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ABSTRACT: Hydraulic conductivity of hydrophobic porous media is greater than that of hydrophilic porous 
media under the same saturation condition. One of the reasons for this is that the size of the pores filled by 
water in hydrophobic porous media is greater than that in hydrophilic media under unsaturated conditions. 
The validity of this phenomenon was ascertained through numerical experiments using a pore-network model. 
However, the pore-network model with circular tubes could not account for the phenomena sufficiently. Then, 
noncircular tubes are employed to take air-water interfaces formed at gaps between grains into account. In 
one case of hydrophobic grains, water cannot occupy corners and flows in the center of capillary tubes. In the 
other case of hydrophilic grains, water invades the corners first and flows through the corner filaments until 
water enters the tube completely. In this study, equilateral triangular and cuspate cross-sections are used, and 
the relation between the flow resistance of the tube, which is separated into shape and scale factors, and 
capillary pressure is investigated. The computed results show that the flow resistance of center flows could 
become smaller than that of full flow and that it leads to higher hydraulic conductivity of hydrophobic porous 
media.  
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1. INTRODUCTION

To alter hydraulic properties, such as 
permeability, and the water retention property of 
porous media, mixing grains with different 
wettabilities is considered to be an effective option. 
In particular, it is known that hydrophobic grains 
change hydraulic properties drastically, depending 
on the mixture proportion [1], [2].  

Many works have attempted to model the 
mechanisms of imbibition and drainage inside 
porous media on a pore-scale [3], [4]. A pore-
network model, which was first proposed by Fatt 
(1956) [5], is a powerful tool to model and 
understand the mechanisms in a bottom-up manner. 
In this study, the pore-network model is employed 
to reproduce an interesting phenomenon wherein 
the permeability of hydrophobic porous media 
becomes larger than that of hydrophilic media at 
the same saturation level [6]. To deal with this, the 
hydraulic conductance, which is a physical 
property assigned to each capillary tube and 
defined as the inverse of flow resistance in a 
capillary tube, needs to be reconsidered. The 
hydraulic conductance depends on the cross-
sectional size and shape of the capillary tube and is 
a different property from the hydraulic 
conductivity, which is a macroscopic property of 
porous media. In this study, air-water interfaces 
formed between grains are considered by using 
noncircular capillary tubes, and hydraulic 
conductance is computed by solving a 2-

dimensional Poisson equation whose unknown 
variable is the velocity in a cross-section [7]–[9].  

Thus far, hydraulic conductance has had 
various definitions. In some definitions, pipe 
length and/or viscosity are included [7]–[9]. If 
local losses, such as contraction and enlargement 
in a network flow are not negligible, the pipe 
length needs to be included in the hydraulic 
conductance. However, these local losses are 
negligible compared with the friction loss [6]. 
Hence, it is natural to define the hydraulic 
conductance without pipe length and viscosity to 
correspond to the intrinsic permeability of porous 
media. In addition, a new method to separate the 
hydraulic conductance into shape and scale factors 
is proposed because the effect of cross-sectional 
shape on the flow resistance is not clear in the 
conventional method; in the conventional method, 
the Manson–Morrow shape factor (defined as 
area/square of wetted perimeter) is used as a shape 
factor [6], [7]. However, the Darcy–Weisbach 
friction factor also depends on the cross-sectional 
shape.  

In this study, the shape factor and its effect on 
the permeability of porous media are inspected 
through numerical experiments, and it is shown 
that air-water interfaces in capillary tubes play a 
large role in permeability.  

2. NETWORK FLOW IN POROUS MEDIA
2.1 Variational Principle in Network Flow 
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In general, to solve a network flow problem, 
the Hardy–Cross method is used. In this method, 
the flow rate in each pipe and potential at each 
junction are unknown variables, and a non-linear 
simultaneous equation for both the energy loss and 
mass conservation is formulated [10]. In this study, 
a method based on a variational principle is 
employed. The variational principle is a 
fundamental concept to determine a solution to 
some physical problems. It is based on the idea 
that many physical phenomena obey the basic 
principle that the state of the system is determined 
by minimizing energy consumption. In a pore-
network flow problem, a functional φ , which is to 
be minimized, is defined as the summation of three 
terms, as follows [11]:  

F OUT IN( ) ( ) ( ) ( )φ φ φ φ= + +q q q q   (1) 
where q  is the flow rate vector whose 
components iq  ( tube1, ...,i N= ) are the flow rates 
in the i th capillary tube; Fφ  is the friction term;  

OUTφ and INφ  are the outflow and inflow terms, 
respectively. The friction term is represented as 
follows, based on the Darcy–Weisbach equation: 
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where 
tubeN  is the number of capillary tubes 

included in the pore-network; iκ  is a coefficient 
for the friction loss; if  is the Darcy-Weisbach 
friction factor; il , ia , id , and ip  are the length, 
the cross-sectional area, hydraulic diameter, and 
the wetted perimeter of the i th capillary tube, 
respectively; and g  is the gravitational 
acceleration. Here, only a friction loss is taken into 
account, based on the fact that other local losses, 
such as contraction and enlargement, are negligible 
compared with the friction loss [6]. When the flow 
in capillary tubes is laminar, the friction factor  
is represented as follows: 
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where iα  is a coefficient that depends on the 
cross-sectional shape, and the values for circular, 
square, and equilateral triangular sections are 64, 

56.908, and 53.333, respectively [12]; Rei  is the 
Reynolds number; ν  is the kinematic viscosity; 
µ  is the viscosity; and ρ  is the water density.  

The second and third terms on the right hand 
side of Eq. (1) are represented as follows:  
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where OUTζ  and INζ  are the sets of capillary 
tubes connected to the outflow and inflow ports, 
respectively; and ih  are the piezometric heads at 
the outflow and inflow ports, which are the 
prescribed variables in this study. 

In addition to the functional Eq. (1), the 
following mass balance equations at each junction 
are added as constraints:  
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where juncN  is the number of junctions, and junc
jζ  

is the set of capillary tubes connected to the j th 
junction. 

The minimization problem of the functional Eq. 
(1) with the constraints (10) is solved by the 
Lagrange multiplier method, which introduces 
Lagrange multipliers jλ  ( junc1, ...,j N= ). The 
objective problem is reformulated as a 
minimization problem with unknown variables q  
and λ  by adding the constraints multiplied by  
to the functional Eq. (1). 
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where λ  is a vector with component jλ  ( j =
junc1, ..., N ). 

Incidentally, the nonlinear simultaneous 
equation obtained after partial differentiation of the 
functional Eq. (11) by each unknown variable is 
exactly the same as the equation system of an 
ordinal network flow problem; in this problem, the 
flow rate in each pipe and piezometric head at each 
junction are unknown variables. For example, the 
partial differentiation of the functional Eq. (11) 
with respect to an unknown flow rate  is as 
follows, if the i th capillary tube connects to 
neither the outflow nor the inflow port: 

1 0j j i i iq qλ λ κ− =    (12) 

where the subscripts 0j  and 1j  are the junction 
indices of both ends of the th capillary tubes; Eq. 
(12) shows the local head loss by friction, which 
means that the Lagrange multiplier  is the 
piezometric head  at each junction. By substituting 
Eqs. (3)–(7) into Eq. (12), the following equation 
is derived: 
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with 
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where iΘ  is the hydraulic conductance, and ip  is 
the piezometric potential difference between 
junctions  and . With regard to the hydraulic 
conductance , the viscosity  and/or the tube 
length il  are excluded in this study because it is 
natural to consider that the hydraulic conductance 
of capillary tubes corresponds to the intrinsic 
permeability of porous media. 
 
2.2 Shape and Scale Factors 
 

The hydraulic conductance Θ  in Eq. (13) is 
considered to be the inverse of the flow resistance 
of a capillary tube and includes shape and scale 
factors. In previous studies, the Manson–Morrow 
shape factor G  ( 2/a p= ) was introduced, and 
the hydraulic conductance was rearranged as 
follows [9]: 

232 /GaΘ α=     (16) 
However, the coefficient α  is also dependent on 
the cross-sectional shape. Then, the effective 
radius er  and a coefficient β , which satisfy the 
following relations, are introduced here to separate 
shape and scale factors completely: 

2
ea rπ=     (17) 

ep rβ=     (18) 
Hence, the hydraulic conductance is represented as 
follows: 

2 4
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with 
2
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where η  is the shape factor, which is the flow 
resistance of the capillary tube and depends only 
on the cross-sectional shape. Moreover, the 
coefficient  ranges from zero to infinity 
mathematically, which means the hydraulic 
conductance also could change from zero to 
infinity.  

Before solving the network flow problem 
presented in Eq. (11), values for the shape factor 
η  of various cross-sectional shapes needed to be 
specified. These are calculated from the flow rate 
q , based on Eqs. (13), (19), and (20). The flow 

rate in a constant pipe is calculated from the 
velocity distribution in the cross-section, and the 
velocity is governed by the 2-D Poisson equation; 
this is a simplified form of the Navier–Stokes 
equation and the mass conservation equation, 
based on the following assumptions: (1) flow is 
steady, (2) fluid is viscous, (3) inertia is negligible, 
and (4) velocity components, except for those 
along the tube axis, are negligible [9]. The induced 
Poisson equation and boundary conditions are 
described as follows: 

2 ( constant)X

g dh
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v

ρ
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0Xv =   on the grain-water interface (22) 

0Xv∂
=

∂n
 on the grain-water interface (23) 

where X , Y , and Z  are the local Cartesian 
coordinates, and X  is in the direction of the tube 
axis; 

2
∇  (

2 2 2 2
/ /Y Z= ∂ ∂ + ∂ ∂ ) is the differential 

operator; Xv  is the velocity component along the 
X  axis; and n  is the unit normal vector to the 

interface (boundary). 
When a capillary tube consists of hydrophilic 

grains, water tends to occupy the corners first; 
hence, water flows along the corner filaments as 
illustrated in Fig. 1. In contrast, when a tube 
consists of hydrophobic grains, air, which is 
wetting the fluid in this case, tends to occupy the 
corners; hence, water flows in a center filament 
which is contrary to the hydrophilic case. In both 
cases, the curvature radius of the air-water 
interface 

intr  is determined from the Young–
Laplace equation (24) and the capillary pressure 

cp  as described in Eq. (25); the three-phase 
contact points are determined from the contact 
angles of the grains 0θ , 1θ , and 2θ . 

int
c/r pσ=     (24) 

wc ap p p−=     (25) 
where σ  is the surface tension of water, and ap  
and wp  are the air and water pressures, 
respectively in the vicinity of the air-water 
interface. 
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In Fig. 2, some typical examples of velocity 
distributions obtained by solving the 2-D Poisson 
equation (21) in corner, center, and full flows 
through equilateral triangular tubes are shown; Fig. 
3 shows the shape factors and hydraulic 
conductances of the equilateral triangular and tri-
cuspate tubes as the capillary pressure varies. It is 
assumed that these two types of tubes have the 
same cross-sectional area. Fig. 3 (a) shows that 
cross-sections with air-water interfaces could have 
smaller shape factors compared with the circular 
tube in some ranges. Nevertheless, it is found from 
Fig. 3 (b) that corner filaments have a much 
greater flow resistance because their flow cross-
sectional areas are very small compared with the 
whole cross- sectional area of the tube and that 
only center flows could have smaller flow 
resistances.  
 
2.3 Hydraulic Conductivity 

 
Hydraulic conductivity of a pore-network 

model is estimated based on the Darcy law: 
QL

K
A H∆

=     (26) 

with 
OUT IN

OUT IN

1 1

N N

i i
i i

Q q q
= =

= =∑ ∑    (27) 

where K  is the hydraulic conductivity of a 
variously saturated porous medium, Q  is the total 
flow through the porous medium, A  is the cross-
sectional area of the porous media, and H∆  is the 
piezometric head difference between the inflow 
and outflow faces. When the porous medium is 
completely saturated, the hydraulic conductivity is 
referred to as the saturated hydraulic conductivity 
and represented as sK . The relative permeability 

rk  is defined as 
sr /k K K=     (28) 

 
3. NUMERICAL EXPERIMENTS 
3.1 Generation of Pore-network  

 
A virtual pore-network is generated from a 

porous medium model that consists of randomly 
packed spherical grains of uniform size. The 
virtual porous medium is computed by the discrete 
element method with grains falling freely (Fig. 4 
(a)), and a pore-network is extracted from the 
computed porous medium with the modified 
Delaunay tessellation method proposed by Al-
Raoush et al. [13] (Fig. 4 (b)). The pore-network is 
composed of pore bodies that are relatively large 
voids and pore throats that are relatively small 
voids connecting two pore bodies. In Fig. 4 (b), 
pore bodies are represented as spheres and pore 
throats as tubes. The location and size of all pore 
bodies and throats, as well as those of grains, are 
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obtained through the generation process. In this 
study, the sizes of the pore body and pore throat 
are defined as the radius of the maximum inscribed 
sphere and circle inside the grain void, respectively. 
 
3.2 Generation of Variously Saturated Pore-
network  
 

Prior to the computation of network flow 
problems in a porous medium, variously saturated 
pore-network models are generated in a 
generalized invasion percolation manner, which is 
a discrete model to simulate water or air invasion 
into porous media [14]. The bottom of a dry 
porous medium, in which pores are not occupied 
by water in the initial state, is supposed to be 
soaked in water. 

The bottom and top faces of the pore-network 
are open-flow boundaries, and water and air pools 
are connected to the bottom and top faces, 
respectively. Moreover, the four sides are no-flow 
boundaries, and no fluid can pass through these 
boundaries. Water rises into invadable pores from 
the bottom if the following conditions are satisfied: 
(1) an objective pore is empty, and it connects to 
the air pool through other empty pores; (2) the 
objective pore connects to at least one pore that is 
occupied by water, and at least one of the 
neighboring pores occupied by water connects to 
the water pool through other pores occupied by 
water; and (3) in case of hydrophilic pores, the 
objective pore is sufficiently small or in the case of 
hydrophobic pores, the pore is sufficiently large. 

Conditions (1) and (2) are referred to as 
connectivity conditions.  

By changing the water pressure on the bottom 
of a pore-network, variously saturated pore-
networks are obtained. In addition, hydrophobic 
grains are mixed at specified mixture fractions in 
this study. In Table 1, grain size, temperature, and 
the contact angles used for the imbibition process 
are summarized. The contact angles are those fitted 
with measured and computed water retention 
curves in our previous works [6], [14]. Fig. 5 
shows examples of partially inundated hydrophilic 
and hydrophobic pore-networks. While water can 
enter hydrophilic media under negative pressure 
conditions, positive pressure is required for water 
to enter hydrophobic media by capillary action. 
Hence, negative and positive pressures are 
imposed on hydrophilic and hydrophobic media, 
respectively, to obtain the partially saturated pore-
networks shown in Fig. 5. It is found that water 
invades smaller pores selectively in the hydrophilic 
pore-network;, conversely, water invades larger 
pores selectively in the hydrophobic pore-network.  
 
3.3 Relative Permeabilities 
 

According to our previous work [6], for the 
computation of network flows, the pore-network is 
regarded as consisting of volumeless pore bodies 
and pore throats with constant cross-sections. The 
pore-network model used for network flow 
problems is as shown in Fig. 4 (c).  
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Other conditions for the permeability test, such 

as air and water pressures, are listed in Table 1. 
Both the top and bottom of the pore-network is 
subject to water pressure, and water flows 
downwards under gravity in this numerical test. 
When the contact angle is between 60° and 120°, 
partial invasion, such as corner and center 
filaments, will not occur in the equilateral 
triangular tubes. Tri-cuspate tubes are used here.  

In this model, only one parameter needs to be 
fitted. The unknown parameter is the effective 
radius of the capillary tubes, and it is represented 
as with a function of the inscribed radius insr  as 
follows: 

e insr rγ=     (29) 

where γ  is the unknown parameter. The value is 
adjusted by comparing measured and computed 
hydraulic conductivity in a fully saturated state, 
where there are no air-water interfaces. In this 
study, the unknown parameter γ  is adjusted so 
that the saturated conductivity is approximately 

2
2 10

−
×  cm/s. When γ  is 1.11, the saturated 

hydraulic conductivity is 
2

2.3 10
−

×  cm/s.  
Network flow problems regarding the variously 

saturated pore-networks are solved, and the 
relative permeability of each pore-network is 
calculated. In Fig. 6, typical flow distributions of 
completely and partially saturated cases are shown. 
These figures show that water flow is limited to 
only some parts of the capillary tubes and that the 
majority of tubes do not contribute to water flow. 
In Fig. 7, measured and computed relative 

permeabilities are shown. The measured value was 
obtained using the constant water-level method 
with samples containing various ratios of mixed 
hydrophilic and hydrophobic glass beads. Samples 
were variously saturated by sucking air with 
different suction forces after dipping their bottoms 
into water. Thus, all hydrophilic samples (0% in 
Fig. 7 (a)) became highly saturated. In the 
computed result (Fig. 7(c)), full flow was applied 
in the samples with saturation levels over 0.95 
because the air-water interfaces were considered to 
have developed poorly. From the computed result 
(Fig. 7 (b)), it is found that the relative 
permeabilities of hydrophobic media (25–100%) 
are larger than those of the hydrophilic (0%). This 
is because water enters the larger pores first in 
hydrophobic media, as shown in Fig. 5. In addition 
to this pore size effect, compared with the 
computed results (Fig. 7 (b) and (c)), the relative 
permeabilities of hydrophobic media with tri-
cuspate tubes are larger than those with circular 
tubes, which is the effect of the air-water interfaces. 
Although there is some discrepancy in the low 
saturation region between the measured and 
computed results, the phenomenon involving the 
permeability of hydrophobic porous media is more 
significant than that of hydrophilic media at the 
same saturation and is well reproduced by using 
tri-cuspate tubes. 

 
4. CONCLUSION 

 

In this study, noncircular tubes were employed 
in a network flow modeling of porous media to 
take air-water interfaces formed between grain 
gaps into consideration. The network flow problem 
is formulated with a variational principle. From the 
numerical analysis of the hydraulic conductance of 
the tube cross-section, it was shown that the flow 
resistance of cross-sections with air-water 
interfaces, which are slip boundaries for water 
flow, could be smaller than that in full flow under 
a low pressure condition. Moreover, through 
numerical experiments, it was ascertained that not 
only the tube size, but also the air-water interface, 

Table 1  Conditions for permeability test 
Grain diameter  0.2 mm 
Air pressure 1 atm 
Water pressure 4 cm H2O 
Temperature 20 °C 

Contact 
angle  

mixture rate: 0%  46° 
mixture rate: 25% 92°, 110° 
mixture rate: 50% 98°, 110° 
mixture rate: 75% 98°, 110° 
mixture rate: 100% 110° 
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contributes to the increase in permeability of 
unsaturated hydrophobic porous media. 
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