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ABSTRACT: Fiber reinforced polymer rods fabricated from unidirectional fibers and a polymer matrix 

strengthen effectively reinforced concrete structures, such as the use in near-surface mounted systems. This 

study focused on aramid fiber reinforced polymer (AFRP) and analytically assessed the shear-lag effect that 

significantly affects the tensile capacity of the rod. A representative volume element model was employed for 

predicting the transversely isotropic properties of AFRP rods. In addition, a finite element simulation for the 

tension test model was performed to assess the shear-lag effect of an AFRP rod with various diameters. The 

study proposed a procedure for calculating the stress distribution in any cross-section of a fiber reinforced 

polymer rod. The simulation results agreed well with the previous experimental study. The findings clearly 

indicated the position of the failure section and the unequal tensile stress distribution in it. The study revealed 

that the shear-lag effect varied by the rod diameter affects the stress distribution at the failure section and the 

tensile capacity. The paper shows that the ultimate tensile capacity of any pultruded FRP rod can be predicted 

by the proposed method. 
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1. INTRODUCTION

Fiber reinforced polymer (FRP) materials have 

been widely used in various engineering 

applications. The FRPs are combinations of 

different fiber types (e.g., carbon, glass, aramid, or 

basalt) with matrix materials such as epoxies or 

vinylesters. One of the significant features of the 

FRPs is high tensile strength. In reinforced concrete 

applications, three common shapes of the FRPs 

offered by manufacturers are sheets, cables 

(tendons), and rods [1]. The study particularly 

focuses on the tensile properties of the FRP rods 

made of fibers and a matrix by the pultrusion 

method.  

The mechanical properties of FRP rods depend 

upon the characteristics of their constituent 

components, i.e., matrices and fibers. The rod 

dimensions should be considered for assessing the 

tensile capacity of FRP rods in addition to the other 

influencing factors such as fiber type, matrix, 

temperature, and environment. The tensile strengths 

of the FRP rods containing a similar fiber volume 

fraction were significantly decreased with 

increasing the rod diameter [2–5]. Some studies 

reported that the phenomenon was caused by the 

shear-lag effect [6,7], as shown in Fig.1. The shear-

lag effect of composites materials implies the stress 

transfer between fibers and a matrix, or in laminate 

composites. The definition of “shear-lag effect” in 

this paper is only utilized to analyze unequal stress 

distribution in the cross-sections of the FRP rods 

pulled out of filling materials (mortar and resin) in 

near-surface mounted systems. The shear-lag effect 

is available in all kinds of pultruded FRP rods 

(glass, basalt, carbon, and aramid FRPs). The axial 

tensile stress is higher at the lateral surface and 

lower at the core of FRP rods. The shear stiffness 

plays a key role in the stress transfer. Many 

researchers also mentioned the shear-lag effect in 

their studies on the bond performance of FRP rods 

[8–12]. However, a reasonable procedure for 

predicting the axial tensile stress distribution in the 

cross-section has not been proposed yet. In addition, 

it is unclear how the transversely isotropic 

properties of FRP rods and such fibers (aramid and 

carbon) are collected and evaluated. Consequently, 

the behavior of FRP rods in the tensile models has 

been limited.  

To quantify the shear-lag effect in detail, the 

present study employed two three-dimensional (3D) 

models. The models were representative volume 

element (RVE) and analysis models to predict 

Fig.1 Shear-lag effect [7] 
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mechanical properties and reveal the axial tensile 

stress distribution in the FRP rod, respectively. In 

addition, a technique called the sub-modeling 

method was used to enhance the accuracy of the 

results. The models in this study required the 

detailing mechanical properties of the fibers, 

matrix, and fiber volume fraction. The effect of 

transversely isotropic properties of fibers on the 

stiffness of FRP rods was considered. However, 

most of such information is the secret of 

manufacturers. The relevant information for this 

study was obtained from the previous investigation 

on aramid fiber reinforced polymer (AFRP) rods of 

3-8 mm diameter under room temperature [5], 

which were made of aramid fibers and a vinylester 

resin. Hence, the present study mainly discussed the 

shear-lag effect of AFRP rods based on numerical 

simulations. 

2. METHODOLOGY

2.1 Materials 

The properties of FRP rods depend on the 

quality of constituting materials, fiber orientation, 

and volume fraction. Fig.2 shows the tensile 

properties of fibers, a matrix, and their composition. 

The tensile strengths of the fibers are significantly 

higher than that of the matrix. However, the 

ultimate tensile strain of the matrix is much higher 

than that of the fibers. The failure strain of an FRP 

composite is assumed to be the fiber ultimate strain. 

This study focused on AFRP rods made of 

unidirectional fibers and a matrix by the pultrusion 

method. Both AFRP rods and aramid fibers exhibit 

transversely isotropic properties. Engineering 

elastic constants include Young’s moduli (E1, E2= 

E3), shear moduli (G12= G13, G23), and Poisson’s 

ratios (12=13, 21=31, 23 32). The transversely 

isotropic material follows restrictions on 

engineering constants in Eq. (1). 

𝑖𝑗

𝐸𝑖
=

𝑗𝑖

𝐸𝑗

0 < 𝑖𝑗 < √
𝐸𝑖

𝐸𝑗
;  𝑖, 𝑗 = 1. . .3; 𝑖 ≠ 𝑗 

 = 1 − 1221 − 2332−3113 − 2213213 > 0

(1) 

Most of the material properties were collected 

from the study of Noritake et al. [5]. The 

information was listed in Table 1. However, 

Technora, a type of aramid fiber, is a transversely 

isotropic material. It requires more engineering 

constants to define the mechanical properties. The 

testing on a single fiber is a challenge because of the 

micro diameter. The transverse modulus E2 was 

assumed from a transversely compressive test on 

the single Technora fiber [14]. Kalantar et al. [15] 

showed a nominal literature value of Poisson’s ratio 

12=0.35. However, this value is not appropriate in 

consideration of the significant difference between 

tensile stiffnesses in directions of 1 and 2. The shear 

modulus G12 and Poisson’s ratios (12 and 23) were 

estimated from another aramid fiber Kevlar KM2 

[16] having approximate material constants. The 

shear modulus G23 was calculated from the 

relationship G23=E2/(1+23). 

2.2 Numerical Model 

2.2.1 RVE model 

FRPs are heterogeneous materials requiring 

many complicating tests to find all engineering 

elastic constants. A simple rule is to consider 

heterogeneous materials as homogeneous materials 

with approximate properties. This technique is 

called the homogeneous method using 

micromechanics models. Barbero [17] indicated 

advances in numerical homogenization using a 3D-

FE model to estimate all engineering elastic 

constants. The effectiveness of the RVE model was 

confirmed in a previous study[18]. Fig.3 shows a 

hexagonal-microstructure RVE model employed in 

the present study. The model has transversely 

isotropic properties. Three parameters (2a1, 2a2, 

2a3) indicate the dimensions in a 3D space. The 

fiber direction aligns with the 1-axis. The 

relationship of three parameters is shown in Eq. (2) 

[17]. 

𝑎1 = 𝑎2 4⁄

𝑎3 = 𝑎2𝑡𝑎𝑛(600)

𝑉𝑓 =
𝑑𝑓

2 2⁄

2𝑎22𝑎3

(2) 

where Vf and df are the volume fraction and 

diameter of the fiber, respectively.

Fig.2 Stress-strain relationships of fibrous 

reinforcement and matrix [13] 
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Eq. (3) [17] indicates the relationship between 

the average stress ̅ and strain ̅ of the RVE

model. Values are calculated over the total volume 

of the RVE model. The coefficients (,  = 1− 6) 

are contracted notations to indicate six following 

components of stress and strain. C is the stiffness 

tensor. 

̅ = 𝐶̅ (3) 

Luciano et al. [19] demonstrated the 

relationship between edge displacements and 

strains of the RVE model in Eq. (4). Values (ui and 

𝑖𝑗
0 ) are the applied displacement on each edge and 

applied strain of the RVE model, respectively. In 

addition, 2𝑎𝑗𝑖𝑗
0  indicates the total displacement

over length 2aj to enforce a strain 𝑖𝑗
0 . The theory

assumes the continuity inside the RVE model. It 

means that there are no voids and cracks. The 

applied strain 𝑖𝑗
0  denotes the average strain of 

volume ̅ . Equation (5) [17] shows the average 

strain in an RVE model. 

𝑢𝑖(𝑎1, 𝑥2, 𝑥3) − 𝑢𝑖(−𝑎1, 𝑥2, 𝑥3) = 2𝑎1𝑖1
0  

𝑢𝑖(𝑥1, 𝑎2, 𝑥3) − 𝑢𝑖(𝑥1, −𝑎2, 𝑥3) = 2𝑎2𝑖2
0  

𝑢𝑖(𝑥1, 𝑥2, 𝑎3) − 𝑢𝑖(𝑥1, 𝑥2, −𝑎3) = 2𝑎3𝑖3
0  

(4) 

̅𝑖𝑗 =
1

𝑉
∫ 𝑖𝑗𝑑𝑉

𝑉

= 𝑖𝑗
0 = ̅ (5) 

where coefficients (i, j = 1−3) are contracted 

notations. The relationship between i, j and ,  

follows Eq. (6) [17]: 

,  = 𝑖    if  𝑖 = 𝑗
,  = 9 − 𝑖 − 𝑗  if  𝑖 ≠ 𝑗

(6) 

By setting a unit value for the applied strain in 

Eq. (3) with  = 1−6, the RVE model is subjected to 

six components of strain. The computation is 

conducted with each of the cases. The stiffness 

tensor C can be determined from Eq. (7) [17]. 

Barbero [17] reported a numerical simulation of the 

RVE model in Fig.3 to estimate all components of 

the stiffness tensor C. In addition, this study 

showed a procedure for calculating all engineering 

constants of the transversely isotropic material via 

tensor components in Eq. (8). 

𝐶 = ̅  =
1

𝑉
∫ (𝑥1, 𝑥2, 𝑥3)𝑑𝑉

𝑉

 

with ̅=1

(7) 

The dimensions of the RVE model in the present 

study were chosen by conditions in Eq. (2) to adapt 

to a fiber volume fraction of 65% (a1=1.766, 

a2=7.065, a3=12.235). The RVE model was 

simulated using ANSYS software with the 3D solid 

element named SOLID186 defined by twenty 

nodes, as shown in Fig.3. 

𝐸1 = 𝐶11 − 2𝐶12
2 (𝐶22 + 𝐶23)⁄

𝐸2 = 𝐸3 = [𝐶11(𝐶22 + 𝐶23) − 2𝐶12
2 ] (𝐶22 − 𝐶23) (𝐶11𝐶22 − 𝐶12

2 )⁄
𝐺12 = 𝐺13 = 𝐶66

𝐺23 = 𝐶44 = (𝐶22 − 𝐶23) 2⁄

12 = 13 = 𝐶12 (𝐶22 + 𝐶23)⁄

23 = (𝐶11𝐶23 − 𝐶12
2 ) (𝐶11𝐶22 − 𝐶12

2 )⁄

(8) 

Table 1 Properties of fiber and matrix [5] 

Type 

Tensile 

strength 

(MPa) 

Tensile 

modulus 

(MPa) 

Shear modulus 
(MPa) 

Elongation 
(%) 

Diameter 

(10-3 mm) 

Volume 

fraction 

(%) 

Poisson’s 
ratio 

Technora fiber** 3500 
E1=74000 

E2=1590* 

G12=24400* 

G23=641* 
4.6 12 65 

12=0.60* 

23=0.24* 

Vinylester resin 90 3400 - - - 35 0.373 
* These values were collected from other studies explained in section 2.1 Materials. 
** The value ith=1 in moduli Ei and Poisson’s ratios ij denotes the longitudinal direction of the fiber. 

(a) (b) 

Fig.3 RVE model in ANSYS: (a) Solid model, (b) 

FE model 
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Materials in the RVE model were assumed to be 

linear. The engineering constants of the FRP rod 

computed from the RVE model were shown in 

Table 2. 

2.2.2 Analysis model 

a. Materials

Noritake et al. [5] showed that the tensile test 

was based on the bonding anchor system. The 

detailed properties of the filling material and steel 

tube were not reported. The Araldite epoxy resin 

(LY 556), with hardener HY 917 and accelerator 

DY 070 from Ciba Geigy, could be chosen as the 

filling material. De Kok et al. [20] showed the 

tensile test of epoxy LY 556 under room 

temperature (22o C), as shown in Fig.4. The 

Young’s modulus and strength of epoxy were 

evaluated from the curve. The steel tube properties 

were chosen from grade 310S products of MBM 

tubes [21]. Table 3 shows all engineering constants 

of the filling material and steel tube. Moreover, the 

transversely isotropic properties of the FRP rods (d 

= 3, 4, 6, 8 mm) were predicted in Table 2. The 

model used the y-axis as the tensile direction (the 

fiber direction). Young’s modulus E1 related to y-

axis in the input information. 

b. FE model

The numerical analysis model of a tensile test 

followed the standard ASTM D7205/D7205M−06 

(2016) [22]. However, the simulation of a full 

model costs much computation. The analysis model 

is symmetric in tension. As shown in Fig.5 (a), 

using a half model can reduce a large number of 

elements. Unfortunately, the half model still costs 

much computing time. The half model uses the y-

axis as the axis of rotational symmetry. In addition, 

the tensile load is also symmetrical. To optimize the 

computation, this study proposed a divided model 

based on the axisymmetric modeling method in 

ANSYS, as shown in Fig.5 (b). The divided model 

was split from the half model in Fig.5 (a) with an 

angle . The value of  was calculated from the 

FRP rod radius and the element size 0.025 mm in 

Fig.5 (b). The divided model was called the global 

model adapting all details of the testing system. 

The steel tube in the global model was used for 

transferring the tensile force from the applied load 

to the FRP rod. This study employed the NPS 11/4 - 

Schedule 80S tube from MBM tubes [21]. The tube 

characteristics follow American National Standard 

(ANSI B36.19 Stainless Steel Pipes), ASTM A 

312/A 312M-01a. The steel tube sizes were 

recommended in the standard [22]. In addition, the 

steel tube thickness is enough to maintain a tensile 

stress that is lower than the yielding strength. Table 

4 shows all FE model sizes of various FRP rods. 

Table 2 Results of FRP rod engineering constants 

Tensile 
modulus 

(MPa) 

Shear 
modulus 

(MPa) 

Poisson’s 

ratio 

E1 = 48806 

E2 = 2176 

G12 = 4717 

G23 = 807 

12 = 0.489 

23 = 0.349 

Table 3 Material properties in the analysis model 

Material Properties 

Epoxy LY 556 

[20] 

Young’s modulus: E=3800 (MPa) 

Poisson’s ratio: =0.37 

Tensile strength: fu = 92.2 (MPa)  

Steel pipe 

grade 310S1 1/4 

schedule 80S 

[21] 

Young’s modulus: E = 200000 (MPa) 

Poisson’s ratio:  = 0.30 

Yield strength: fy = 205 (MPa)  

Tensile strength: fu = 515 (MPa)  

Fig.4 Tensile test of epoxy LY556 at 22o C [20] 

(a) (b) 

Fig.5 Analysis model in ANSYS: (a) half 

model; (b) divided model (global model) 
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The present study indicated that the shear lag 

only affects the domain (six times dFRP of the free 

length and three times dFRP of the bond length), as 

shown in Fig.5 (b). This finding helped to reduce 

the free length in the global model. Fig.6 presents 

the boundary conditions of the global model. The 

applied displacement on the steel tube in y-direction 

causes strains and stresses in the filling material and 

the FRP rod. The study defined an unbonded 

domain (5 mm) to avoid the large deformation of 

the vinylester resin at the interface. The stress 

distribution around the anchorage was complicated. 

Hence, a technique called the sub-modeling in 

ANSYS was employed for obtaining more accurate 

results in the sensitive domain in Figs.5 and 6. The 

sub-model only simulated the FRP rod in the 

sensitive domain (with a finer mesh) sized in the 

length of six times the rod diameter in Fig.6. The 

sub-model boundary conditions were interpolated 

from the global model results in Fig.5 (b). The 

global model and sub-model used a 3D-eight node 

solid element named SOLID185 in ANSYS. The 

simulation assumed the full bonding and continuity 

among materials. 

It is well known that simulation results are often 

affected by the element size. Table 5 shows all 

element sizes in the global model and sub-model. 

The global model was meshed with G-size at the 

sensitive domain and larger sizes at the others. The 

sub-model used a more refined mesh with S-size to 

enhance accuracy. The S-size=0.025 mm denoted 

the unchanged element size in area 0.1 mm close to 

the lateral surface of the FRP rod in the sub-model, 

as shown in Fig.6. The study employed three kinds 

of G-size (0.2, 0.25, and 0.5 mm) in the global 

model and three kinds of S-size (0.05 and 0.1 mm 

at inner domain, and an unchanged value of 0.025 

mm at outer domain) in the sub-model. Six cases 

were conducted on the FRP rod (d=6 mm) to find 

the convergence value of ultimate tensile forces. 

The sub-model was considered as layers of 

elements following the radius direction. The 

averaging theory in Eq. (9) was proposed to find the 

average axial tensile stress in the y-axis in the cross-

section.  

̅𝑗
𝑦

 =
1

𝑉
∫ 𝑖

𝑦(𝑥, 𝑦, 𝑧)𝑑𝑉
𝑉

=
∑ 𝑖

𝑦
𝑖 𝑉𝑖

𝑉𝑗

(9) 

where i
y is the axial tensile stress element ith in 

layer jth; ̅𝑗
𝑦

  is the average axial tensile stress of

layer jth. For example, Fig.7 (c) presents a cross-

section of the FRP rod (d=6 mm) containing 33 

layers of elements along the radius. The maximum 

applied displacement was determined at the value 

enforcing the ultimate stress y, approximately 

2245 MPa. 

3. RESULTS AND DISCUSSION

The global model in Fig.5 (b) was applied to 

simulate four types of diameters (d = 3, 4, 6, and 8 

mm) under boundary conditions in Fig.6 and 

properties in Tables 2 and 3. The tensile stress 

distribution was presented in Fig.7. The cross-

Table 4 Sizes of the analysis model 

Diameter of FRP 

bar 

Outside diameter of the 

steel tube 

Anchor length 

(La) 

Free length 

(L) 

Thickness of epoxy 

resin 

Thickness of steel 

tubes 

(mm) (mm) (mm) (mm) (mm) (mm) 

3 

42.2 300 380 

26.5 

4.85 
4 24.5 

6 20.5 
8 16.5 

Fig.6 Boundary conditions of the analysis models 

Table 5 Element sizes and ultimate tensile force 

results 

D G-size* S-size* 
Ultimate tensile 

force 

(mm) (mm) (mm) (kN) 

6 

0.50 0.10 & 0.025 54.81 

0.50 0.05 & 0.025 52.84 

0.25 0.10 & 0.025 52.55 

0.25 0.05 & 0.025 52.55 

0.20 0.10 & 0.025 51.97 

0.20 0.05 & 0.025 51.97 
* G and S denote the global model and sub-model, respectively 
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sections at the failure element and in the free length 

were called the failure section and the free section, 

respectively, as shown in Fig.7(b). The parameter yc 

in Fig.6 denoted the cross-sectional position in the 

y-axis. The present study proposed a procedure 

following Eq. (9) for calculating the average tensile 

stress at each layer in a cross-section. For example, 

Table 6 reports the FRP rod results (d = 6 mm) at 

the failure section. The ultimate tensile force of the 

FRP rod was determined when the FRP rod was 

broken at the failure section.  

𝑃𝑢 = 𝑢
𝑟𝑜𝑑𝐴 (10) 

where Pu is the ultimate tensile force of the FRP rod. 

A and 𝑢
𝑟𝑜𝑑  are the area of the cross-section and the 

tensile strength of the FRP rod, respectively. 

Table 5 and Fig.8 present the effect of the 

element size on the ultimate tensile force. Six cases 

of various element sizes were applied to find the 

ultimate tensile forces. The tensile force value 

converges at the G-size from 0.2 to 0.25 mm. and 

S-size from 0.05 to 0.1 mm in Fig.8. The element 

size affects the number of elements and computing 

time. Hence, the appropriate G-size and S-size are 

0.25 and 0.1 mm, respectively. Four types of 

diameters were simulated with these element sizes. 

The S-size (0.025 mm) remains unchanged at the 

area close to the lateral surface of the FRP rod in all 

cases. 

3.1 Effect of Shear Lag 

The shear-lag effect was reported in Figs.7, 9, 

and 10. Fig.7 shows the axial tensile stress 

distribution in the global model of FRP rod (d=6 

mm) under a displacement uy = 2.675 mm on the 

head of the steel tube. Fig.9 shows the tensile stress 

y in three sections. In the failure section, the tensile 

stress is higher in the outer layers and lower in the 

inner ones. The stress distribution of the failure 

section in Fig.9 is similar to that in Fig.1. The 

(a) (b) 

(c) 

Fig.7 Tensile stress in y-direction of the FRP 

rod(d=6 mm): (a) around anchorage of the global 

model, (b) around the failure section of the sub-

model, and (c) in the failure section of the sub-

model 

Fig.8 Tensile forces versus element sizes of the 

FRP rod (d=6 mm) 

Table 6 Average tensile stress of each layer in the 

failure section (d = 6 mm) 

Layer jth 
Vj ∑ 𝑖

𝑦

𝑖

𝑉𝑖 ̅𝒚
𝒋

(mm3) (MPa.mm3) (MPa) 

1 0.000001 0.00183 1746.87 

2 0.000003 0.00553 1751.88 

3 0.000005 0.00923 1754.13 

4 0.000007 0.01292 1755.00 

5 0.000009 0.01662 1755.99 

6 0.000012 0.02033 1757.21 

7 0.000014 0.02405 1758.71 

8 0.000016 0.02777 1760.49 

9 0.000018 0.03151 1762.57 

10 0.000020 0.03526 1764.97 

11 0.000022 0.03903 1767.71 

12 0.000024 0.04281 1770.83 

13 0.000026 0.04662 1774.36 

14 0.000028 0.05045 1778.35 

15 0.000030 0.05431 1782.84 

16 0.000033 0.05821 1787.91 

17 0.000035 0.06214 1793.64 

18 0.000037 0.06612 1800.14 

19 0.000039 0.07016 1807.53 

20 0.000041 0.07425 1816.01 

21 0.000043 0.07843 1825.80 

22 0.000045 0.08269 1837.21 

23 0.000047 0.08707 1850.70 

24 0.000049 0.09158 1866.83 

25 0.000051 0.09628 1886.56 

26 0.000053 0.10118 1911.06 

27 0.000055 0.10636 1942.50 

28 0.000056 0.11180 1983.74 

29 0.000057 0.11666 2031.04 

30 0.000014 0.02958 2055.74 

31 0.000014 0.02969 2073.41 

32 0.000014 0.02908 2055.36 

33 0.000014 0.02707 1966.70 

1
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failure section and free section positions are at 

yc=295 mm and yc=318 mm, respectively. The 

cross-section (yc=296 mm) is the intermediate phase 

between the two above sections. The shear lag only 

affected the domain from yc=295 to 297 mm. The 

failure element contains the nodal stress of 2245 

MPa. However, the stress of the failure element 

interpolated from the integration point results was 

lower, approximately 2073 MPa The failure-section 

stress decreases from a maximum (approximately 

2073 MPa in the outer elements) to a minimum 

(approximately 1747 MPa at the core), reduced by 

16%. The tensile stress in the free section remains 

at an approximate value of 1858 MPa, reaching 

82.8% of the tensile strength of the FRP material. 

The tensile stress in the free section denotes the FRP 

rod tensile strength 𝑢
𝑟𝑜𝑑  in Eq. (10). Hence, the 

tensile strength of the FRP rod is lower than that of 

the FRP material. 

The theoretical ultimate tensile force of the FRP 

rod (d=6 mm) could reach the value of 63.44 kN, 

with a material tensile strength of 2245 MPa. The 

ultimate tensile force (52.55 kN) simulated in the 

present study is lower than that of the theory, just 

reaching 82.8%. However, the simulation result 

approximates the experimental value (53.13 kN) 

[5], with a deviation of 1.1 %. In addition, Noritake 

et al. [5] measured the axial tensile strain in the free 

length of the FRP rod (d=6 mm), about 3.7%. It is 

consistent with the simulated free-length strain of 

3.8%, with a deviation of 2.7%. The maximum 

strain in the free length is lower than that of the FRP 

material (4.6%). This finding indicates that the 

failure section is out of the free length and close to 

the anchorage. These results confirm the accuracy 

of the present model. This phenomenon is similar to 

tensile testing results in previous studies [23–27]. In 

addition, Fig.10 (a) shows the existence of the 

shear-lag effect in the failure sections of various 

diameters. The results demonstrated a nonlinear 

relationship between the radius and the axial tensile 

stress. 

The shear-lag effect is one of the main reasons 

affecting the axial tensile stress distribution in the 

failure section of the FRP rod. It does not impact on 

the free length. The failure section is much more 

damaged than the free section. The present findings 

indicate that the FRP rod rupture must appear at the 

failure section. The shear-lag effect reduces the 

ultimate tensile capacity of FRP rods. 

3.2 Effect of Rod Diameter 

The stress distribution on the failure section is a 

function of the radius. Fig.10 (a) shows the 

separated curves of various FRP rods. The 

maximum stress at the outer elements of all 

diameters is similar to each other, approximately 

2073 MPa. The study presented all curves on the D8 

coordinate system to assess the shear-lag effect 

between diameters, as shown in Fig.10 (b). The 

findings show a similar rule of the stress decrease 

along the radius of four types of diameters. Two 

phases characterize the relationship at the failure 

section; namely, the axial tensile stress significantly 

decreases in the outer domain limited to 1 mm from 

the lateral surface of all diameters and then slightly 

goes down in the other domain. However, four 

outermost layers close to the lateral surface of the 

FRP rod show a dramatic fluctuation of the stress 

variation. The reason for this phenomenon is the 

significant effect of the shear-lag in this domain.

Fig.9 Axial tensile stress distribution in cross-

sections of the FRP rod (d=6 mm) 

(a) 

(b) 

Fig.10 Distribution of axial tensile stress on the 

failure sections: (a) separated curves of diameters; 

(b) combined presentation based on the D8 curve 
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Fig.11 shows the decrease of tensile strengths of 

four diameters from D3 to D8, with 6.8% for 

specified strength and 4.4% for predicted strength. 

The predicted strength follows the rule of the 

experimental and specified results of the previous 

study [5]. As considered in Fig. 10, the failure of 

FRP rods appears at the lateral surface containing 

higher stress. All FRP rods made of a similar 

volume fraction have a similar material tensile 

strength. FRP rods are ruptured when their tensile 

stress at the lateral surface reaches the material 

tensile strength. However, the diameter increase 

induces a decrease of tensile stress at the core of the 

FRP rod, as shown in Fig.10 (b). Consequently, the 

FRP rod is ruptured when tensile stress at the core 

is lower than that at the lateral surface. The present 

findings demonstrate that the diameter is one of the 

main factors affecting the tensile strength of the 

FRP rods. 

3.3 Predicting the Ultimate Tensile Forces of 

FRP Rods 

The study had shown a procedure to predict the 

ultimate tensile forces of the FRP rods (d=3, 4, 6, 8 

mm). Table 7 shows the comparison of the 

specified, experimental, and predicted results. The 

deviation between the specified and predicted 

ultimate tensile forces varies from 5.1 to 7.7%. 

However, the specified values are always lower 

than the experimental ones because of the safety-

factor consideration. Instead, the experimental 

results are more appropriate for the comparison. 

The predicted ultimate forces approximate to 

experimental ones, with the deviation from 1.1 to 

3.1%. The present results are consistent with 

previous findings of Noritake et al. [5]. These 

findings confirm the effectiveness of the proposed 

model in predicting the ultimate tensile forces of the 

FRP rods. However, the limitation of the study is 

that the experimental results of FRP rods (d = 3 and 

4 mm) in Table 7 were unavailable to compare with 

simulation ones.  

4. CONCLUSIONS

The study aimed at determining the shear-lag 

effect in the pultruded FRP rods made of Technora 

fibers 65% and vinylester resin 35%. All material 

properties of FRP elements were predicted by the 

simulation using the RVE model. The analysis 

model was applied for four diameters (d = 3, 4, 6, 8 

mm) of the AFRP rod. Based on the results and 

discussion, the conclusions are listed below: 

⚫ The present findings indicate the existence of 

the shear-lag effect and the failure section in 

the FRP rod by mechanical and numerical 

theory. It also clearly demonstrates the shear-

lag phenomenon referenced in Firas et al. [6] 

and Achillides et al. [7]. The failure section 

is much more damaged than other cross-

sections, and the FRP rod must be ruptured at 

this section. 

⚫ The shear-lag effect only causes the 

nonlinear distribution of the axial tensile 

stress in the cross-sections close to the 

anchorage. The stress profiles in the failure 

sections of all diameters include two phases: 

significantly decreasing in outermost layers 

and slightly declining in the other layers. The 

present study confirmed that the increase of 

the diameter induces the decrease of the 

tensile strength. 

⚫  The proposed model can be applicable in 

predicting the ultimate tensile capacity of any 

pultruded FRP rod. The deviations between 

the simulation and experimental results are 

unremarkable. 

Table 7 Comparison of specified, experimental, and predicted results 

Diameter (mm) 
Ultimate tensile force Pu (kN) Deviation (%) 

Specifieda Experimentala Predictedb Spe-Pre* Exp-Pre* 

3 13.00 NA 13.66 5.1 NA 

4 22.70 NA 23.86 5.1 NA 

6 49.90 53.13 52.55 5.3 1.1 

8 86.10 90.00 92.77 7.7 3.1 
a The results in the previous study [5]. 
b The results in the present study. 
* Pre: predicted; Spe: specified; Exp: experimental.

NA: not available. 

Fig.11Tensile strength decrease versus diameter 
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