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ABSTRACT: Hydraulic properties such as water retention properties and permeability, which are macro 
characteristics of porous media, are determined in a bottom-up manner by pore properties including pore shape, 
pore-size distribution, and pore connectivity. Hydraulic properties could be reproduced from local physical 
phenomena such as capillarity in the pores using a pore-network model. Spatial distribution of pores could affect 
these hydraulic properties. In this research, global and local Moran’s indexes, which are spatial statistics, are 
used to analyze the spatial distribution of pores in porous media packed with both single-size and various-size 
grains, to find the global spatial autocorrelation in the pore distribution. The obtained results show that 
regardless of the grain-size distribution, almost all the global Moran’s indexes are just below 0.5, which indicates 
there are some clusters with respect to the pore-size distribution. From the local Moran’s indexes, it was found 
that the numbers of significant PBs in HH category at the 5% statistically significant level are obviously higher 
than LH, LL and HL regions, which indicates that large PBs tend to distribute around large PBs. All of these 
imply that hydraulic properties of porous media could be affected by the spatial structure of pores.
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1. INTRODUCTION

It is well known that soil water relations are an
important aspect of the soil environment of the plant.
The hydraulic properties of soils such as water
retention properties and permeability, which are
macro characteristics of porous media, play an
important central role in determining the movement
and storage of water in soil and thus have a large
influence on crop growth.

2. RESEARCH SIGNIFICANCE

Soil water retention and transport properties are
altered in response to changes in pore properties
including pore shape, pore-size distribution, and pore
connectivity [1]. Pore-network models could be
utilized to reproduce the hydraulic properties from
local physical phenomena such as capillarity in the
pores [2,3]. It was presented that the water retention
property of the original pore-network model extracted
from a porous medium model is different from that of
pore-network models generated randomly based on
the same pore-size distribution, which suggests that
pores have a certain spatial structure in the porous
medium [4].

In this research, we used the spatial statistics
called global and local Moran’s indexes [5] to
analyze the spatial pore-size distribution of porous
media packed with both single-size and various-size
grains, to find the global spatial autocorrelation in the

pore distribution.

3. SPATIAL AUTOCORRELATION

Spatial autocorrelation can be defined in the
phenomenon that occurs when the spatial distribution
of the variable of interest exhibits a systematic
pattern. Moran’s I statistics are one of the statistical
and computational methods for examining spatial
autocorrelation on a network, that is, the correlation
between attribute values of the same kind at different
locations on a network or on different subnetworks
(including line segments and links) forming the
network [6]. Moran’s I statistics include two types:
global Moran’s I statistic and local Moran’s I
statistic. The former shows the average level of
spatial autocorrelation over the whole network; the
latter examines the correlation between the attribute
value of a specific network point and those of its
surrounding network points.

3.1 Global spatial autocorrelation

The global Moran’s I statistic on a network,
network global Moran’s I statistic, is used for global
spatial autocorrelation, which is defined as:
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where n is the number of the data, ix is the attribute
value that denotes the value taken on by the variable
x of interest at location i and x denotes the mean of
these values, which is defined as follows:

1

1 n

i
i

x x
n 

  , (2)

2m and 0S are defined as:

 
2

2
1

1 n

i
i

m x x
n 

  , (3)

0
1 1

n n

ij
i j

S w
 

 . (4)

In the present study, ix is the diameter of the pore
body (PB) whose index is i , and n is the number of
all PBs in the interest pore-network.

Spatial autocorrelation statistics deal with the
correlation between nearby attribute values. ijw
denotes the elements of the spatial weights matrix
W corresponding to the location pair ( , )i j and can
formalize the nearness mathematically. In this
research, 1ijw  if network points are adjacent;
otherwise, 0ijw  .

When I is positive, it suggests a positive
autocorrelation; when I is negative, it suggests a
negative autocorrelation. Statistical test is based on

IZ values, computed by subtracting [ ]E I from I
and dividing it by the standard deviation of I , which
is given by:
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The expected value and variance of I under the
null hypothesis of the normal variate spatial
randomness are derived as:
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3.2 Local Spatial Autocorrelation

The local Moran’s I statistic can examine the
correlation between the attribute value of a specific
network point and those of its surrounding network
points, which is defined as follows:
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This equation can express both the deviation from
the average of the point’s own value and that of the
surrounding points’. That means, LI is positive when
both of them are greater than or less than the average,
and LI is negative if either one is greater or smaller
than the average.

In terms of the network global Moran’s I statistic,
this equation is written as:
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This equation shows that the global Moran’s I
statistic is proportional to the average of network
local Moran’s I statistics over all network points.

The same as those of the global Moran’s I
statistic, the expected value and variance of LI under
the null hypothesis of no global spatial
autocorrelation, which can be utilized for identifying
statistically significant points, are derived as:
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3.3 Moran Scatter Plot

Spatial distribution of the attribute values can be 
visualized through classification by the scatter plot 
with the original attribute values on the horizontal 
axis and the surrounding values on the vertical axis 
[7].

In the Moran scatter plot, the attribute values are 
divided into four quadrants, each of which represents 
a different kind of spatial association: Spatial 
categories in the upper right (HH, high-high) and 
lower left (LL, low-low) quadrants, and spatial 
categories in the lower right (HL, high-low) and 
upper left (LH, low-high) quadrants.

4. NUMERICAL EXPERIMENTS

4.1 Pore-network Models

Pore-network models extracted from porous
media are utilized to conduct the numerical
experiments in this research. The virtual porous
media are prepared by using the discrete element
method, which are composed of various kinds of
spherical grains packed randomly in the cubic
containers. The method used for pore network
extraction is known as the watershed segmentation
algorithm, which has been popular these days due to
the effectiveness in working with porous media
images of any porosity and its easier implementation
[8,9]. In this research, we put SNOW algorithm [10],
an efficient algorithm for extracting networks using
only standard image analysis techniques, into
implementation. Details on network extraction using
this method can be found in [10].

A pore-network consists of pore bodies (PBs) and
pore throats (PTs). PBs are relatively large, however,
PTs that connect two PBs are relatively small. To
make networks sufficiently large that exceed the
representative element volume (REV), we tried
packing spherical grains from 1000 to 7000 and
extracted the pore networks under the conditions of
the voxels from 2003 to 7003. By observing
histograms of the frequency distributions of pore
sizes and coordinate number, the number of PTs that
a single PB connects, we find that when the number
of grains is larger than 2000 and the voxels exceed
5003, packed porous media and the extracted
networks are sufficiently large and resolved for
numerical experiments.

In this research we packed porous media withfour 
grain size distributions (A-D) and three different 
samples were made in each grain size distribution: 
Sample A1-3 are packed with single-size spherical 
grains; the others are packed with uniformly 
distributed spherical grains. The numbers of grains all 
exceed 3000, and we choose voxels of 6003 to get 
more delicate models. The sample holders (mm) of 
them are A-44.13, B-32.63, C-45.13 and D-48.13.

Table 1 shows the properties of packed porous
media and the extracted pore networks. Figure 1
shows the virtual porous media and pore-networks of
A1 and D1. The former is packed with single-size
spherical grains, and the latter is packed with
uniformly distributed spherical grains. To eliminate
the influence of boundary PBs and PTs, which tend to
be irregalarly large, we make the frequency
distributions of pore-sizes and coordinate number of
the internal pores. Figure 2 shows those frequency
distributions of D1-3 as an example, and it was
confirmed that similar pore-size and coordinate
number distributions were obtained from different
grain-packing in the cubic container. Moreover, the
following numerical experiments are all applied on
the internal pore-network models.

Table 1 Properties of porous media and pore-
networks

N
A
M
E

Size of
grains
(mm)

No.
of

grains

No.
of

PB-internal/
PB-all

No.
of

PT-internal/
PT-all

A1 3 3615 9720/11441 34255/35976
A2 3 3603 9693/11450 33893/35650
A3 3 3619 9753/11551 34256/36054

B1 1.77-
2.57 3728 9765/11530 33956/35721

B2 1.77-
2.57 3725 9749/11484 34111/35864

B3 1.77-
2.57 3714 9663/11422 33727/35486

C1 2-4 3557 9280/11054 32103/33727
C2 2-4 3525 9204/10907 31592/33293
C3 2-4 3549 9336/11000 32009/33823
D1 1-5 3342 7949/9417 27468/28652
D2 1-5 3301 7787/9304 26782/28299
D3 1-5 3311 7857/9505 27092/29024
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(a) Packed grains of A1 (b) Pore-network of A1

(c) Packed grains of D1 (d) Pore-network of D1

Fig. 1 Virtual porous media and pore-networks (A1, D1)

(a) Coordinate number (-) (b) Pore body radius (0.1mm)

(c) Pore throat length (0.1mm) (d) Pore throat radius (0.1mm)

Fig. 2 Frequency of coordinate number and pore-sizes (D1-3, Internal)
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4.2 Results

The Global Moran’s I of internal pore-network
models are shown in Table 2 as well as the Z-score
and P-value of them. When the results of I
distribute almost 0, it indicates the normal variate
spatial randomness and shows that pore-size
distributions are random ones and that those has no
global spatial autocorrelation. When there are some
clusters with respect to the pore-size, the value
increases upto 1 depending on the cluster size.

The Global Moran’s I of A1-3, B1-3, C1-3, and
D1-3 shows relatively large spatial autocorrelations,
and the null hypothesis that there is no spatial

autocorrelation was rejected at a significant level of
1%, which indicates that there are some clusters of
larger or smaller PBs in the porous media.

Regarding local Moran’s I , the numbers of
significant PBs at the 5% statistically significant level
in each category are shown in Table 2. Figure 3
denotes the Moran scatter plots of A1, B1, C1 and D1;
Figure 4 shows the spatial distributions of categories
for both all PBs and significant PBs of A1 and D1.

As we can see in Fig. 3, the numbers of
statistically significant PBs in HH region are
obviously higher than LH, LL and HL, and the
numbers of significant PBs in LL and HL regions are
extremely small, which indicates that large PBs tend
to distribute around large PBs.

(a) A1 (b) B1

(c) C1 (d) D1

Fig. 3 Moran scatter plot
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Table 2 Global Moran’s I and number of significant/all PBs-Internal in each category

Pore-networks Global Moran Local Moran
I Z-score P-value HH LH LL HL

A1 0.473 29.77 Neary 0 996/2677 104/2379 11/3563 1/1101
A2 0.488 30.57 Neary 0 920/2700 91/2346 2/3566 2/1081
A3 0.482 30.30 Neary 0 942/2807 89/2321 4/3501 0/1124
B1 0.498 31.57 Neary 0 1058/2706 107/2311 12/3624 6/1124
B2 0.489 30.89 Neary 0 1030/2744 105/2250 7/3632 2/1123
B3 0.495 31.18 Neary 0 1022/2769 91/2250 31/3601 2/1043
C1 0.474 29.32 Neary 0 999/2642 88/2159 12/3411 1/1068
C2 0.474 29.22 Neary 0 1055/2640 110/2067 7/3482 3/1015
C3 0.506 31.45 Neary 0 967/2551 81/2031 6/3696 1/1058
D1 0.483 27.69 Neary 0 877/2351 119/1976 10/2832 1/790
D2 0.494 28.09 Neary 0 808/2277 111/1799 10/2975 2/736
D3 0.478 27.31 Neary 0 844/2301 110/1830 16/2940 0/786

(a) All PBs - A1 (b) Significant PBs - A1

(c)All PBs - D1 (d) Significant PBs - D1

Fig. 4 Spatial distributions of categories for PB-Internal
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5. CONCLUSIONS

In this research, global and local Moran’s indexes,
which are spatial statistics, are used to analyze the
spatial distribution of porous media packed with both
single-size and various-size grains. The obtained
results of the spatial statistics show that there is a
spatial autocorrelation in the pore distribution, both in
the porous media packed with single-size spherical
grains and uniformly distributed spherical grains. In
addition, the numbers of significant PBs at the 5%
statistically significant level that distributed in HH
category are obviously higher than LH, LL and HL
regions, which indicates that large PBs tend to
distribute around large PBs. All of these imply that
hydraulic properties of porous media could be
affected by the spatial structure of pores.
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