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ABSTRACT: In this research, climate variability is discussed as the main important problem in the world. 
Because the extreme event has impacted the naturally changed and the results of the naturally changed are 
many severe damages varying accordingly in a wide range of territory over the world. These damages include 
storms, sea-level rise, floods, and droughts. The El Niño-Southern Oscillation (ENSO) is one of the primaries 
of the climate variability under current concern. Therefore, the aim of this research is to study the mechanism 
of Sea Surface Temperature Anomaly (SSTA) during 2011–2020 and simulate SSTA over the Pacific Ocean 
and Niño 3.4 area in advance. The results of ICM are compared with the Extended Reconstructed Sea Surface 
Temperature (ERSST) observation dataset. Through time series analysis, the result from the ICM model can 
capture the highest value in 2016, similar to the ERSST observation. However, in the time series pattern, the 
results from Case I (simulation six months in advance) exhibited a good trend than Case II (simulation 12 
months in advance). In statistical analysis, the values from statistical analysis, the statistical values (R, RMSE, 
ME, and MAE) of six months in advance revealed a good accuracy value from 12 months in advance. In 
conclusion, the ICM model showed high-performance results indicating simulation of SSTA over the Pacific 
Ocean and Niño 3.4 area, especially in the case of six months in advance. 
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1. INTRODUCTION

Climate variability has been becoming one of 
the main global problems at present. Because, 
naturally and gradually changed, a great period time 
to be noticeable. The variability has stayed for vary 
many years. Climate variability has a wide variety 
of dramatic impacts that cause severe damages, 
which vary according to a wide range of territory 
across the world—for example, extreme events, 
storms, sea-level rise, floods, and drought. One of 
the primary drivers of the climate variability under 
current concern is El Niño-Southern Oscillation 
(ENSO) phenomenon. 

The mechanism of the ENSO phenomenon 
separates into three phases: 

The first phase is the El Niño event. This event 
occurs when abnormally warm waters accumulate 
in tropical latitudes of the central and eastern Pacific 
Ocean associated with weakening the low-level 
easterly winds. Consequently, tropical rain usually 
falls over South East Asia and Australia. 

The second phase is the La Nina event. This 
event occurs when cooler than average waters 
accumulate in the central and eastern tropical 
Pacific Ocean, associated with a strengthening of 
the low-level easterly winds over the central 
tropical Pacific Ocean. Heavy rainfall occurs over 

South East Asia and Australia. 
The third phase is ENSO-neutral. This event is 

a normal event in the Pacific Ocean; strong trade 
wind blows from the east along the equator and 
pushes warm water in the western Pacific Ocean. 
Normal rainfall occurs over Southeast Asia and 
some parts of Australia. 

The ENSO impact is in the areas closest to the 
equatorial Pacific Ocean. El Niño and La Nina are 
such powerful forces that can shift seasonal 
precipitation and temperature patterns around the 
globe. These movements, known as 
teleconnections, occur via the impact of tropical 
SST on the upper atmosphere. 

The ENSO index calculated the average Sea 
Surface Temperature Anomaly (SSTA) in the Niño 
3.4 area. Scientists refer to that swath as the Niño 
3.4 region. The observed difference from the 
average temperature in that region, whether warmer 
or cooler, is used to indicate the current phase of 
ENSO. 

So, one of the most challenging problems of 
simulation SSTA over the Pacific Ocean in the Niño 
3.4. As the SSTA simulation is crucial for risk 
assessment in Thailand’s increasingly demanding 
agricultural, industrial and domestic sectors [1–3], 
this research aims to investigate the mechanism 
trend SSTA during 2011–2020 and simulation 
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SSTA over the Pacific Ocean in the Niño 3.4 area. 
The results from ICM are compared with the 
ERSST observation dataset. 

The rest of this paper is structured as follows: 
Section 1: Introduction of this research. Section 2: 
Description of the observation data, model, study 
area, statistical analysis method, and experiment 
design. Section 3: Study of ERSST observation, 
results from the model, and discuss results with 
observation data depending on time simulation. 
Section 4: Conclusions. 

2. MATERIALS AND METHODS

This part describes methods of this research that 
include detail of observation data in subsection 2.1, 
information of the Pacific model of this research in 
subsection 2.2, the domain of study area in 
subsection 2.3, and statistical analysis in subsection 
2.4. 

2.1 Extended Reconstructed Sea Surface 
Temperature (ERSST) dataset 

The Extended Reconstructed Sea Surface 
Temperature (ERSST) dataset is a global monthly 
SSTA dataset developed from the International 
Completeness Ocean-Atmosphere Dataset 
(ICOADS). The SSTA data of ERSST computed 
based on a 1971–2000 monthly climatology. The 
data production of the ERSST is on a 2oÍ2o global 
grid with statistical analysis forced spatial pattern. 
The spatial of ERSST cover area between latitude 0 
E to 358.0 E and longitude 88 N to 88 S. The 
monthly period time of ERSST begins in January 
1854, continuing to the present. The updated 
version of ERSST, version 5, utilizes new data 
collections from ICOADS Release 3.0. SST comes 
from Argo floats above 5 meters and ice 
concentration from Hadley Centre Ice-SST version 
2. The spatial and temporal variability improves in
ERSSTv5 through (a) decreasing spatial filtering in 
training the reconstruction functions Empirical 
Orthogonal Teleconnections (EOTs), (b) 
eliminating high latitude damping in EOTs, and (c) 
adding 10 more EOTs in the Arctic. ERSSTv5 
improved total SST by changing from utilizing 
Nighttime Marine Air Temperature (NMAT) as a 
reference to buoy-SST as a reference in correcting 
ship SST biases [4–6]. 

In this research, the ERSST observation dataset 
uses to verify the results from the model. The 
location of the study area covers the Pacific Ocean 
and Niño 3.4, as shown in subsection 2.4. 

2.2 Intermediate Coupled Model (ICM) 

The dynamical component of ICM was 
developed [7], consisting of linear and non-linear 

components. The linear component is substantially 
from McCreary–type modal model [8]. A 
horizontally varying background stratification: ten 
baroclinic modes with a parameterization of local 
Ekman-driven upwelling are included. A correction 
scheme derived from the residual non-linear 
momentum equation that included to decrease the 
amplitude of zonal currents in the equatorial belt foe, 
which is overestimated by the linear dynamical 
model. As a direct result of these extensions, the 
model can realistically simulate the mean upper-
ocean equatorial circulation and its variability [9–
10]. 

The governing equation determining the 
evolution of interannual SST variability in the 
surface mixed layer can be written as [7]: 

𝜕𝑇#
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Here, 𝑇#  and 𝑇#!  are anomalies of SST and the 
temperature of subsurface water entrained into the 
mixed layer; 𝑢́ , 𝑣́  and 𝑤́  are anomalies of ocean 
currents (horizontal and vertical) in the surface 
mixed layer. 𝐻$ is a constant (125 m); 𝑀(𝑥) is the 
Heaviside function; 𝜅"  and 𝜅#  are horizontal 
diffusion and vertical mixing parameters, 
respectively; and other variables are mean 
climatology fields. These components are used to 
calculate SST changes from the equation given 
above. 

The domain of the ICM model covers from 33.5 
S to 33.5 N and from 124 E to 70 W and includes 
the tropical Pacific with a realistic representation of 
continents. In the spatial pattern, the ICM model has 
a 2o zonal grid spacing and a meridional grid 
stretching from 0.5o within 10o of the equator to 3o 
at the northern and southern boundaries. Vertically, 
a 5500 m flat-bottom ocean is assumed; the linear 
component has 33 levels, chosen as in the Levitus 
[11], with eight levels in the upper 125 m. The two 
layers used to simulate the non-linear effects and 
high order baroclinic modes span the upper 125 m 
and are separated by the observed surface mixed 
layer [9–10].

2.3 Statistical analysis methods 

The four statistical analysis methods were 
calculated using the Correlation Coefficient (R), 
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Root Mean Square Error (RMSE), Mean Error (ME), 
and Mean Absolute Error (MAE). 

The value of the Correlation Coefficient (R) is 
such that −1≤ R ≤+1. The positive (+) and negative 
(−) signs are used for positive linear correlations 
and negative correlations, respectively. In a positive 
correlation case: if the two variables have a strong 
positive linear correlation, R is close to +1. An R-
value of exactly +1 indicates a perfect positive fit. 
The positive values mean a relationship between 
two variables in the same direction. On the other 
hand, negative correlation case: if the two variables 
have a strong negative linear correlation, R is close 
to –1. An R-value of exactly –1 indicates a perfect 
positive fit. The negative values mean a relationship 
between two variables in the opposite direction. The 
Correlation Coefficient (R) can be defined by the 
following equation: 

𝑅 =
∑(𝑥% − 𝑥̅)(𝑜% − 𝑜̅)

F∑(𝑥% − 𝑥̅)$F∑(𝑜% − 𝑜̅)$

The value of RMSE close to zero indicates good 
simulation results, while RMSE is zero that means 
indicates a perfect model. The can be defined by the 
following equation: 

𝑅𝑀𝑆𝐸 = I∑(𝑥% − 𝑜%)
$

𝑛

The value of ME measure sums the values of these 
errors and divides it by the number of simulations 
to give an average error. ME value near zero 
indicate a good estimate. If the ME value is zero, 

that means indicate a perfect estimate. The ME can 
be defined by the following equation: 

𝑀𝐸 =
∑(𝑥% − 𝑜%)

𝑛

The value of MAE measure sums the absolute 
values of these errors and divides it by the number 
of simulations to give an average error. MAE value 
near zero indicates a good estimate. If the MAE 
value is zero, that means indicate a perfect estimate. 
The MAE can be written as: 

𝑀𝐴𝐸 =
∑|𝑥% − 𝑜%|

𝑛

Here, 𝑥% is defined as the simulation variable, 𝑥̅ 
is defined as the mean variable of simulation, 𝑜% is 
defined as the observation variable, 𝑜̅ is defined as 
the mean variable of observation, 𝑛 is defined as the 
number of pair of observations and simulation 
variable, 𝑖  pair of observations and simulation 
values. This research was focused on the R, RMSE, 
ME, and MAE to validate performance simulation 
accuracy with the observation dataset. 

2.4 Domain description and experiment design 

The domain experiment covers the Pacific 
Ocean and the Niño 3.4 area. The domain of the 
Pacific Ocean is situated between latitudes 33.5 S to 
33.5 N and longitudes 124 E to 70 W. On the other 
hand, the domain of the Niño 3.4 area is situated 
between latitudes 5 S to 5 N and longitudes 190 E 
to 120 W, as shown in Fig 1.

Fig 1 The domain of the Pacific Ocean and Nino 3.4 in this research 

In this research, the experiment design was 
included three cases of SSTA simulation analysis 

from the ICM model. The first case analysis was 
from 2011 to 2015 (5 years), the second was from 
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2016 to 2020 (five years), and the last case analysis 
was from 2011 to 2020 (10 years). The model 
process was prepared initial data in prior December 
simulation year then predict the SSTA results by 

ICM model from January to December (January to 
June) in simulation 12 months in advance (six 
months in advance). The materials and methods are 
summarized in Table 1.

Table 1 Summary of the experiment design in this research 
Prediction system Detail 
Pacific model Intermediate Coupled Model (ICM) 
Observation dataset Extended Reconstructed Sea Surface Temperature (ERSST) dataset 
Initial conditions ERSST dataset in prior December simulation year 
Study area - Pacific Ocean (latitudes 33.5 S to 33.5 N and longitudes 124 E to 70 W) 

- Nino3.4 (latitudes 5 S to 5 N and longitudes 190 E to 120 W) 
Simulation period time 2011-2020 (10 years) 
Statistical analysis methods - Correlation Coefficient (R),  

- Root Mean Square Error (RMSE), 
- Mean Error (ME) and Mean Absolute Error (MAE) 

Case analysis Case I: simulation 6 months in advance 
Case II: simulation 12 months in advance 

3. RESULTS AND DISCUSSION

For determination of SSTA over the Pacific 
Ocean change in 2011–2020 observation data, 
which were separated in 2011–2015 (5 years) 
periods, in 2016–2020 (5 years) periods, and 2011–
2020 (10 years) periods. 

Consider analysis shows that under the 
influence of global SSTA in the Pacific Ocean, 
during 2011–2020 (almost 10 years) total amount of 
SSTA experience the following changes: during the 
period, the SSTA amount varies from 2.6 ℃ to 3.6 
℃ (Fig 3(a)). In Niño 3.4 area, during 2011–2020 
(almost 10 years) total amount of SSTA experience 
the following changes: during the period, the SSTA 
amount varies from −0.2 ℃ to 2.3 ℃ (Fig 3(b)). 

In period I (2011–2015), the total amount of 
SSTA on the Pacific Ocean change from 0.3 ℃ to 
1.3 ℃. The SSTA changes from 0.3 ℃ to 1.3 ℃ (in 
January to June) and changes from 1.2 ℃ to 1.3 ℃ 
(in July to December), as shown in Fig 3(a). In Niño 
3.4 area, the SSTA change from −2.7 ℃ to 2.6 ℃. 
The SSTA changes from −2.4 ℃  to 0.8 ℃  (in 
January to June) and changes from 1.4 ℃ to 2.6 ℃ 
(in July to December), as shown in Fig 3(b). 

In period II (2016–2020), the total amount of 
SSTA on the Pacific Ocean changes from 1.5 ℃ to 
2.7 ℃. The SSTA changes from 2.3 ℃ to 2.3 ℃ (in 
January to June) and changes from 2.4 ℃ to 1.5 ℃ 
(in July to December). In Niño 3.4 area, the SSTA 
change from −1.4 ℃ to 2.8 ℃. The SSTA changes 
from 2.2 ℃  to 1.6 ℃  (in January to June) and 
changes from 0.2 ℃  to −0.5 ℃  (in July to 
December). 

However, the trend of SSTA of three cases 
(2011–2015, 2016–2020, and 2011–2020) shows 
variably SSTA. In case of the Pacific Ocean (Fig 
2(a)), the maximum trend can be seen in December 
of 2011–2015 (1.3 ℃), April of 2016–2020 (2.7 ℃), 
and May of 2011–2020 (3.6 ℃), while minimum 
trend can be seen in January of 2011–2015 (0.3 ℃), 
December of 2016–2020 (1.5 ℃), and January of 
2011–2020 (2.6 ℃). On the other hand, in case of 
the Niño 3.4 (Fig 2(b)), the maximum trend can be 
seen in December of 2011–2015 (2.6 ℃), March of 
2016–2020 (2.8 ℃), and May of 2011–2020 (2.3 
℃); however, minimum trend is shown in January 
of 2011–2015 (−2.7 ℃), in November of 2016–
2020 (−1.4 ℃), and January of 2011–2020 (−0.2 ℃). 

According to data of SSTA (2011–2020), in the 
mentioned period, during two periods of 5 years. 
The period is observed the change in SSTA amount 
from 2011–2015 to 2016–2020; the annual SSTA 
increased by 1.3 ℃ in the Pacific Ocean case. On 
the other hand, in Niño 3.4, the annual SSTA 
increased by 0.6 ℃. 

Materials of observation over the annual SSTA 
amount in 2011–2020 are presented in Fig 4. The 
maximum SSTA was recorded in 2016 (0.6 ℃) and 
the second maximum was recorded in 2015 (0.5 ℃), 
while the minimum SSTA was recorded in 2011 (–
0.1 ℃) and the second minimum was recorded in 
2012 (−0.1 ℃) in Pacific Ocean case. On the other 
hand, in Niño 3.4 case, the maximum SSTA was 
recorded in 2015 (1.3 ℃) and the second maximum 
was recorded in 2016 (0.7 ℃), while the minimum 
SSTA was recorded in 2011 (−0.8 ℃ ) and the 
second minimum was recorded in 2020 (−0.4 ℃).
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(a) 
Pacific Ocean 

(b) 
Nino 3.4 

Fig 2 The SSTA mean for each period according to a month in 5 years period during 2011–2020 (a) the Pacific 
Ocean (b) Niño 3.4. 

Fig 3 The SSTA mean in five years period during 2011 to 2020 over the Pacific Ocean and Niño 3.4 

Fig 4 The annual variation of SSTA mean during 2011–2020 over the Pacific Ocean and Niño 3.4 
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In this research, the Pacific Ocean model (ICM 
model) to forecast SSTA over the Pacific Ocean and 
Niño 3.4 area. The prediction period was estimated 
from January to December from 2011 to 2020. For 
case analysis separate in two cases: 

Case I: Simulation six months in advance 
(January–June) 

Fig 5(a) shows the comparison of SSTA values 
during 2011–2020, between results from ERSST 
observation (blue line) and ICM model (red line) 
over the Pacific Ocean. The results from the ICM 
model showed good trend results in 2011–2016. In 
2017 and 2018, the results underestimated SSTA 

than ERSST observation. In 2019 and 2020, the 
ICM model showed a good trend result than in 2017 
and 2018. 

Fig 5(b) shows the comparison of SSTA value 
during 2011–2020, between results from ERSST 
observation (blue line) and ICM model (red line) in 
over the Niño 3.4 area. The results from the ICM 
model showed good trend results from the 2014–
2016 and 2019–2020 periods. In 2012 and 2013, the 
results from ICM overestimated SSTA while 
showing underestimate SSTA in 2017 and 2018. 
However, the result from the ICM model can 
capture the highest value in 2016, similar to ERSST 
observation. 

(a) (b) 
Fig 5 The comparison SSTA simulation 6 months in advance (from January – June) from 2011-2020 between 
results from ERSST observation (blue line) and ICM model (red line) (a) Pacific Ocean (b) Nino 3.4 area. 

Case II: Simulation 12 months in advance (from 
January – December) 

In Fig 6(a), the comparison SSTA value in 
2011-2020 between results from ERSST 
observation (blue line) and ICM model (red line) 
over the Pacific Ocean. The results from the ICM 
model were shown a good trend results in 2013-
2015. Since, in 2016-2019, the results were 
underestimated SSTA than ERSST observation. In 
mid-2011 and 2013, the ICM model shown an 
overestimate trend result than ERSST observation. 

In Fig 6(b), the comparison SSTA value in 
2011-2020 between results from ERSST 
observation (blue line) and ICM model (red line) in 
over the Nino 3.4 area. The results from the ICM 
model were shown good trend results in the 2013-
2016 and 2019-2020 periods. Since, in 2012, 2013, 
and 2020 the results from ICM were overestimated 
SSTA, while, shown underestimate SSTA in mid-
2015, 2017, and 2018. However, the result from the 
ICM model still captures the highest value in 2016 
similar to ERSST observation same Case I.  

(a) (b) 
Fig 6 The comparison SSTA simulation 12 months in advance (from January – June) from 2011 – 2020 between 
results from ERSST observation (blue line) and ICM model (red line) (a) Pacific Ocean (b) Nino 3.4 area. 
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The results of the ICM model can indicate a 
trend of SSTA time series within some period. 
However, in the time series pattern, the results from 
Case I (simulation six months in advance) showed 
a good trend than Case II (simulation 12 months in 
advance). 

In this research, to quantify the ability of the 
ICM model to produce SSTA over the Pacific 
Ocean and Niño 3.4 area, the statistical value R, 
RMSE, ME, and MAE, as shown in Table 2. 

In the Pacific Ocean, in case of the R values of 
six months in advance, good accuracy is shown in 
2011–2015 (0.73), 2016–2020 (0.53), and 2011–
2020 (0.56) than the value from 12 months in 
advance. In the case of RMSE, ME, and MAE, the 
value of six months in advance shows still a better 

value than all cases of 12 months in advance. 
In Niño 3.4, the R values of six months in 

advance showed good accuracy in 2011–2015 
(0.70), 2016–2020 (0.73), and 2011–2020 (0.70) 
than the value from 12 months in advance as same 
as the R-value from the Pacific Ocean. In the case 
of RMSE, ME, and MAE, the value of six months in 
advance show still a better value than all cases of 12 
months in advance, as same as the statistical value 
from the Pacific Ocean. 

However, in statistical analysis, the statistical 
value (R, RMSE, ME and MAE,) of six months in 
advance were given a good accuracy from the 12 
months in advance, as shown in the same direction 
with the time series pattern in this research. 

Table 2 Statistical analysis between ERSST observation and ICM model (unit:	℃). 

Period time Lead time 
Statistical analysis 

Pacific Ocean Nino 3.4 
R  RMSE ME MAE R RMSE ME MAE 

2011–2015 

06 months 0.73 0.13 0.07 0.11 0.70 0.64 -0.40 0.50 

12 months  0.35 0.23 0.11 0.18 0.42 0.90 -0.42 0.76 

2016–2020 

06 months  0.53 0.19 0.34 0.53 0.73 0.76 0.01 0.53 

12 months  0.41 0.20 0.39 0.54 0.60 0.91 -0.05 0.70 

2011–2020 
06 months 0.56 0.21 0.21 0.23 0.70 0.73 -0.19 0.51 

12 months  0.25 0.26 0.25 0.29 0.50 0.92 -0.23 0.73 

4. CONCLUSION

This research investigated ICM model
simulations with SSTA over the Pacific Ocean and 
Niño 3.4 area. The prediction period was estimated 
for January to December from 2011 to 2020. The 
case analysis is separate in two cases: 

Case I: Simulation six months in advance 
(January–June) 

Case II: Simulation 12 months in advance 
(January–December) 

In Case I, the time series results from the ICM 
model showed good trend results in 2011–2016. But, 
in 2017 and 2018, the time series were 
underestimated SSTA than ERSST observation. In 
2019 and 2020, the ICM model shows a good trend 
result than in 2017 and 2018, as in the Pacific Ocean 
case, while, in Niño 3.4 case, the results from the 
ICM model show a good trend result in 2014–2016 
and 2019–2020 period. Since, in 2012 and 2013, the 

results from ICM show overestimated SSTA but 
underestimated SSTA in 2017 and 2018. 

In Case II, the Pacific Ocean case, the time 
series from the ICM model showed good trend 
results in 2013–2015. On the other hand, in 2016–
2019, the results were underestimated SSTA than 
ERSST observation. In mid-2011 and 2013, the 
ICM model shows an overestimated trend result 
than ERSST observation. In contrast, the time series 
from the ICM model shows good trend results in the 
2013–2016 and 2019–2020 periods. Since, in 2012, 
2013, and 2020 the results from ICM show 
overestimated SSTA but underestimated SSTA in 
mid-2015, 2017, and 2018. 

From time series analysis, the result from ICM 
model can capture the highest value in 2016 similar 
to ERSST observation. The results of the ICM 
model can indicate a trend of SSTA time series 
within some period. However, in the time series 
pattern, the results from Case I (simulation six 
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months in advance) show a good trend than Case II 
(simulation 12 months in advance). 

In statistical analysis, the statistical value (R, 
RMSE, ME, and MAE) of six months in advance 
were given a good accuracy value from the 
statistical value from 12 months in advance, as 
shown in the same direction with the time series 
pattern in this research. In conclusion, the ICM 
model was high-performance results to simulate 
SSTA six months in advance over the Pacific Ocean 
and Niño 3.4 area. 
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