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ABSTRACT: Two concentric cylinders with the inner cylinder rotating cause circumferential flow with a 
Taylor vortex under a certain range of Reynolds numbers. This is called Taylor–Couette flow. It has been the 
focus of extensive study in terms of Newtonian fluids but not non-Newtonian fluids. Despite various industrial 
applications, the flow transition mechanism of the flow remains unclear. Therefore, many kinds of apparatuses 
using Taylor–Couette flow in the redesign and scale-up are still under investigation. The objective of the 
present study is first to determine the transition points of Taylor-vortex flow and the wavy vortex flow regime 
with a non-Newtonian working fluid. To understand the effect of the working fluid, two kinds of shear-thinning 
liquids with different structural viscosity indices were compared. Particle image velocimetry (PIV) was used 
as the flow visualization technique for a wide range of Reynolds numbers. A water solution of guar gum 
resulted in a stable six-cell mode in the Taylor-vortex flow and wavy-vortex flow regimes. The other working 
fluid, with xanthan gum, resulted in a vertically enlarged oval vortex that appeared under the same Reynolds 
number range. Both results were significantly different from the flow with Newtonian working fluid. In 
conclusion, we confirm that the shear-thinning characteristics of the working fluid affect the aspect ratio of the 
edge vortex as well as the drifting of the vortex center along the axis of the cylinder. 
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1. INTRODUCTION 

 
Two concentric cylinders in which one or both 

are rotating result in circumferential flow with a 
Taylor vortex at certain Reynolds numbers. This is 
called Taylor–Couette flow. Taylor–Couette flow 
has been applied in various industries, including the 
food processing, chemical reactors, and medical 
fabrication industries. It has been used to improve 
in many industrial applications, such as filtration [1], 
protein shearing [2], blood detoxification [3], 
liquid–liquid extraction [4], bioreactors [5], 
emulsion polymerization [6], crystallization [7], 
cultivation of animal cells [5] and photocatalytic 
reactions [8]. Moreover, many industrial 
applications of the aforementioned flow within 
double concentric cylinders operate with non-
Newtonian working fluids. From the point of view 
of complex fluid analysis, Ashrafi [9] pointed out 
that Taylor–Couette flow with non-Newtonian 
working fluids plays an important role in the 
rheology of flow instabilities. As mentioned, there 
are many case studies on complex fluids, and many 
kinds of apparatuses using Taylor–Couette flow of 
redesign and scale up are still under investigation. 
Many applications of Taylor–Couette flow employ 
shear-thinning fluids, and some researchers [9-12] 
have pointed out that detailed experimental 
investigations on shear-thinning fluids are lacking. 
Against this background, the objective of the 
present research is to determine the flow transition 

mechanism of flow in a concentric rotating cylinder 
with non-Newtonian working fluids. 

Theory for the determination of the critical 
Reynolds number of Taylor–Couette flow with 
Newtonian fluids has been widely analyzed, and 
methodology has been established. However, this 
has not been established for non-Newtonian fluids. 
Therefore, the identification of the mode transition 
and determination of the critical Reynolds number 
led us to the useful design of devices in various 
industrial fields. In the experiment, the transition 
area of the Taylor-vortex flow as well as the wavy 
vortex flow with shear-thinning working fluids was 
first analyzed using optical measurement 
techniques, followed by the investigation of the 
flow transition mechanisms. 

 
2. FLOW IN ROTATING CYLINDERS 

 
Taylor–Couette flow has many flow regimes 

controlled by the Reynolds number, with 
surprisingly complex dynamics. In the most 
common conditions, the inner cylinder is rotating, 
and the outer cylinder is fixed. 

The Reynolds number for the rotating cylinder 
system is defined below. 

 

𝑅𝑅𝑅𝑅 =
𝜌𝜌𝜌𝜌𝑟𝑟𝑖𝑖Ω
𝜇𝜇𝑒𝑒

                                                               (1) 

 
where ρ is the fluid density, μe is the effective 
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viscosity of the fluid, Ω is the rotational speed of the 
inner cylinder, d is the gap between the cylinders, 
and ri is the inner cylinder radius. In the flow field, 
one of the differences between Newtonian and shear 
thinning flow is the velocity gradient near the 
nonslip wall. The shear stress acting on the fluid is 
given by the following model equation. For 
Newtonian fluids, the viscosity becomes constant, 
and the parameter n in the equation is equal to one. 

 

𝜏𝜏 = 𝜇𝜇∗ �
𝜌𝜌𝑑𝑑
𝜌𝜌𝑑𝑑
�
𝑛𝑛

       (0 < 𝑛𝑛 < 1)                              (2) 

 
where τ is the shear stress and μ* is the reference 
viscosity. u and y are velocity and spatial 
coordinates, respectively. The y-axis is 
perpendicular to the main flow. The coefficient n is 
called the structural viscosity index of the power-
law model. From the equation, the velocity gradient 
in the vicinity of the solid wall is increased with 
decreasing parameter n. That is a smaller n results 
in a higher shear thinning effect in fluids. 

Andereck and Swinney [13] observed that the 
flow transitions between states were determined by 
Ri and Ro (inner- and outer-cylinder Reynolds 
numbers, respectively). Figure 1 shows the regimes 
observed in the flow between independently 
rotating concentric cylinders. Since the rotation 
speed of the outer cylinder is equal to zero in this 
research, flow regimes begin with the circular-
Couette flow (CCF), Taylor-vortex flow (TVF), 
wavy vortex flow (WVF), and modulated wavy 

vortex flow (MWF) and finally reach the turbulent 
Taylor vortex flow. CCF is laminar and 
axisymmetric under Reynolds numbers below the 
first critical Reynolds number, Rec1. When the 
Reynolds number is increased beyond the critical 
value ReC1, the flow becomes unstable, and a 
transition from CCF to TVF occurs. In the TVF 
regime, a series of steady toroidal rotating vortices 
are dominant in a cavity. Beyond the second critical 
Reynolds number, ReC2, the series of vortices 
becomes unsteady and oscillates with a single 
frequency. This state corresponds to WVF. A 
further increase in the Reynolds number is 
associated with more transitions, which include 
MWF oscillation at two or more complicated 
frequencies, ultimately leading to turbulence. 

The study of Taylor–Couette flow was mainly 
initiated by Taylor [14] for standard Newtonian 
fluids and has been the focus of considerable 
attention until now. The numerical predictions by 
Lockett et al. [15], Khali et al. [16], Alibenyahia et 
al. [11], and Ashrafi [9] reported that the shear 
thinning characteristics of the working fluid affect 
the mode transition of the flow and that the resultant 
critical Reynolds number becomes lower. By using 
a deterministic approach to analyze the nonlinear 
flow stability, the related results demonstrated that 
the dynamics of flow transition are completely 
different in Taylor–Couette flow with Newtonian 
working fluids and are caused by the shear thinning 
properties of the fluid. Cagney and Balabani [17] 
examined four fluids with different structural 

 
 

Fig.1 Flow regimes of two concentric rotating cylinder [13] 
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viscosity indices. Three of them exhibit shear 
thinning and viscoelasticity as well. They 
confirmed that shear thinning lowered the critical 
Reynolds numbers for TVF and WVF compared 
with those of Newtonian flow and calculated the 
amplitudes of inflow moving toward the inner 
cylinder and outflow moving toward the outer 
cylinder using the particle image velocity (PIV). 
They reported that the magnitude of vorticity, as 
well as that of the outflow, were both reduced in 
shear-thinning fluids relative to that of the 
Newtonian case. In the WVF of Newtonian fluids, 
the magnitude of inflow is lower than that at the 
outflow, but the magnitudes of inflow and outflow 
both tend to be significantly larger for shear-
thinning fluids. They also indicated slow drifts in 
the axial positions of vortices and spatial variations 
in the wavy instability, which are not observed in 
Newtonian fluids. Most of the dynamics for shear 
thinning fluids of Taylor–Couette flow are still 
unclear, and a more detailed experimental 
investigation is desired. One of the previous studies 

[17] obtained the critical Reynolds numbers of TVF 
and WVF for shear-thinning fluids. However, 
elucidation of the mechanism remains an issue for 
flow mode transition. This paper describes the 
identification of transition regimes using PIV with 
shear thinning working fluids and considers them. 

3. EXPERIMENTS

 The geometry of the experimental device used 
in the experiments is depicted in Fig.2. In the figure, 
the cylindrical coordinates r, θ, and z represent the 
radial, circumferential, and axial axes, respectively. 
The material of the cavity is transparent acrylic 
resin, and the water jacket is prepared around the 
outer cylinder to reduce the refraction effects of the 
light scattered from the small tracer particles in the 
fluid flow. Table 1 shows the representative 
dimensions of the experimental equipment. The 
inner cylinder is connected to the electrical motor 
via a belt. The rotation speed, which affects the 
Reynolds number, can be kept constant by the 
appropriate motor driver unit. In this study, the 
velocity distribution of the fluid flow was measured 
by the particle image velocimetry (PIV) technique. 

A schematic diagram of the PIV measurement 
system is illustrated in Fig.3. A laser sheet was 
introduced into the vertical cross-section of the 
cavity. The tracer particles used in the PIV 
measurement were Dantec Dynamic, S-HGS silver-
coated hollow glass spheres, in which the reflected 
light intensity from the tracer particle was enhanced 
by the metal coating of the spherical surface. The 
arithmetic means the diameter of the particles was 
approximately 10 μm, and the particle density was 
0.68 g/cm3. The frame rate of the image acquisition 
was 500 to 1000 fps depending on the particles' 
displacement between consecutive images, and the 
pixel dimensions of the CMOS sensor were 
1280×768 pixels, which is varied by the maximum 
frame rate of the image acquisition. After 
confirming the steady state of the flow under each 
Reynolds number, 2000 to 4000 consecutive 
particle images were recorded in the memory of a 
PC, followed by cross-correlational velocity vector 
determination from the captured particle images. 

Parameter, units Value 
The radius of the inner cylinder, ri 
[mm] 

64.0 

The radius of the outer cylinder, ro 
[mm] 

80.0 

Height, h [mm] 96.0 
The gap between cylinders, d [mm] 16.0 
Radius ratio, η= ri / ro   0.8 
The aspect ratio of the cavity, Γ = h/d   6.0 

Fig.2 Experimental equipment and coordinates. 

Table 1 Dimensions of the experimental rig. 

Fig.3 Schematic diagram of the concentric 
double cylinders and PIV measurement system. 
Laser sheet is parallel to the r-z plane in a cavity. 

CameraLaser sheet

Water jacket 
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With the Newtonian working fluid, the viscosity 
distribution is independent of the flow field, i.e., the 
viscosity is spatially and temporally homogeneous. 
However, with shear-thinning fluids, the velocity 
gradient at the bulk area in a cavity is higher, and 
the local effective viscosity is a function of the local 
shear rate. To reflect the spatial distribution of 
viscosity and to determine the effective Reynolds 
number, the effective viscosity is introduced by 
referring to Masuda et al. [18]. By this method, the 
effective shear rate is given by the following 
equation. 

�̇�𝛾𝑒𝑒𝑒𝑒𝑒𝑒 = 𝑘𝑘Ω  (3) 

where 𝑘𝑘  is the coefficient. The coefficient, 𝑘𝑘 , is 
expressed by the following equation, which is 
determined by 𝑛𝑛 and η, under the condition of η ≥ 
0.7. This can be effective because a wider gap has a 
larger viscosity ratio between the inner and outer 
walls than a narrow gap. 

𝑘𝑘(𝑛𝑛, 𝜂𝜂) 
 = 77.05𝑛𝑛0.32𝜂𝜂2 − 88.73𝑛𝑛0.31𝜂𝜂 + 26.85𝑛𝑛0.21      (4) 

The effective viscosity is shown using the Carreau 
model by the following equation. 

𝜇𝜇(�̇�𝛾) = 𝜇𝜇∞ + (𝜇𝜇0 − 𝜇𝜇∞)(1 + (𝜆𝜆𝑐𝑐�̇�𝛾)2)
𝑛𝑛−1
2  (5) 

where μ0 is zero viscosity and μ∞ is infinite viscosity. 
λc is the relaxation time. From the above results, the 
identification of the transition region is evaluated 
using the Reynolds number in Eq. (1). 

4. RHEOLOGICAL PROPERTIES OF
FLUIDS 

To consider the shear thinning characteristics of 
fluid flow between rotating cylinders, two different 
working fluids were prepared that have different 
structural viscosity indices. One was a water 
solution of guar gum (GUAR) at 0.1 wt%, and the 
other was that of xanthan gum (XTG) at 0.05 wt%. 
The resultant viscosity indices were n = 0.7 and n = 
0.52, respectively. Both working fluids were 
prepared by mixing the powders and distilled water 
with a blade stirrer at 700 rpm for 30 minutes. After 
the mixing procedure, the fluids were stored in the 
refrigerator for one day. The rheological properties 
of the fluids were first checked by a rotating 
rheometer. The measurement results are shown in 
Fig.4 and Fig.5. The important rheological 

Fig.4 Rheological properties of the working 
fluid. 
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parameters in the experiments are shown in Table 2. 
The range of the shear rate magnitude in the 
following experiments was 10 to 150 s-1. 

Table 2 Fluid properties used in the experiment. 

Fluid n μ0 [10-3 Pa·s] λc [s] 
GUAR 0.1 wt% 0.7 51 0.55 
XTG 0.05 wt% 0.52 820 0.76 

5. FLOW VISUALIZATION

By using the working fluids shown in the 
previous section, the flow transition behavior in 
terms of the Reynolds number was first visualized 
by using flake-shaped visualization tracer particles, 
by which the local share direction can be 
qualitatively obtained. The Reynolds numbers 
varied from 0 to 650 for n = 0.52 liquid and from 0 
to 850 for n = 0.7 liquid. Figure 6 shows examples 
of instantaneous flow visualization photographs. 
The Taylor vortices on the upper and lower end 
surfaces were slightly different in terms of vertical 
size due to the influence of the Ekman boundary 
layer. In contrast to the stretched aspect of vortices, 
convectional Newtonian fluids yield a series of 
toroidal square vortices, and each cell size is almost 
the same under the TVF and WVF modes [19]. 

If the cylinders are infinitely long, a series of 
infinite vortex trains are expected for Newtonian 
fluids, and a series of infinite irregular vortex trains 
are expected for non-Newtonian fluids. For the 0.1 
wt% guar gum fluid with n = 0.7, the flow transition 
started with a simple circumferential Couette flow, 
followed by a series of steady toroidal vortices with 
a six-cell mode. In this stable stage, each cell 
geometry was almost the same when the Re number 
was below 90. Under the range of Re numbers from 
90 to 850, the flow pattern entered the WVF mode, 
and toroidal cell fluctuations were observed. For 
0.05 wt% xanthan gum fluid with n = 0.52, the flow 
pattern started with a simple circumferential 
Couette flow as well, and a series of steady toroidal 
vortices with four cell modes was observed. In this 
mode, each cell size was kept constant between Re 
= 0 and 65. 

At Reynolds number beyond the critical Re 
number, the flow pattern changed to the WVF mode, 
in which the series of toroidal vortices were 
significantly different from those of the Newtonian 
working fluid. The upper and lower vortices 
became vertically enlarged, and the degree of 
deformation was affected by the Reynolds number. 
In contrast, the vortex at the center of the cavity was 
squeezed at the WVF. Fig.7 summarizes the 
relationship between the Reynolds number and 
vortex dimension compared with those of working 
fluid with Newtonian characteristics. The vertical 

axis in the figure denotes the nondimensional axial 
lengths of the vortex about the vortex size with 
Newtonian fluid. With Z1 and Z2 defined as the 
center positions of the first and second vortices from 
the top end wall, the relationship between both 
vortex positions in terms of the Reynolds number is 
depicted in Fig.8. In contrast to the convectional 
Taylor vortex flow with a Newtonian working fluid, 
both central vortex heights are drastically decreased, 
and the size ratio between neighboring vortices is 
remarkably varied as the Reynolds number 
increases. 

6. CRITICAL REYNOLDS NUMBERS

Fig.8 Vertical position of the vortex, Z1, Z2, as a 
function of the Reynolds number. 
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Velocity distributions were obtained using the 
PIV technique from consecutive particle images 
acquired by a digital high-speed camera. The 
critical Reynolds numbers between the TVF and 
WVF regimes were determined by the fluctuation 
of the velocity profile as well as the power spectrum 
of the velocity vectors at the bulk area. Letting ReC1 
and ReC2 denote the critical Reynolds numbers for 
TVF and WVF, respectively. ReC1 is determined by 
the velocity distribution when steady toroidal 
vortices are observed. The mean velocity 
distributions are shown in Fig.9. ReC2 is determined 
from the spectrum analysis result by acquiring the 
velocity time series data of each window from the 
velocity distribution and spatial averaging of the 
power spectrum. In the WVF regime, the spectrum 
exhibited a single peak frequency that correlated 
with wavy motion, and the entire Taylor vortex 
oscillated at a particular frequency. The measured 
relation between the peak frequency and Reynolds 
number is shown in Fig.10. From the above process, 
both critical Reynolds numbers are summarized in 
Tbl. 3 compared with those of the Newtonian case 
from reference [19]. 

Table 3 Summary of resultant ReC1 and ReC2 for 
both working fluids. 

n ReC1 ReC2 f (WVF) [Hz] 
1 95 1330 ~1 

0.7 92.6 608.7 3.67 
0.52 65 93.1 0.68 

In the analysis of the measurement results of 
velocity vector distributions, significantly different 
velocity fields were observed due to the shear 
thinning effects of working fluids, unlike the case 
of Newtonian fluids. The geometrical shape, such 

as the aspect ratio of the vortices, was not identical 
to that of the Newtonian fluid. With the working 
fluid of n = 0.52, a characteristic four-cell mode 
appeared, and the size of upper and lower edge 
vortex cells was significantly stretched compared 
with those of the central cells. As the Reynolds 
number increased, as shown in Fig.7, the size of the 
vortex increased in the axial direction, and the 
position of the vortex gradually moved along the 
axial direction in the WVF regime. Table 3 
summarizes the critical Reynolds numbers as a 
function of the power-law index n. The result 
showed that every critical Reynolds number was 
much lower than the critical Reynolds number for a 
Newtonian fluid. Similar to what Cagney and 
Balabani [17] reported, the present results lead us to 
conclude that the critical Reynolds number between 
TVF and WVF with shear thinning fluids is quite 
different from that of Newtonian fluids. One 
possible difference is the definition of the Reynolds 
number. They prepared four kinds of working fluids, 
one of which was a Newtonian fluid and three of 
which had different viscosity indices. They 
confirmed that the shear-thinning characteristics of 
the working fluid make the critical Reynolds 
number lower than that of the Newtonian case, but 
there are no large differences. In our experiment, the 
critical Reynolds numbers for TVF were not varied. 
Shear-thinning effects, however, make the critical 
Reynolds number for WVF lower than that of the 
Newtonian fluid. Since the shear-thinning effect 
significantly increases the viscosity gradient 
between the vicinity of the wall surface and the 
main flow, the local velocity gradient in the 
circumferential direction is exponential, as shown 
in Eq. (2). Consequently, the pair of vortices can 
easily oscillate in the vicinity of the solid wall and 
pulsate when the wall binding force is decreased 
due to the larger velocity gradient at the boundary 
layer near the rotating cylinder. 

Fig.9 Instantaneous velocity vector map at various 
Reynolds number measured by particle image 
velocimetry (PIV). 

Fig.10 Peak frequency of fluid flow modulation in 
terms of Reynolds number as well as the power 
law index, n 
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7. CONCLUSION

In this study, the fluid flow behavior between 
double concentric cylinders was experimentally 
investigated using particle image velocimetry. Two 
different types of shear-thinning fluids were used 
and compared. By using a rotating cylinder with an 
electrically controlled motor, the Reynolds number 
was varied through the CCF, TVF and WVF 
regimes. The flow dynamics were examined using 
the measured velocity vector field in the vertical 
cross-section. The time-averaged velocity field 
indicated that the shear thinning effects of the 
working fluid induced the vertical elongation of the 
edge vortex and that the position of the vortex 
center was vertically displaced as the Reynolds 
number increased under the WVF regime. The 
critical Reynolds numbers for the transition to both 
TVF and WVF were affected by the shear-thinning 
characteristics of the working fluid. The lower 
index n enhanced the flow mode transition in 
contrast to that of Newtonian working fluids. In 
particular, the critical Reynolds number in the WVF 
regime was significantly decreased with the lower 
index n due to the reduced wall binding force in the 
vicinity of the rotating wall. 
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