutions are hardly 

distinguishable. 

 

 

Fig. 2 Relative wave amplitude when 
2

1



are 

varied. 

 

Effect of the density ratio 

 

The effect of the wave refraction when the ratio 

of densities 
2

1

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 are varied while other parameters 

remain constant is discussed in this section.  

Fig. 3 shows the comparisons for each value of 
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 along x -axis corresponding to 
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=0, 1/5, 

2/5, 3/5 and 4/5 while other parameters being fixed 

to Lb / =0.5,  21 hh 3.  From this figure, it can 

be clearly seen that, the relative wave amplitude 

increase with the decreasing value of
2
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. This 

phenomenon occurs because, when the fluid is 

denser, the restoring force is weaker, resulting in 

smaller wave amplitude. Thus, we can conclude that 

the difference in density give very significance 

effect to the relative wave amplitude. 
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Effect of the layer thickness 

 

Fig. 4 illustrates the relative wave amplitude for 

three difference values of 
21 / hh with 

2

1
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
=3/5. 

We can see that, the depth of the fluid layer also has 

significance effect to the relative wave amplitude. 

When, the upper layer is thicker, the wave can 

amplified more, whereas, when there is less fluid in 

lower layer, the relative amplitude getting smaller to 

balance the weight of the upper layer fluid.  

 

 

Fig. 3 Relative wave amplitude when 
2
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
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are 

varied. 

 

 

Fig. 4 Relative wave amplitude when 
2

1

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=3/5, 

and 21 / hh are varied. 

 

 

Fig. 5 Relative wave amplitude when 2
2

1 


and  are varied. 

 

 

 

Effects of the hump profiles 

 

Next, the topographic effect when the hump 

profiles are changed is studied. In here we set 

2
5,

2
1  and 2. From Fig. 5 we can observed 

that, the relative wave amplitude is increase with the 

increasing of the   that control the hump profiles. 

This is because, when the value of  increase, the 

area of the hump is expanded. 

 

Comparison of Contour Plot between Single Two 

Layered Model  

 

     As mentioned earlier, this two layer model is 

derived and proved to be reduced into a single layer 

model from [14], and we have obtained the surface 

wave amplitude is fairly the same from each other 

when 
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. Now we compare the contour plots 

from both model with the fixed value of 
p

and 
q

. 

From the observation, there are more distortion of 

surface wave elevation near the hump of the two 

layered waves against the observation from [14] as 

shown in Fig. 6 with the value of density ratio 
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Fig. 6 Two-Layered Model (above) in comparison 

to Niu and Yu (2011) results with 

2/1  
 

 
Fig. 7 Two-Layered Model (above) in comparison 

to Niu and Yu (2011) results with 1  

 

By  using the same value of   with the increasing 

value of the density ratio 
5/4

2

1 


  as seen in 

Fig. 7, concludes the distortion of wave columns, 

both creating arrow-like shaped wave rather than 

smooth figures obtained in [14]. The distortion event 

occurs when the internal waves of the lower layer is 

already have its own wave amplitude transferred 

through energy conservation to the upper layer 

system and the energy from below amplifies and 

manifested through the surface wave amplitude as 

mentioned in [15].  

 

 

4.  CONCLUSION 

 

A new analytic solution is derived for two-layer 

fluid model for long waves propagating over a 

circular hump. The solution is verified with the 

single layer fluid model when the density of the 

upper layer, 01  . There is also a significance 

effects to the relative wave amplitude with the 

addition of the density and the layers. The restoring 

force between both layers getting weaker with the 

smaller density difference and when there is more 

fluid in upper layer, the relative wave amplitude 

getting smaller to balance the weight of the fluid in 

the upper layer. For the effect of the hump profiles, 

the increasing of the  value lead to the increasing 

of relative wave amplitude. The comparison for 

single and two- layer model also confirm the 

distortion event occurs when the internal waves of 

the lower layer is already have its own wave 

amplitude transferred through energy conservation 

to the upper layer system and the energy from below 

amplifies and manifested through the surface wave 

amplitude as mentioned in [15].   This finding is 

useful in reviewing applications and condition of the 

wave amplitude on submerged hump, and the effect 

of internal waves towards surface waves behavior 

should be the main focus of the future in two-layer 

model research. 
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