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ABSTRACT: The application of multi-sensor systems for the monitoring of machining processes is becoming more 
commonplace to improve productivity, automation and reliability. In order to enhance knowledge in this area of 
applications, this study proposes a novel approach for the continuous on-line condition monitoring of grinding 
operation using low cost infrared and visual imager alongside with more commonly used sensors i.e. AE sensor, 
accelerometer and dynamometer. To achieve this aim a multi-sensor system is developed and installed for the 
monitoring of grinding operation. The signals acquired and analyzed by the system include visual, thermal, force, 
vibration and AE under different grinding conditions. Image processing techniques are used to establish that an 
increase in sparks within grinding zone results in rise of grinding zone temperature, which in turn results in 
increased surface roughness. Signal processing techniques are used to establish that dressing of wheel is most 
influential factor for surface roughness of workpiece. Artificial intelligence is then used successfully on both 
infrared and visual data to establish an automated continuous on-line monitoring system for grinding operation with 
an accuracy of 95 percent. 
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1. INTRODUCTION 
 

Grinding is a high specific energy finishing 
machining operation that is widely used in 
manufacturing of components, which requires good 
surface, dimensional and geometrical quality [1]. Due 
to this, according to [2], grinding operation is used in 
precision machining when surface roughness and/or 
geometric tolerances cannot be met by traditional 
cutting operations. Due to this grinding process is, 
usually, one of the last steps in a machining 
operations chain. When the workpiece reaches this 
point, it has high aggregated value, which makes a 
possible rejection very expensive. Owing to shortage 
of skilled operators in recent years, the need for 
automation of the grinding process has been rapidly 
increasing. Therefore, in order to establish an 
unmanned grinding process, it is necessary to 
develop a reliable monitoring system that can 
supervise the process and detect abnormalities [3]. In 
the absence of human operators, sensors must have 
the ability to recognize process abnormalities and 
initiate corrective action. There are various signals, 
which correlate, to the condition of the process and 
they are the subject of different sensing and 
processing techniques. Each of these signals is able to 
provide a feature related to the phenomenon of 
interest although at varying reliability.  

So in order to collect maximum amount of 
information about the state of the process from 

number of different sensors i.e. sensor fusion is the 
best solution. To introduce such an idea into practice 
an intelligent sensing system embodying strategies 
for sensor fusion should be implemented. [4-6].  
However, compared to other machining techniques, 
in grinding it is difficult to obtain not only the 
repeatability under the same machining conditions 
but also relationship among complex parameters [7]. 
Therefore nowadays a new focus of research on 
sensors is on Sensor Fusion i.e. using multi-sensors 
concurrently to monitor a machining process [8].  
The aim of the study is to develop an automated on-
line condition monitoring system for a grinding 
process. To accomplish this aim, this study uses 
sensor fusion of visual and infrared data alongside 
with other commonly used sensors such as acoustic 
emission, accelerometer, and dynamometer and then 
artificial intelligence is applied onto thermal and 
visual data. 

 
2. MATERIALS AND METHOD 
 

The experimental study involves analysis of the 
dynamic state of the grinding operations with varying 
machining parameters. During the experiment both 
thermal and visual images of grinding operation are 
captured, various other signals such as grinding force, 
grinding temperature, grinding zone sparks, vibration, 
ultrasonic emission and acoustic emission have also 
been used for monitoring the grinding process.  
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Grinding forces, which are developed between the 
grinding wheel and the workpiece due to grinding 
action [9], are one of the most important parameter in 
evaluating the whole process of grinding.  Since, 
knowledge of the cutting forces is important as they 
have a direct influence on the generation of heat, and 
thus on tool wear, quality of machined surface and 
accuracy of the workpiece. Force dynamometers have 
been used widely in measuring grinding force cutting 
forces [10].   

Oscillations of cutting forces lead to the 
vibrations of the machine structure, these vibrations 
keep changing due to gradual tool wear. A complete 
assessment of exposure to such vibration requires the 
measurement of acceleration in well-defined 
directions, frequencies and duration of exposure; this 
can be achieved using piezoelectric accelerometer 
that actually produces an electrical signal, where the 
size of this signal is proportional to the acceleration 
applied to it [11]. It also fulfills the requirements 
because of the tough environmental conditions in the 
machine tool in terms of splash protection, moisture 
proofing, and resistance to aggressive media and 
resistance to flying chips. 

In recent years, the use of acoustic emission 
signals for evaluating the behavior of cutting 
processes and the quality of machined workpieces is 
increasing [12]. The AE generated during a grinding 
process has been proven to contain information 
strongly related to the condition changes in the 
grinding zone [13]. According to [14], frequency 
range of AE sensor goes from 50KHz to up to 
1000KHz, which is above the range of many noises 
coming from sources outside of the grinding process. 
In this study, an acoustic emission sensor from 
Holroyd of 92 KHz frequency is used. It is fitted at 
the head of the surface grinder so that it distance 
from cutting zone always remain constant, as 
according to [15] an acoustic emission transducer, 
which is attached close to the contact area, is ideally 
suitable to examine the grinding process. 

This study proposes a novel approach for the 
continuous on-line condition monitoring of grinding 
operation using low cost infrared and visual imagers, 
as shown in Fig. 1 and to compare their performance 
against other traditionally used sensors mentioned 
above i.e. force dynamometer, accelerometer and AE 
sensor for condition monitoring of grinding operation. 
For this purpose, a low resolution and hence 
economical 16x16 IRISYS IRI 1002 thermal imager 
has been used alongside Logitech web cam, which is 
a standard monochrome camera. Low resolution 
thermal imager of 16x16 is used as it is significantly 
economical in comparison to that of a high-resolution 
128x128 thermal imager. Whereas, web cam is used 
as very high resolution images are not required. 

 
Fig.1 Thermal imager & Web cam set-up 

 
The experiments are performed on a flat surface 

grinder with a grinding wheel 38 A60 KVBE having 
a diameter of 180mm and thickness of 13mm.  

The dimensions of mild steel workpieces used are 
length= 250mm, width=120mm and 
thickness=12.7mm. Whereas, grinding wheel speed 
and feed rate are kept as 2880 rpm and 8 m/min 
respectively. Series of grinding conditions used in 
experiments are shown in Table 1. Variables used 
during series of grinding tests are as follows: 
• Coolant: Water soluble oil (100%, 50%, 0% i.e. 

dry cutting) 
• Dressing: Normal, Dull. 
• Depth of cut (d.o.c): Normal =15 micron, High = 

25 micron. 
 
Table 1 Grinding tests carried out during experiment 

Test 
Number 

d.o.c 
(micron) 

Dressing Coolant 

1 15 Normal 100% 
2 15 Dull 100% 
3 15 Normal 50% 
4 15 Dull 50% 
5 25 Normal 100% 
6 25 Normal 50% 
7 25 Dull 100% 
8 25 Dull 50% 
9 15 Normal 0% 
10 15 Dull 0% 
11 25 Normal 0% 
12 25 Dull 0% 

 
In order to facilitate acquisition of machining 

process data, a multi sensor system as shown in Fig.2 
is developed and all the signals are monitored using a 
National Instruments NI- 6070E data acquisition card. 
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Fig.2 Schematic diagram of experimental set-up 
 
2.1 Image Processing 
 

The image processing methods used in this study 
are: 
 
2.1.1 Binary Thresholding 
 

In binary thresholding, pixels above background 
are also set to fixed pixel brightness; thus, all pixels 
are replaced by one of two values which can be 
represented by 0s and 1s (black and white 
respectively). 
 
2.1.2 Image processing 
 

Image Processing involves subtraction of datum 
image (in this case one with no sparks in grinding 
zone) from any given image for which numbers of 
sparks are to be determined, as shown in Fig. 3. 
Mathematically, it can be expressed through Eq (1).  
 
𝑔𝑔′(𝑥𝑥,𝑦𝑦) = 𝑓𝑓(𝑥𝑥, 𝑦𝑦)− 𝑔𝑔(𝑥𝑥, 𝑦𝑦)           (1) 
 
𝑔𝑔′(𝑥𝑥,𝑦𝑦)= Resulting image containing sparks only 
𝑓𝑓(𝑥𝑥,𝑦𝑦)= Given image for which number of sparks to 
be determined 
𝑔𝑔(𝑥𝑥, 𝑦𝑦) = Datum image i.e. one with no sparks 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

 
 

Fig.3 Thresholding analysis 
 
2.2 Signal processing 
 

Fast Fourier Transformation reduces the number 
of computations required to make transformation 
from time domain to frequency domain. 

 
𝑋𝑋[𝑘𝑘] = ∑ 𝑥𝑥[𝑛𝑛]𝑊𝑊𝑛𝑛

𝑛𝑛𝑛𝑛𝑁𝑁−1
𝑛𝑛=0 ,             (2) 

where 𝑊𝑊𝑛𝑛 = 𝑒𝑒−𝑗𝑗2𝜋𝜋/𝑁𝑁 for 𝑘𝑘 = 0,1,2,3,4, … … ,𝑁𝑁 − 1 



International Journal of GEOMATE, Feb., 2017, Vol. 12, Issue 30, pp. 11 - 18 

14 
 

3. RESULTS AND DISCUSSION 
 

3.1 Relationship between sparks in grinding zone 
& grinding zone temperature 

 
Binary thresholding is used to determine the area 

of sparks, whereas grinding zone temperature is 
determined using thermal imager, Fig. 4 shows 
graphical comparison between spark’ in grinding 
zone and grinding zone temperature. 

It can be seen from Fig. 4 that there is a high 
degree of correlation between grinding zone 
temperature and spark’s area because as the number 
of sparks increases, grinding zone temperature also 
rises, therefore number of sparks or spark’s area can 
be considered to be a good representative of the 
grinding zone temperature, and hence useful for 
process monitoring purposes. 

 

 
Fig. 4 Graphical comparison between spark’s area in 

grinding zone & grinding zone temperature 
 

3.2 Surface roughness measurement 
 

Surface roughness is a widely used index of 
product quality and in most cases a technical 
requirement for mechanical products. Achieving the 
desired surface quality is of great importance for the 
functional behavior of a part [16]. Surface roughness 
measurement is done using standard stylus method to 
determine relation between surface roughness & 
grinding troubles such as grinding burn and chatter 
vibration. Fig. 5 shows different states of grinding 
with their respective surface roughness graphs. 

It can be seen from Fig. 5 that an increase in 
surface roughness results in occurrence of grinding 
troubles i.e. grinding burn and chatter vibration. 

 
 
 

 
 

 
 
 
 
 
 
 

(a) Normal Grinding 
 

 
 
 
 
 
 
 
 

 
 

 
 

(b) Grinding Burn State 
 
 
 
 
 
 
 
 
 
 

 
 

 
(c) Chatter Vibration State 

 
Fig. 5 Relation between surface roughness and 

grinding troubles 
 
3.3 Relationship between grinding zone 

temperature and surface roughness 
 

It can be seen from Fig. 6 that there is a high 
degree of correlation between grinding zone 
temperature and surface roughness as an increase in 
grinding zone temperature also causes an increase in 
surface roughness. Therefore, it can be said that 
sparks in grinding zone, grinding zone temperature 
and surface roughness are all directly proportional to 
each other. 
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Fig. 6 Graphical comparison between Grinding zone 

temperature & surface roughness 
 

3.4 FFT analysis on cutting force in z-direction 
 

It is evident from Fig. 7 that there is a high degree 
of correlation between surface roughness and cutting 
force ‘Fz’ and both are directly proportional to each 
other.  

 
Fig. 7 Graphical comparison between cutting 
force 'Fz' and surface roughness 
 

3.5 Image subtractions on infrared images 
 

In image subtraction, a thermal image with no 
sparks is taken as datum image and is subtracted 
from a faulty grinding case image containing 
sparks. It can be seen from Fig. 8 that image 
subtraction on thermal images can be used not 
only to predict sparks within grinding zone but 
also to find out state of the workpiece and 
grinding wheel, which in turn influences surface 
roughness.

 

 

Fig. 8 Image subtraction on thermal images 
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Therefore, cutting force ‘Fz’ can be considered 
to be a good representative of workpiece surface 
roughness, and hence a useful parameter for grinding 
process monitoring purposes, as it can be used to 
distinguish between normal and faulty grinding i.e. 
grinding troubles such as grinding burn and chatter 
vibration. 

 
3.6 Application of Artificial intelligence 
 

In this study Back propagation and Radial basis 
neural networks are applied successfully on both 
visual and thermal images to differentiate between 
normal and faulty grinding conditions and therefore 
can be used reliably for automated condition 
monitoring of grinding process. 
 
3.7 Back propagation neural network on visual 

images 
It can be seen from Fig.  9, that back propagation 

neural network has been able to differentiate between 
normal and faulty conditions with 95% accuracy, 
which is very efficient and can therefore be used 
reliably for condition monitoring of grinding process. 

 
 
 

 

3.8 Radial basis neural network on thermal 
images 
It can be seen from Fig. 10, that radial basis 

neural network has performed very well as it has been 
able to distinguish between normal and faulty 
grinding conditions with almost 100% accuracy. It 
can also be noted that for faulty grinding conditions, 
the predicted values from network are between 0.1 & 
0.2, which are still very good indicator of faulty 
conditions. 

 
4. CONCLUSIONS 
 

The aim of this study i.e. the development of an 
automated on-line condition monitoring system for a 
grinding process using infrared and web cam 
alongside with commonly used sensors is achieved, 
as the processing techniques used in this study can 
reliably distinguish between normal and faulty 
grinding conditions, also artificial intelligence is 
applied successfully on both thermal and visual 
images. Finally, the set of parameters that are thought 
to influence surface roughness and thus affect 
workpiece properties such as grinding burn and 
chatter vibration are diagrammatically displayed in 
Fig. 11. 

 

 
Fig. 9 Successful application of Back propagation neural network on visual images 
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Fig. 10 Successful application of Radial basis neural network on thermal images 
 

 
 

Fig. 11 Fishbone diagram with parameters that affects surface roughness
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