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ABSTRACT: Management of ambient PM2.5 concentrations require understanding of their source 
contribution for the effective controlling of emission. This study is aimed to evaluate the performance of air 
quality dispersion model (AERMOD) in predicting ambient ground level PM2.5 and PM10 concentrations 
emitted from the largest industrial estate in Thailand as a demonstration case. Emission data in this study 
comprised of 247 industrial stacks were used together with local terrain features and meteorological data in 
2018 for the analysis. Evaluation of model performance was accomplished by statistical comparison between 
observed and modeled PM2.5 and PM10 concentrations. Results from statistical analysis indicated that 
predicted PM2.5 and PM10 concentrations data were lower than those measured ground level concentrations. 
This under-estimated prediction reveals less contribution of emission from industrial stacks towards ambient 
particulate concentrations. It also highlights the competence of current total particulate (all size) emission 
standard in controlling ambient particulate pollution (PM2.5 and PM10) particularly from industrial stack 
emission sources. 
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1. INTRODUCTION

Recently, they are great concerns on particulate 
pollution with focusing on fine particulate matter 
e.g. PM2.5 and PM10. The association between 
inhalation exposures to ambient fine particulate 
(PM2.5) and health impacts are well recognized and 
documented in many researches [1-7]. Particulate 
consists of solid and liquid phases. It is emitted 
directly from natural and anthropogenic activities. 
The secondary particulate can also be formed as a 
product of chemical transformation in the air [8]. 

Identification of emission sources and 
quantification of their contributions to the ambient 
concentration of pollutants has been a major focus 
of air quality research [9]. However, a big constraint 
on explanation of the source-receptor relationship 
of particulate pollution are due to different of the 
size of PM measured from the sources and at the 
receptors. Typically, PM emitted from the point 
sources are measured as total suspended particulate 
(all-size). For example, in Thailand, it is measured 
according to the US.EPA method 5 (isokinetic 
measurement). In contrast, the ambient particulate 
matters are measured according to their size i.e. 
PM2.5, PM10. This fact leads to limitation in 
evaluating the contribution of PM emitted from the 
source to the size-specific PM in the environment. 

This study presents the method to determine the 

choices to predict ambient PM2.5 and PM10 
concentrations emitted as PM from the industrial 
point sources. Three different tiers, are tested and 
evaluated for their abilities in using existing 
available emission data in predicting PM2.5 and 
PM10 ambient concentrations. To serve this 
objective, comprehensive analysis was conducted 
in the Maptaphut industrial complex where both PM 
emission and ambient PM2.5 and PM10 
concentrations are well reported and documented. 
The study area is the largest industrial complex in 
Thailand [10]. It is located in the Eastern region of 
the country (about 179 km from Bangkok). There 
are five industrial estates and the seaport. The 
industrial complex is homed to petroleum refinery, 
petrochemical industry, coal-fired power plant (coal 
and natural gas fired), metal industry, gas separation 
plant. Concern on environmental deterioration has 
been raised in this industrial complex, particularly 
with the issue related to air pollution. At present, 
this area has been set up as the pilot area to 
implement the concept of area-based management 
by considering both the individual emission limit of 
each point source as well as its area-based carrying 
capacity.  Sulfur dioxide (SO2) and nitrogen 
dioxide (NO2) are selected conventional pollutants 
in this implementation. Currently, the ambient 
concentrations of SO2 and NO2 measured in the 
vicinity of this industrial complex are within their 
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ambient air quality standards. Performance of the 
model was comprehensively assessed by comparing 
predicted data with intensively measured data from 
continuous ambient air quality monitoring stations 
located in the vicinity of the industrial area. 

2. RESEARCH SIGNIFICANCE

Emission standard of particulate matter are 
usually designated as total dust (all size) which 
make difficulty in determining the extent and 
magnitude of PM2.5 and PM10 contribution from 
the industrial source. This study comprehensively 
evaluated the contribution of industrial emission 
toward PM 2.5 and PM10 ambient concentrations 
under the worst case assumption (all emitted dust 
are PM2.5 and PM10). Finding of this research is 
very much useful to be used and be supported to 
describe the source contribution of particulate 
matter particularly when a need of controlling 
PM2.5 and PM10 are raised and focused to the 
industrial stack source. 

3. METHODOLOGY

3.1 Model Configuration 

The AERMOD version 9.9.0 dispersion model 

was used in this study. It is a steady-state air 
dispersion model used as a regulatory model in 
Thailand. The horizontal and vertical distribution of 
air concentration are simulated through the 
Gaussian dispersion. The model is preferred to 
apply in predicting ground level concentrations of 
air pollutants for a short-range (< 50 km from the 
source) [11]. In this study the modeling domain was 
configured to cover an area of 12.5 × 12.5 km2 with 
the finest horizontal and vertical grid spacing of 100 
m. Study domain was centered at 12.616325°N,
101.263349°E. Topographical characteristics of the 
study domain were derived from the Shuttle Radar 
Topography Mission (SRTM3). Emissions of total 
dust from industrial point sources were derived 
from the Maptaphut emission database of the year 
2020 reported to the Office of Natural Resources 
and Environmental Policy and Planning [12]. These 
data consisted of geographical coordinates, stack 
height (m), stack diameter (m), exhausted 
temperature (K), stack exit velocity (m/s) and total 
dust emission rate (g/s) of each stack. Totally, there 
were 247 stacks used as emission input in this 
analysis. Spatial distribution of emission sources is 
illustrated in Figure 1. 

Fig 1. Study domain
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The upper air characteristics in this study were 
obtained from the simulation of the weather 
research forecast (WRF) model while the surface 
meteorological features were obtained from the 10 
meters’ height meteorological tower located within 
the study domain. Data were prepared on the hourly 
basis covering the year 2018 (1st January – 31st 
December 2018).  These data were prepared as the  

AERMET format. For the model verification 
purpose, AERMOD was simulated during the 
period from August – October 2018 with regards to 
availability of measured ambient PM2.5 and PM10 
concentrations. The wind rose during this period 
was generated using the WRPLOT feature within 
the AERMET module of AERMOD (Figure 2). 

Fig 2. Wind rose in August – October 2018 

3.2 Ambient PM2.5 and PM10 

      Monitoring data of ambient PM2.5 and PM10 
used in this study was chosen from the station at the 
health promotion hospital Maptaphut (HMTP) 
taking into consideration the highest number of 
available data. PM2.5 and PM10 ambient 
monitoring data during the period from 1st August – 
31st October 2018 were selected for model 
evaluation due to availability (completeness) of 
measured data from monitoring station. 

3.3 Model Performance Evaluation 

Evaluation of model performance was 
accomplished by statistical comparison between 
observed and modeled PM2.5 and PM10 
concentrations covering the period from 1st August 
– 31st October 2018. Statistical tools used to serve
this purpose were Observed Mean (Omean), 
Predicted Mean (Pmean), Observed Standard  

Deviation (Ostd), Predicted Standard Deviation 
(Pstd), Pearson correlation coefficient (r2), Root 
Mean Square Error (RMSE), Index of Agreement 
(IOA), Fractional Bias (Fb), Fraction Variance (Fs) 
and the Robust Highest Concentration (RHC). 
Hourly predicted results were compared with those 
measured PM2.5 and PM10 concentrations. 
Statistical indicators used in this evaluation were 
followed the previous studies by [13 & 14] and as 
shown in Equations (1) - (10). 
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Where 
O i = Observed data 
P i = Predicted modeled data 

C(R) = the Rth highest concentration 
 C  = the mean of the top R-1 concentrations

4. RESULTS AND DISCUSSION

4.1 PM2.5 and PM10 Concentrations 

Predicted ground level concentrations of PM2.5 
and PM10 at receptor were simulated from 
AERMOD model. Predicted data were on an hourly 
basis were compared with those measured data 
during the same period (1st August – 31st October 
2018). Overall performances of the model were 
evaluated using fractional bias (Fb) and fractional 
variance (Fs). A closer to zero, a better of model 
performance is shown. The values can be varied 
between -2 and 2, with a negative value indicating 
over-prediction [15]. Statistical analysis of the 
model performances is presented in Table 2 and 
Table 3. As for overall performance, it was found 
that AERMOD under-estimated PM2.5 and PM10 
concentrations measured at receptor point. Even 
though there is a good correlation between observed 
and predicted data (r2 ⁓ 0.8), the index of agreement 
(IOA) is unacceptable for both PM2.5 and PM10 
(IOA < 0.5). This can be explained by the fact that 
emission rates used to model PM2.5 and PM10 in 
this study were only from the point (stack) sources. 
However, ambient concentrations of particulate 

matter can also be contributed by other emission 
sources particularly mobile and on-site local 
sources. Even though there is a large difference 
between observed and predicted data, this study can 
answer our hypothesis on the influence as well as 
extent and magnitude of the dust emitted from the 
industrial sources on their potential contribution to 
the ambient particulate concentrations. 

Table 2 Performance evaluation statistics for PM2.5 
concentrations 

PM2.5 observed predicted 
No. of samples 2112 2112 

Mean 18.20 2.46 
S.D. 8.31 5.92 

r2 0.80 
RMSE 16.54 
IOA 0.50 
Fb 1.52 
Fs 0.34 

RHC 52.77 49.73 

Table 3 Performance evaluation statistics for PM10 
concentrations 

PM10 observed predicted 

No. of samples 2112 2112 

Mean 36.65 2.46 

S.D. 12.43 5.92 

r2 0.79 

RMSE 35.25 

IOA 0.37 

Fb 1.75 

Fs 0.71 

RHC 88.26 49.73 
Note: S.D.; Standard deviation, r2; Correlation coefficient 
RMSE; Root mean square error, IOA; Index of agreement, Fb; 
Fractional bias, Fs; Fractional variance, RHC; Robust highest 
concentration

The ability of the model to predict extreme end 
concentrations (episode) of PM2.5 and PM10 were 
evaluated by comparing high end percentiles (90th, 
95th, 99th, 99.5th, 99.9th), maximum and the robust 
highest concentration (RHC) of measured and 
predicted PM2.5 and PM10 data as illustrated in 
Figure 3. It was found that predicted PM2.5 and 
PM10 concentrations results were lower than 
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measured data. However, under the assumption that 
all of the particulate emitted from the industrial 
stack sources were in the size of PM2.5, the gap 
between predicted and observed high end 
concentrations can be lower down. Hence, the study 
elucidates the possibility to apply this concept to 

evaluate ambient PM2.5 concentrations when the 
emission rates of specific size of particulate are not 
available since the concern on potential health 
impact can be assessed using the high-end 
concentration for the health conservative purpose.  

Fig 3. Mean, percentiles, maximum, and RHC for predicted and observed (a) PM2.5 and (b) PM10 
concentrations 

       Figure 4 (a) illustrates spatial distribution of the 
highest 1-hour average concentration for each 
uniform Cartesian grid. High concentrations were 
occurred in the northwest direction of the emission 
sources due to the influence of the South Easterly  
wind. In order to evaluate whether these high 
concentrations were probably occurred only for 
couple hours, we also evaluate for the 98th 
percentile of the predicted data as shown in Figure  

5 (b). The maximum and the 98th percentile of 1-hr 
average within the modeling domain were 171 and 
46 µg/m3, respectively. Therefore, the maximum 
concentration may be just occurred as a peak from 
unfavorable meteorological condition during the 
modeling periods. The results clearly indicated the 
affected areas located downwind from the major 
prevailing wind (Southeastern & Southwestern 
winds)
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Fig 4. Plot file of PM2.5 concentrations (µg/m3) (a) 1st highest 1-hr (b) 98th percentile of 1-hr 
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4.2 Bivariate Polar Plot Results 

The conditional bivariate probability function 
(CBPF model) was applied to illustrate the  

magnitude of PM2.5 and PM10 concentrations with 
respect to wind characteristics (wind speed and 
wind direction). The CBPF diagram was plotted 
through the openair R package (open-source polar 
plot function). Hourly particulate concentrations 
were used together with measured wind speed and 
wind direction from the same monitoring station to 
draw the CBPF plot as illustrate in Figure 5. For 
better explanation and interpretation of the results, 
the air quality guideline regulated by New Zealand 
was applied.  

Detail of the guideline was presented elsewhere 
[16]. Results revealed that high concentrations of 
PM2.5 and PM10 were predominantly dispersed 
from southwest directions. These directions are 
situated by the industrial complex (about 1 
kilometer away from southwest direction of HTMP 
monitoring station). Moreover, under the calm wind 
condition (wind speed < 0.5 m/s), concentrations of 
PM2.5 and PM10 were within alert category (66% 
- 100% from the ambient air quality standard). 
Considering that this monitoring site is located not 
too far the curbside of the road, the result revealed 
the influence of traffic emission to measured PM2.5 
and PM10 concentrations at this site. 

Fig 5. Bivariate polar plot of (a) PM2.5 and (b) PM10 concentration at HTMP monitoring station 

Results from this study demonstrated that using 
AERMOD coupled with CBPF is success in 
identification of the potential PM2.5 and PM10 
emission sources. AERMOD results showed that 
the predicted data from model was close to PM2.5 
concentrations than PM10 concentrations at the 
interested receptor points. Taking into 
consideration that there are many industries located 
in both southwest directions from HMTP 
monitoring station, results from the bivariate polar 
plot clearly indicated that those emissions from 
southwest directions were greatly affected to high 
ambient concentrations measured at the receptors.  

5. CONCLUSION

AERMOD air dispersion model was evaluated 
for its performance to predict ground level PM2.5 
and PM10 concentrations. Study area was 
Maptaphut industrial area, Thailand. Total dust 
emission data comprised of 247 stacks located in 

the study domain. These emissions were assumed as 

constant value for each source over the simulated 
period. Predicted results were compared with those 
observed data and the performance of the model 
were statistically evaluated. Comparisons of 
modeled and observed results indicated that 
predicted PM2.5 and PM10 concentrations data 
were lower than those measured ground level 
concentrations (under prediction). The key finding 
from this study reveals that industrial stacks are not 
the major emission sources contributed to ambient 
PM2.5 and PM10 concentrations. This study also 
highlights that the current total dust (all size) 
emission standard is adequate in controlling 
ambient particulate (at every cut size) pollution. 
The effort in controlling of existing PM2.5 and 
PM10 ambient concentrations should be focused on 
other major contributing sources i.e. mobile sources, 
construction and open burning activities to reach the 
effective management of particulate pollution. 
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