
38 

 

A COMPARISON OF PARALLEL BRANCH AND BOUND 

ALGORITHMS FOR LOCATION-TRANSPORTATION PROBLEMS 

IN HUMANITARIAN RELIEF 

*Chansiri Singhtaun1 and Suriya Natsupakpong2 

1Department of Industrial Engineering, Faculty of Engineering, Kasetsart University, Bangkok, Thailand; 
2Institute of Field Robotics, King Mongkut's University of Technology Thonburi, Bangkok, Thailand 

*Corresponding Author, Received: 22 March 2016,   Revised: 11 July 2016, Accepted: 29 Nov. 2016 

 

ABSTRACT: This paper studies the effect of branching rules (BR) and heuristic algorithms (HA) to find 

feasible solutions for a branch and bound (BB) algorithm used to solve sub-problems in a parallel two-phase 

branch and bound (PTBB) approach. The nine PTBB algorithms, which are developed by varying 32 

combinations of BR and HA strategies, are tested on the facility location-transportation problem for disaster 

response (FLTDR). The mathematical model for the problem determines the number and location of 

distribution centres in a relief network, the amount of relief supplies to be stocked at each distribution centre 

and the vehicles to take the supplies in order to maximize the percentage of needs coverage of disaster victims 

under capacity restriction, transportation and budgetary constraints. To examine the performance of the 

algorithms, computational experiments are conducted on the various sizes of generated problems. Three 

strategies of BR and HA provided in the “intlinprog” function of MATLAB were applied for these problems. 

The objective function values and the computational times of all algorithms were collected and analyzed. The 

results showed that all PTBB algorithms can solve problem sizes of four candidate locations with fifteen 

demand points without premature termination by time. The PTBB algorithm using “maxfun” branching rules 

and “rss” heuristic to find a feasible solution is recommended for FLTDR because of the least computational 

time usage. 
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1. INTRODUCTION 

 

Disaster operations management has been a 

popular issue for decades because of the increase in 

the number and severity of natural disasters. During 

2007-2011, natural disasters killed 23.64% more 

people and there was a 59.21% increase in 

economic damage when compared with 2002-2006 

[1]. The life cycle of disaster operations 

management comprises four phases, which are the 

mitigation phase, the preparedness phase, the 

response phase, and the recovery phase [2]. The first 

two phases are pre-positioning phases that need to 

be performed prior to the onset of a disaster. The 

other two are post-disaster phases. The period of 

time of each phase depends on the type of disaster 

(a quick-onset or a slow-onset disaster). The 

disaster response is a crucial phase. The objective 

of disaster response in the humanitarian relief chain 

is to rapidly provide relief (emergency food, water, 

medicine, shelter, and supplies) to areas affected by 

large-scale emergencies, so as to minimize human 

suffering and death. Relief logistics play an 

important role in this phase. The scope of relief 

logistics relates to ten subsystems, which are 

planning, inventory distribution, transportation, 

procurement, maintenance, control, human 

resources, information and communication, and 

administration subsystems [3]. The first three 

subsystems have been intensively studied under the 

following topics: facility location problems, 

inventory problems, transportation/routing 

problems and scheduling problems. Both individual 

analyses and the integration of these four problems 

have been researched. Moreover, most research 

topics have emphasized designing a disaster 

management framework, such as the study 

appearing in [4]. Few research papers have focused 

on constructing a disaster response operation 

framework and application, which aims to 

determine a solution based on numerical data by 

using a mathematical method, such as [5] and [6]. 

The facility location-transportation problem for 

disaster response (FLTDR) relates to solving both 

location and transportation problems 

simultaneously. The location problem requires 

determining the number, the position and the 

mission of a humanitarian aid distribution centre 

within the disaster region. The transportation 

problem deals with the distribution of humanitarian 

aid from the distribution centre to demand points [6]. 

Most of the mathematical models for FLTDR are 

Mixed Integer Linear Programming (MIP) 

problems with complex constraint structures [7]. 
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The traditional Branch and Bound (BB) algorithm 

is currently the only general tool available for 

finding optimal solutions to these difficult 

formulations [8]. However, finding an optimal 

solution for a complex and large size FLTDR using 

a BB takes excessive computing time. Parallel 

computing is one of the most efficient alternatives 

that has been used since the beginning of the 

twenty-first century. The use of parallelism to speed 

up the execution of a typical (sequential) BB 

algorithm is widely known as a Parallel Branch and 

Bound (PBB) algorithm. There are three main 

approaches of PBB algorithms according to the 

degree of parallelism of the search tree. Parallelism 

of type 1 introduces parallelism when performing 

the operations on generated sub-problems (e.g., 

bounding computations). In the type 2 approach, the 

search tree is built in parallel by performing 

operations on several sub-problems simultaneously. 

In the parallelism of type 3, several trees are 

explored concurrently [9]. Both the selection of 

computer architectures and PBB approaches for a 

particular MIP problem affect the computational 

performance. Much of the research in the PBB 

approach area has emphasized developing new or 

improving the existing computer architectures such 

as [10]-[12]. Little research has focused on 

developing new or improving PBB approaches such 

as [13]. However, the various strategies of the BB 

algorithm, which are used in sub-problem solving 

in the PBB algorithm and affect the branching 

sequence of the PBB algorithm, have not been 

studied. Therefore, this research intends to 

determine the impact of these strategies, which are 

BR and HA, on computational time and quality of 

solutions (in the case of premature termination).  

The goal of this research is to determine the best 

strategy for the PBB algorithms. 

 

2. RESEARCH METHODOLOGY 

 

2.1 Problem Description 

 

The FLTDR in this study focuses on calculating 

the number of distribution centres to be constructed; 

determining the locations of distribution centres 

(yl); identifying the quantity of relief items to be 

stored (pjl) and determining the assignment of 

vehicles (Xilhkv) and quantities of the humanitarian 

aid (Qilhkv) to serve demand points in order to 

maximize the relief item coverage under the 

following assumptions. Each particular house or 

building within the affected area could require 

humanitarian aid and is thus a potential demand 

point. The demand quantities are estimated by a 

homeland security organisation or experts. The 

demand quantities can only be satisfied by the 

distribution centre, which is assumed to stock and 

distribute multiple types of relief item. The relief 

items are divided with respect to their response time 

criticalities and target response time intervals.  

The amount of stock to be held at the 

distribution centre depends on the number and 

location of distribution centres in the network as 

well as the assignment of demand locations to the 

distribution centres, while distribution centre 

location and assignment decisions are affected by 

the quantity of relief items to be stocked at each 

distribution centre. Each distribution candidate site 

has a global and a per product capacity that fixes the 

maximum quantity to be stored within the site. The 

location candidates and the capacity of distribution 

centres are considered in the pre-disaster phase 

based on the demand locations and quantities. Both 

location and stock decisions are limited by pre-

disaster budgetary restrictions.  

The vehicles available at candidate sites are of 

various types and there are different numbers of 

available vehicles. The different docking times of 

each vehicle type at each site and the time needed 

for loading and unloading one unit of each product 

for each vehicle type are considered. The traveling 

time from a distribution centre to a demand location 

is determined corresponding to distance and vehicle 

type. There are also some restrictions on the total 

weight and the total volume of vehicles. A 

maximum daily work time for each vehicle type is 

imposed.  A given vehicle can perform as many 

trips as needed during a day as long as the 

corresponding work time limit is respected. Each 

vehicle trip is assumed to visit only one demand 

point at a time. One demand point may be visited 

many times. However, because of the maximum 

daily work time, the number of trips to a specific 

delivery point by a particular vehicle will be limited 

to a maximum value, which is set at two. Finally, 

shipping costs from distribution centres to demand 

points are restricted by post-disaster budgetary 

restrictions. The mathematical model formulation 

of this problem refers to [13]. The parameters and 

decision variables are defined as follows. 

I Set of demand points;  1, ,I n   

J Set of items;  1, ,J p   

L Set of candidate sites;  1, ,L u   

H Set of vehicle types at site l; {1, , }lH m   

K Set of number of vehicles for each vehicle 

type at site l; }{1, , hlK u    

V Set of vehicle trip; {1,2}V    

dij Demand for item type j at demand point i 

sjl Capacity of site l for item type j 

Sl Capacity of site l for all item 

Qh Weight capacity of a vehicle of type h  

Vh Volume capacity of a vehicle of type h 

lh Docking time for a vehicle of type h at site 

 l 
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tilh Travel time from site l to demand point i 

by vehicle type h 

jh Time of loading and unloading one unit of  

item type j into a vehicle of type h 

Dh Maximum daily work time for a vehicle of  

type h 

wj Weight of one unit of item type j 

vj Volume of one unit of item type j 

Fl Fixed cost of establishing distribution 

centre j 

gjl  Unit cost of acquiring and storing item 

type j at distribution centre l 

cilh Unit cost of shipping items from  

distribution centre l to demand point i by 

vehicle type h 

B0 Emergency relief budgets allocated for  

pre-positioning relief supplies 

B1 Emergency relief budgets allocated for  

post-disaster distribution 

 

Decision variables 

1   if a distribution center is located at site   

0  otherwise 

1   If demand point  is visited from 

    distribution center    with the  vehicle 

    of type  on its trip 

0  oth

    

th

ilhkv t

l

h

l

i

l k
X

h v

y


 




erwise 

Quantity of item type  delivered to point  

            from distribution center  with the  vehicle of 

            type  on its trip

     

 

  Quantity of item type  pr
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th

th

jl

Q j i

l k

h v

p j






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



ovided at site  l

 

Mathematical Model 

 

   

  
1

  ijlhkv

i I j J l L h H k K v Vij

Max Z Q
d     

    (1) 

        

subject  to 

 

       ,    ijlhkv ij

l L h H k K v V

Q d i I j J
   

                         (2) 

 

        ,  ijlhkv jl

i I h H k K v V

Q p j J l L
   

                        (3) 

 

         

 

2 , ilh lh ilhkv jh ijlhkv h l

i I k K v V j J

t X Q D y h H l L 
   

 
       

 
      

(4) 

 

       

 

  , , , , j ijlhkv h ilhkv

j J

w Q Q X i I l L h H k K v V


           

(5) 

 

       

 

  , , , ,j ijlhkv h ilhkv

j J

v Q V X i I l L h H k K v V


          

(6) 

     

 

   jl l l

j J

p S y l L


                                             (7) 

 

           ,jl jlp s j J l L                                           (8) 

 

        0 

 

 l l jl jl

l L j J l L

F y g p B
  

                                     (9) 

 

    1 ilhkv ilh

i I l L h H k K v V

X c B
    

                                (10) 

 

      0,1ly                                                   (11) 

 

      0,1ilhkvX                                                         (12) 

 

  0,ijlhkvQ integer                                               (13) 

 

  0,jlp integer                                       (14) 

 

The objective function Eq. (1) maximizes the 

total fraction of demand covered by the established 

distribution centres. Constraint set Eq. (2) 

guarantees that the quantity of item j delivered for 

each demand point i does not exceed its demand. 

Constraint set Eq. (3) ensures that the total quantity 

of a given item type j delivered from a distribution 

centre l does not exceed the quantity of item type j 

available in this distribution centre. Constraint set 

Eq. (4) requires that the maximum daily work time 

restriction related to each vehicle k of type h located 

at a distribution centre l is not exceeded. These 

constraints also prohibit trips from unopened sites. 

Constraint sets Eq. (5) and Eq. (6) express the 

vehicle capacity constraints for each trip in terms of 

weight and volume. Constraint set Eq. (7) and Eq. 

(8), respectively, insure that the total and the per 

item capacity of the distribution centre are satisfied. 

Constraint Eq. (9) requires that the pre-disaster 

expenditure related to establishing a distribution 

centre and holding inventory does not exceed the 

pre-disaster budget. Constraint Eq. (10) ensures that 

the total transportation costs do not exceed the post-

disaster budget. Finally, constraint sets Eq. (11) - 

Eq. (14) define the nature of decision variables used 

in the model. 

 

2.2 Parallel Branch and Bound Algorithms 

 

In order to analyse the effect of BR and HA on 

the performance of the PTBB1 algorithm, which is 

an PBB approach that was proposed in [13], for 
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various sizes of FLTDR, a 34 full factorial design 

with single replication is used to carry out the 

numerical experiments. Two following hypotheses 

are tested. The first hypothesis is to test whether 

treatments, which are the parameter of the problem 

(the number of demand points n and the number of 

candidate locations of distribution centres u) and the 

options of the BB algorithm (BR and HA), affect 

the responses. The other hypothesis is to test 

whether a treatment interaction affects the 

responses. Three generated problems are tested in 

each combination of treatments. The response is the 

average computational time. Each treatment is 

composed of three levels, which are shown in Table 

1. The levels of BR and HA are options of BB that 

are provided in the “intlinprog” function in 

MATLAB. For BR, the rules that choose the 

fractional component with a maximal 

corresponding component in the absolute value of 

the objective function (maxfun); the fractional 

component with maximum pseudocost 

(maxpscost); and the component whose fractional 

part is closest to 0.5 (mostfractional) to be branched 

are carried out.  Three levels of HA are used to 

enhance bound tightening as follows. For the first 

level or strategy (none), there is no search for a 

feasible point. Any feasible point that is 

encountered in the BB search is taken. The second 

strategy (rss) applies a hybrid procedure that 

combines searching the neighbourhood of the 

current best integer feasible solution point (if 

available) and local branching to find a new and 

better solution. The last strategy (round) takes the 

linear programming (LP) solution to the relaxed 

problem at a node. It rounds the integer components 

in a way that attempts to maintain feasibility. 

Therefore, the nine PTBB algorithms are developed 

by applying 32 combinations of BR and HA 

strategies for the PTBB1 algorithm. These 

algorithms are tested on nine problem cases. 

The PTBB1 proposed in [13] is composed of 10 

steps as follows. Parallel computing is applied in 

steps 2 to 10 using the “parfor” function in 

MATLAB. The nine strategies of the BB algorithm 

are implemented in step 6. 

Step 1:  Calculate the upper bound of the 

number of distribution centres to be located 

(ubNumDC) using the budgetary constraint. Let the 

set of current solutions (yl, Xilhkv, pjl and Qilhkv) be an 

empty set and the current objective function (Zcur) is 

zero.  

Step 2: Set the current number of distribution 

centres to be located (NumDCcur) at 1.  

Step 3:  Find all possible patterns of selecting 

NumDCcur locations out of u candidate locations. 

Now all possible sets of decision variables yl 

corresponding to NumDCcur are created. Let the 

number of all possible patterns corresponding to 

NumDCcur be NumPatcur. 

Step 4: Set the current pattern (Patcur) at 1.  

Step 5: Select the set of decision variables yl  

relating to NumDCcur and Patcur .  

Step 6: Solve a transportation sub-problem 

relating to yl using a BB algorithm. At this step the 

solutions for variables Xilhkv, Qilhkv, and pjl are found 

and the objective function (Z) corresponding to yl is 

known. 

Step 7: Update the set of current solutions and 

Zcur by employing a new solution and a new Z 

obtained from step 6 if the Z is better (more) than 

Zcur. Otherwise, go to step 8. 

Step 8: Set Patcur = Patcur+1. If Patcur ≤  

NumPatcur go to step 9. Otherwise, go to step 10. 

Step 9: Select the set of decision variables yl  

relating to a new Patcur. Solve the LP relaxation 

problem of the transportation sub-problem using an 

interior point algorithm. If Z > Zcur, go to step 6. 

Otherwise, go to step 8.  

Step 10: Set NumDCcur = NumDCcur+1. If 

NumDCcur ≤ ubNumDC go to step 3. Otherwise, stop 

the iterative process. 

All PTBB algorithms are coded with MATLAB. 

The numerical experiments are implemented on an 

asynchronous shared memory system, which is 

constructed from a workstation with a CPU Intel 

Core i7-5820K 3.30 GHz 6-core processor with 16 

GB RAM. The data sets of nine problem cases with 

the specific n and u in [13] are used. All algorithms 

are set to be prematurely terminated at 28,800 sec. 

or 8 hrs. in order to limit the computational time for 

large-size problems. The percentage of weight 

demand coverage, computational time and the 

solutions of the decision variables are recorded. The 

results of the experiments are statistically analysed 

by using analysis of variance (ANOVA) at a level 

of significance α = 0.10 with MINITAB. 

 

3. RESULTS 

 

Since there is no premature termination by time; 

only the average computational time of all 

combinations or algorithms is shown in Table 2. All 

nine strategies of BR and HA give the optimum 

solution. To statistically analyse the effect of four 

factors (n, u, BR, and HA) on the average 

computational time, ANOVA is carried out using 

MINITAB. Four-factor interaction effects are 

ignored. The ANOVA table is shown in Table 3. 

Before drawing any conclusions from the ANOVA 

table, the assumption of experimental or residual 

error, which is normally and independently 

distributed, should be examined by analysing the 

residual plots illustrated in Fig. 1. From Fig. 1, the 

Normal Probability Plot shows that the residuals are 

in linear form. It can be concluded that the data 

distribution is a normal distribution. Likewise, the 

Histogram shape also shows that the data 

distribution is normal. The other two graphs show  
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Table 1 The levels of all treatments 

 

 

Table 2 Average computational time of all treatment combinations (unit: seconds) 

 

n Functions 
u = 1 u = 2 u = 4 

none rss round none rss round none rss round 

5 

maxfun 2.75 2.74 2.74 2195.40 2166.10 2156.70 23110.90 13099.10 13098.70 

maxpscost 905.52 883.69 878.36 3723.50 3733.80 3733.40 12415.10 12991.80 12975.10 
mostfractional 1.42 1.42 1.41 3322.20 3346.60 3332.20 15800.35 15817.50 15849.50 

10 

maxfun 902.78 906.63 1962.30 5097.00 3159.50 3148.20 5450.40 5431.50 5410.50 

maxpscost 3689.56 3875.15 4138.40 5396.70 5394.90 5371.10 11921.00 13998.00 12092.00 
mostfractional 2879.67 2987.35 3170.60 5201.04 5178.25 5124.90 8970.87 8991.50 8931.00 

15 

maxfun 5190.74 5720.61 4840.17 7319.20 7008.91 7201.00 26730.17 24711.03 23548.00 

maxpscost 3050.82 2080.04 2610.83 3456.10 2437.20 2640.70 27192.78 24920.10 28801.68 

mostfractional 3410.38 3060.36 3100.21 8001.49 7013.41 7201.00 27610.90 23450.00 25548.00 

 

 

Fig. 1 Residual plots for computational time data 

that the residual is independently distributed 

because the plotted data is distributed randomly. 

Thus, it can be concluded that the residual is normal 

and independently distributed. 

From Table 3, the factors n, u, HA, the n*u 

interaction and n*BR interaction, the u*BR 

interaction, and the n*u*BR interaction 

significantly affect the response because the  

p-values are less than the level of significance  

 = 0.10. According to Table 3, factor u has a 

greater effect on the computational time than n 

because it has a higher F-value. Moreover, the 

combination of these two factors, which leads the 

numerous decision variables and problem size, 

shows a nonlinear impact on the computational 

time. Because the n*u*BR interaction has a 

significant effect, only the three-factor interaction 

plots of n, u and BR (shown in Fig. 2) are used and 

the main effect plots of n, u and BR are ignored to 

interpret the results and to set the levels of these 

factors. To set the appropriate HA strategy, the main 

effect plot of HA (shown in Fig. 2) is considered.   

Treatment n u Branching rules Heuristic for finding feasible solutions 

Low level 5 1 maxfun none 

Intermediate level 10 2 maxpscost rss 

High level 15 4 mostfractional round 
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Table 3 ANOVA for the computational time data 

 

Source of 

Variation 

Degrees of 

Freedom 

Adjusted  

Sum of Squares 

Adjusted Mean 

Square 
F-Value P-Value 

n 2 643906702 321953351 213.80 0.000 

u 2 3230007029 1615003515 1072.47 0.000 

BR 2 6889907 3444954 2.29 0.134 

HA 2 9088131 4544065 3.02 0.077 

n*u 4 753671742 188417935 125.12 0.000 

n*BR 4 74963016 18740754 12.45 0.000 

n*HA 4 5580682 1395170 0.93 0.473 

u*BR 4 18863426 4715856 3.13 0.044 

u*HA 4 8259167 2064792 1.37 0.288 

BR*HA 4 8213325 2053331 1.36 0.290 

n*u*BR 8 77731263 9716408 6.45 0.001 

n*u*HA 8 12449772 1556222 1.03 0.452 

n*BR*HA 8 13052877 1631610 1.08 0.422 

u*BR*HA 8 16062604 2007825 1.33 0.296 

Error 16 24093874 1505867   

Total 80 4902833518       

  

      
(a)                                   (b) 

  

Fig. 2 Main effect plot of HA (a) and three-factor interactions of n, u and BR for computational time (b) 

 

According to the main effect plot of HA, the 

efficient option of HA is the “rss” option because it 

gives the least computational time. The bottom-left 

graph and the bottom-right graph of the interaction 

plots indicate that BR should be set at the “maxfun” 

option. The top-left graph of the interaction plots 

show that the least values of n and u (the smallest 

size problem) use the least computational time. 

 

4. CONCLUSION 

 

Both BR and HA impact the computational time 

of PTBB algorithms. The selection of BR options 

affect the computational time of PTBB1 in a 

nonlinear relation corresponding to n and u. The 

most efficient BR and HA for the PTBB algorithms 

to solve the generated FLTDR are the “maxfun” and 

“rss” options, respectively. This is because the 

“maxfun” option just looks for and picks up the 

fractional component with the maximal 

corresponding component in the absolute value of 

the objective function without much calculation. 

Unlike the “maxfun” option, the “maxpscost” 

option takes time to calculate the pseudocost in 

selecting the component to be branched while the 

“mostfractional function” option needs to search 

and compare the values of all possible pairs of 

variables. These two options may help to reduce the 

number of branches to be visited, but this advantage 

cannot be observed in this study. The “rss” option, 

which uses a hybrid procedure to find a new and 

better solution, is more efficient than the “round” 

option, which just rounds the integer components in 

a way that attempts to maintain feasibility. This 

result shows that it is worthwhile to take time to find 

the best quality feasible solution and tightening 

bound. This is because it can help PTBB algorithms 

to fathom a number of inferior branches to be 
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visited. Therefore, the PTBB algorithm using 

“maxfun” branching rules and “rss” heuristic to find 

a feasible solution is recommended for FLTDR 

because it can deliver the optimum solution with the 

least computational time.  

For future research, other strategies of BR and 

HA or other factors such as node selection rules 

should be investigated. Moreover, to extend the 

performance of the PTBB algorithms and computer 

architecture to develop a parallel computing 

machine should also be considered. 
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