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ABSTRACT: A new numerical scheme in Finite Element 
Method (FEM) along with Mesh Free Method (MFM) and 
suitable convergence criterion is used to simulate the progressive 
nature of failure in soil-root matrix continuum. With the 
consideration of homogenizing approach, the complex behavior of 
soil-root interaction can reliably be captured of any natural slopes. 
Root-reinforcement effect has significant role in modifying stress 
anisotropy and displacement behavior of the slope. Result shows 
that stability factor first increases with RAR, after attaining certain 
stability factor further increment of RAR within certain limit does 
not impart on stability factor of slopes. After certain RAR say 
more than 0.5%, there is no any change on stability factor. Results 
show that vegetation has significant influences on safety factor in 
certain effective RAR-range, which further illustrates the 
necessities of vegetation cover in slopes; however, it requires 
more realistic model parameters and boundary conditions to 
perform more relevant simulations. 
 
Keywords: Finite element method (FEM), Mesh free 
method (MFM), Progressive failure, Soil-root interaction, 
Natural slopes 

1. INTRODUCTION 

Numerical simulation considering the progressive failure 
and the soil-root matrix interaction certainly provides 
reliable information regarding stability factor of natural 
slope. Such information can effectively be used to assess 
the hazard for potentially landslide prone soil slope, and 
design the structurally safe and economic slopes. However, 
it is difficult to treat both progressive nature of failure and 
the interaction of soil-root matrix analytically and 
numerically. However, in practice, progressive failure 
patterns and effects of vegetation are not considered in 
routine slope stability computation. This is mainly due to 
complex behavior of soil-root interaction. With the 
consideration of natural slope, in addition to vegetation 
effect, different underlying soil profiles under partially 
saturation condition add more complexity to the problem 
domain. In this regard, the linear behavior of problem 
domain will no longer perform linear behavior therefore, 
nonlinear analysis is needed that can address some form of 
nonlinear behavior of a problem domain. Progressive 
failure phenomenon shows complex constitutive relations 
supersede the simple linear elasticity assumptions. In linear 
problems, the solution is always unique, however there is 
no longer the case in many nonlinear situations and 
involves huge iterations. The basic iteration process should 
be selected in such a way that the solution will remain 
unchanged. There are, of course, the simulation under 
nonlinear analysis exhibits high computational cost. 
Nonlinear FEM with MFM is adopted, which dramatically 
reduces the processing time so that it is easier to 
accommodate complex problem. The nonlinear FEM is 
ideally suited to handle the slope stability analysis because 

 
 

there is no need to make any assumptions regarding the 
shape and geometry of failure surface as well as its 
searching procedures. Both material nonlinearity and 
geometrical nonlinearity are existed in natural slopes (large 
deformation and includes power terms of the series). 
Numerical computation based on nonlinear FEM with mesh 
technique will no longer work in ordinary computers [13]. 
Progressive failure demands increased number of iterations 
and huge number of meshes are necessary for the 
convergence of the result. As we have seen memory 
problem in ordinary computers, we might have two 
possibilities. One possibility is to seek super computer and 
go for parallel processing and other possibility is to apply 
mesh free strategy in existing programs. This strategy 
drastically reduces the storage memory of computers and 
accelerates the computational speed. In this regard, new 
numerical scheme in non linear FEM along with MFM and 
suitable convergence criteria is used to simulate both the 
progressive nature of failure and interaction of the soil-root 
matrix continuum. A simple numerical formulation for the 
progressive failure with the consideration of homogenizing 
approach to treat the soil-root interaction reliably simulated 
the complex behavior of natural slopes. Slope model 
geometry with the consideration of water profile, surcharge 
effect and different soil profiles, vegetation types and its 
root depths (maturity periods) and RAR can be simulated 
effectively. Soil bioengineering technique that uses 
vegetation as a structural element gained popularity in 
natural and manmade slope stabilization [1]. The effect of 
root reinforcement caused by vegetation is modeled as 
additional cohesion to the soil as root cohesion. The root 
zone by certain depth as per maturity period of particular 
species is incorporated in the model. The role of vegetation 
in stability factor of the soil slope, as expected, becomes 
significant after certain maturity period when roots have 
pervaded the certain depths, nevertheless resistant to 
erosion even at the earlier period cannot be neglected. In 
this paper, the factor of safety (FS) of natural soil slopes is 
examined using elastic-plastic (Mohr–Coulomb) FEM 
program for c  soils and thus concluding the slope is 

safe enough or not for the certain considered case. Even the 
most widely used numerical method, FEM is capable of 
solving the wide range of boundary value problems [2]; 
however, the computation of failure path is quite 
cumbersome. Use of continuous displacement function 
makes it difficult to treat the rupture process, which is 
inherently discontinuous in nature. In this case, new 
approach in ordinary FEM platform is proposed to address 
the different problems in soil-engineering (Fig. 1).  
Thus the simulation of soil-root interaction, consideration 
of the progressive fracture in the soil-root networked 
continuum, and evaluation of the factor of safety based on 
the strengths and the fracture phenomena using new  
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numerical scheme is effective way of evaluating the 
stability of soil slope. Simulation of the slope failure in 
3-dimensional domain will be a cumbersome task with 
reference to the computational cost, special 3-dimensional 
case of plane condition is used in this paper. It should be 
noted, however that, more accurate result can be achieved 
with the simulation in 3-dimensional domain. This 
numerical scheme can handle material heterogeneity and 
complex topography. Either simple or complex water table 
profile may be used to access effects of hydrostatic pressure. 
Both surface loading and pseudo-static seismic loading are 
well implemented. 
 
2. NUMERICAL PROCEDURE 

2.1 Mathematical formulation 

In this approach, a numerical method is used to compute the 
displacement field to simulate stress-deformation behavior 
of the slope adopting homogenizing or continuum 
modeling. Continuum modeling describes the model as a 
continuous body. Therefore, this method is applicable to 
slopes whose behavior may be realistically reproduced 
under the continuum assumption, e.g. soils, massive rocks, 
heavily jointed rocks, etc. FEM with some modifications is 
applied here as continuum based modeling. It solves a weak 
(Variational) form of the governing equation on an 
unstructured mesh, descretization and the solution 
procedure are generally relatively complex, but 
unstructured meshing is well suited for complex geometries.  
In this numerical procedure, we add vegetation root to the 
model, which is simply honored by the different sized 
meshes. Honoring the root reinforcement makes it easier to 
identify root-reinforcement part nodes during the 
calculation of root-cohesion. Same procedure is also 
applied to identify the submerged nodes during the 
calculation of hydrostatic pressure.    

Progressive failure itself is a very complex phenomenon 
in space-time (Fig. 1). A simple FEM based analysis is not 
sufficient for getting the more reliable results especially in 
natural slopes. Iterative, trial and error, solutions may not 
converge in large domain. The governing equation in case 
of soil slope with vegetative cover (natural slopes) 
considering the progressive fracture can be represented as: 

      tXutXftXuC iijklijkl ,,,,   in 
                                                          

   tXutXu ii ,ˆ,  on   t                                      (1)                                                
     tXttXntX ijij ,ˆ,,  on    t  

Where           ijklrijklsijklsrijklrnm ijklmijkl CrCrCWCWCWC  1  

represents the average elasticity tensor, and 
  srssrri ii rrWWW   1 represents the average 

mass density of the material including roots for linearly 
elastic isotropic material. Similarly, 

rW  denotes the weight 

function of roots; 
sW  

denotes the weight function of soil; 

r for the density of roots; s for the density of soils, and 

r  for the root area ratio. Similarly, 
klijklij C    

(Generalized Hook’s Law) and  ijjiij uu ,,5.0   (for 

infinitesimal deformation), where jn  represents the unit 

normal in the direction of j. The nonlinearity of the problem 
can be addressed with the evolution of  ep

ijklC  , which can be 

expressed as: 
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Where ep
ijklC represents the stochastic instantaneous (or 

elastic-plastic) moduli; f
 
represents the yield function 

depending on the stochastic stress state and
 
the past stress 

history, and 
ijf represents the gradient of f

 
with respect 

to the stress component
ij . In this mathematical 

formulation, we consider the body in dynamic state with 

body force if  in   and the traction t̂  and the 

displacement û on  t . Both indicial notation and 

summation convention are followed. The indices kji ,,  

and l  run from 1 to 2 for 2-D case. Indices after comma (,) 
represents the partial derivative of corresponding variable 
with respect to index. Time evolution of the domain 
boundary is the key point of this numerical approach. The 
boundary of the domain is dependent on the time. As the 
fracture propagate with respect to time the boundary of the 
domain is also evolving, which may either be traction free 
or with the specified traction. The governing equation set in 
the Eq. 1 can be solved by variational formulation. Energy 
functional corresponding to the governing Eq. 1 can be 
represented as:  

   
 

dSutdVufdVuuuI
t

iiiiiijij 


 ˆ
      

                         (3) 

   Where ij  represents the stress tensor and ih represents 
the strain tensor. The first variation of the functional  uI  
with respect to infinitesimal variation of displacement is 
given by: 

   
 

dSutdVufdVuuuI i

t

iiiiiijij  


 ˆ               (4)     

     Refer to Eq. 4, it is discretized in terms of the 
displacement field with the approximation of:  




ii uXu )(                                                                                   (5) 

Where  satisfies the orthonormal condition. 
  )(X                                                                                 (6)  

     Where   represents the Kronecker’s delta. The 
functional  uI  can be minimized equating I to zero. Thus 

together with the Eq. 6, the final finite element equation can 
be obtained as:  
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respectively represents the mass 

matrix, stiffness matrix and force matrix. 
 

2.2 Conjugate gradient iteration and Mesh Free 
Method (MFM) 

Many algorithms of this type can be found in the literature  
[8] and [13], the most popular and commonly used method 
is conjugate gradient iteration method. A simple 
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mathematical relationship of the general equation, and its 
residual, functional and minimization can be expressed as:  

;BKu 

 

;KuBR    ;
2

1
BuKuuuf TT 

  

  0uf

     

 (8) 

Conjugate gradient iteration checks in conjugate 
direction and follows the gradient so that it will reach the 
require point in few computation from bowl shape 
problem. It helps to reduce heavy computation for global 
matrix solution.  
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

In MFM, the use of pre-defined mesh is avoided 
removing the problems associated with mesh distortion. 
MFM does not require a structured mesh (Fig. 1(b)), but use 
a set of nodes distributed within the material domain and 
elemental sum can be carried out using the relation ( iK  is 

the element stiffness matrix of the thi element):   
          

elements
ii RKu                                                   (9) 

 
2.3 Vegetation effect 

An enhanced cohesion due to the presence of roots can be 
calculated by two major characteristics of root systems 

RT

and RAR. Both 
RT and RAR are influenced by species and 

site factors such as local climate; soil type; season; root 
type and size as well as root architecture [5] and [6]. The 
fiber reinforcement (perpendicular root reinforcement 
model) in terms of root cohesion rC can be written as: 

  tancossin  rr tC                                                (10) 

Where rt  represents the mobilized tensile stress of root 

fibers per unit area of soil;   represents the angle of shear 
distortion in shear zone, and   is for the angle of internal 

friction of the soil. A shear strength increase from full 
mobilization of root fiber tensile strength requires  
calculation of the average tensile strength of the root fibers, 
and the fraction of soil cross section occupied by roots

 AAR / . The mobilized tensile stress per unit area of soil rt
in this case is given by:  AATt RRr /  and 

  tancossin
'

k . The common value of  k   can 

be taken as 1.15 [11] or 1.2 [12]. Then the Eq. 10 can be 
further written as:  

rr tkc                                                                 (11) 
To account the variability of root diameter Eq. 11 can be 

further written as:   

  iaTkc
N

i
rrr  

1

                                                      (12) 
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Where RT  denotes the tensile strength and ra  denotes 

the RAR (both specified per diameter class i , and the 
number of class N ). RAR refers to the fraction of the total 
cross sectional area of a soil that is occupied by roots. 
Regardless of plant types and conditions, the common 
value of root area ratio is ranging from 0:01 to 0:00001, but 
if the value assigns greater than 0.005 then there will be the 
chances of overestimating root cohesion [14]. Root tensile 
strength usually decreases with increasing diameter or root 
depth. It depends on plants species, root diameter, age, site 
conditions (e.g. moisture), and season. A decrease in root 
diameter from 5mm to 2 mm results in a doubling or even 
tripling of tensile strength [10]. Finer roots have the 
advantage of not only higher tensile strengths but also 
superior pullout resistance because they have higher 
specific surface areas than larger roots at equivalent area 
ratios [10]. Ranges of tensile strength (kN/m2) for different 
groups of plants can be categorized as: Grass (5-10); Herbs 
(3-60) and Woody plants (10-70).  

 

2.4 Fracture treatment 

Consideration of the fracture is quite natural in this 
approach. Fracture is considered to be evolved along the 
element edge. As the precise physical formalism is not 
known for the fracture phenomena, consideration of the 
fracture process is somehow empirical. Nature of the 
fracture evolution is determined by the edge (surface) stress 

)()( surfaceedgeij and nodal stresses nodeij )( of the 

corresponding edge (surface) simultaneously. Any of the 
existing fracture criteria can be applied with equal ease. 
Continuous displacement functions are used until the 
occurrence of fracture. After the fracture, fractured edge 
(surface) is changed into the traction free or specified 
traction boundaries, thus introducing the elegant way of 
consideration of discontinuous displacement functions.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
There are three possible ways of fractures depending on 

the location of failed node. When the failed node lies on the 
boundary, crack will be initiated at the boundary node and 
will propagate to the inner intact node. In this process a new 

node and a new edge will be generated as shown in Fig. 3(a). 
When the failed node lies near the boundary, then all the 
conditions will be similar with the case when the failed 
node lies in the domain, except that the boundary node will 
also get failed. Therefore, there will be generation of two 
failed edges and two failed nodes as shown in Fig. 3(b). 
Another possible way of fracture will be when the failure 
node lies in the domain of the continuum. In this case 
separation of only one edge is incompatible; hence, crack 
will be initiated from an edge which exceeds the yield 
criteria starting from a node of higher stress and 
accompanied with a next edge with highest stress among 
the remaining edges meeting at the failed node. Thus, in 
this case one new node and two new edges are generated as 
shown in Fig. 3(c). 

3. MODEL AND MATERIAL  

3.1 Slope model 

For the computation the natural slope, authors present 
realistic problem domain (Fig. 4). Slope is then discretized 
including all the complexities of soil; water and root related 
effects. For this particular case, fixed boundary at the 
bottom and vertical movable boundary at the left, and 
partially fixed and movable at the right are appropriate to 
the slope. Problem domain mainly concerns partially 
saturation state of soil which resembles the natural slope. 
Natural slope might be both types of slopes: slope with 
vegetation cover and slope without vegetation cover.     
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

3.2 Material model 

The theoretical soil parameter used to compute stability 
factor are presented on Table 1 [3]. This model does not 
mean that fully saturated soil may have zero cohesion value. 
On the other hand, these model material properties do not 
concern about the corresponding changes on angle of 
internal friction  ; Poisson's ratio  ; dilation angle  , 

and young's modulus of soil E and many other factors 
with changes on degree of saturation and presence of root, 
however corresponding changes due to saturation on unit 
weight of soil  and soil cohesion c , are considered. For 

the finite element modeling, the soil is modeled as a elasto–
plastic material. The elastic part was governed by modulus 
of elasticity E and Poisson’s ratio  of the soil. Root 
material is considered as a linear-elastic material with a 
modulus of elasticity of (1.5 E5) kN/m2, a Poisson’s ratio of 
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0.3, and a maximum yield stress of 107 kN/m2 as a sample. 
The dilation angle  affects the volume change of the soil 

during yielding. As a frictional material, it will exhibit high 
dilation near the peak, leading eventually to a residual state 
under a constant volume condition  0 and the selection 

of soil dilation angle is comparatively less important [7]. 
The exact values of different parameters can be obtained 
from site specific and species specific tests. However for 
the rough estimation, one may use:  enhanced unit weight of 
root R 1.5 kN/m3; young's modulus of elasticity of root 

RE 0.1 5E  
kN/m2; cohesion due to evapo-transpiration 

ec 0 to 10 kN/m2, and angle of internal friction due to root 

 0 to 5 degrees; surcharge loading due to weight of 

vegetation = 0 to 5 kN/m; wind loading force parallel to the 
slope per tree = 0 to 3.5 kN/m. Mean tensile strength of root 

RT , generally varies from 5 to 80 kN/m2 along with wide 

range of RAR, generally varies from 0.00001 to 0.01 in 
fraction [4] and [10].  
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

3.3 Computational procedure 

The response of the slope is numerically computed with the 
programs in FORTRAN 90. Basic steps of the program are 
outlined as follows. In the preprocess section, nodal data, 
element connectivity, boundary conditions, geometries, 
material properties are taken from input files. After reading 
the input data, elemental matrices and local nodal forces are 
generated and assembled in to global stiffness matrix and 
global load vector which are modified by incorporating 
boundary conditions. Matrix is solved using the 
preconditioned conjugate gradient method for efficient 
storage and fast computation of the nodal displacements 
and stresses. Then checks for fracture criteria are carried 
out. If there is no failure at any node or edge, given loading 
is increased by a specified amount which can be adjusted 
depending upon the requirements, and solution are repeated 
for the next iteration. If any edge is failed, then the number 
of edges and nodes are increased by one or two depending 
upon the location of the failed node, and restructuring is  
carried out creating a traction free surface and then analysis 
is carried on the same load and checked for further fracture. 
This process is repeated up to the desired cycles of 
iterations. The stresses, factor of safety with progression of 
fracture and failure path are computed with this simulation. 
A complete flow chat of the numerical procedure is shown 

in Fig. 5. 

4. RESULT AND DISCUSSION 

In this numerical procedure, both displacement fields and 
stress fields are computed in partially saturated soil slope 
condition with and without vegetation. The numerical 
computation has been carried out under pseudo-static 
seismic condition of coefficient 0.1*g. Numerical analysis 
can account for the correct reproduction of the stress 
distribution between root and surroundings soil. Weights of 
the building structures are taken as 100 kN/m2. Useful 
conclusions of soil-root interaction effect can be drawn 
from Table 2 and 3. Table 2, shows the comparison of FS 
for LEM and FEM, and Table 3 shows, changes on stability 
factor of slope with respect to RAR if other variables 
remain constant. Table 3 indicates that stability factor first 
increases with RAR, after attaining certain stability factor 
further increment of RAR within certain limit does not 
strengthen stability factor. Maturity period of root has 
expected influences on the RAR and hence the stability 
factor of the soil slopes.  
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The simulation result for the slope clearly indicates that 

the stresses are very high near the mid part of the domain as 
shown in Fig. 6. Thus, a high degree of stress anisotropy 
existed along the slope geometry. This stress anisotropy 
probably caused considerable displacement. This highly 
anisotropic stress condition and the large displacements are 
believed to have great influence on the stability of the slope 
geometry as shown in Fig. 6(a) to Fig. 6(c). In particular, 
the simulation results obtained from such analysis may 
provide valuable input for predicting the potential 
progressive development of failure which may ultimately 
lead to failure. As shown in displacement contours in Fig. 
7(a) to Fig. 7(c), lateral displacement mainly appears at the 
slope surface. The maximum lateral displacement appears 
at the foot of the slope where the contours are denser. There 
is obvious change in lateral displacement incorporating 
with vegetation cover. Vertical displacement distributes 
widely and the maximal value appears at the top of the 
slope. The magnitude of horizontal displacement is the 
important measurement of slope stability analysis. The 
decrease in horizontal displacement corresponding to the 
increase in slope stability. One notable characteristic of 
lateral and vertical displacement is that gradient variation of 
displacement occurs directly at the superficial layer of slope 
and the visible slope is prone to superficial layer failure. 
Visualization of the failure mechanism can be 
accomplished through a combination of both total 
displacement contours and deformed outline of boundaries. 
The maximal lateral and vertical displacement appear at the 
foot and the top of the slope respectively. One of notable 
characteristics in these two displacements is that the change 
region of displacement is mainly at the superficial layer, 
and not at the deep layer. 
 
 
 
 
 
 
 
 
 
 
 

     
 
 
 
 
 
The effect of reinforcement on the slope is not only in 

the FS, but also in displacement; pore-pressure; stress level, 
and so on. The reinforcement reduces displacement, pore 
pressure, and stress level while it increases the FS. The 
FEM method with the elastic-plastic constitutive model can 

analyze all these factors. Synthesis of all these factors 
shows that the effect of reinforcement in natural slopes is 
obvious.  

The numerical analysis of natural slope has demonstrated 
that if reliable, good quality input data are available, 
valuable analysis of stresses and displacements as well as 
evaluation of possible slope failure can be achieved. In 
particular, the simulation results obtained from such 
analysis may provide valuable input for predicting the 
potential progressive development of failure which may 
ultimately lead to failure.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

5. CONCLUSION 

A new numerical scheme in Finite element method (FEM) 
along with Mesh free method (MFM) and suitable 
convergence criteria is implemented to simulate the 
progressive nature of failure in soil-root matrix continuum. 
With the consideration of homogenizing approach, the 
complex behavior of soil-root interaction can reliably be 
captured of any natural slopes. In this numerical scheme, 
both displacement fields and stress fields of each failure 
stages are computed in partially saturated soil slope 
condition with and without vegetation cover. 
Root-reinforcement effect has significant role in modifying 
stress anisotropy and displacement behavior of the slope. 
We estimated the value of FS in between 1.20 and 1.35 on 
the basis of different possible RAR. We also compared the 
results with LEM for the preliminary judgment of the result. 
Result shows that stability factor first increases with RAR, 
after attaining certain stability factor further increment of 
RAR within certain limit does not impart on stability factor 
of slopes. After certain RAR say more than 0.5%, there is 
no any change on stability factor. Results show that 
vegetation has significant influences on safety factor in 
certain effective RAR-range, which further illustrates the 
potential applications of soil-bioengineering techniques in 
slopes or the necessities of vegetation cover in slopes; 
however, it requires more realistic model parameters and 
boundary conditions to perform more relevant simulations. 
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