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ABSTRACT: This paper is to do a brief research on the bugktiehavior of composite triangular plates with
various edge boundary conditions and in-plane lokdsay be regarded as a right and simple numemeghod

for the analysis of composite triangular thin plagén

g the natural Area coordinates. Previous studin the

solution of triangular plates with different boungaonditions were mostly based on the Rayleigtz-Ritnciple
which is performed in the Cartesian coordinatehla method, the energy functional of a generahgular plate
is derived and the Rayleigh-Ritz method is utilizedlerive the governing eigenvalue equation fertibickling
problem. The geometry is presented in a naturalbyaymapping a parent triangle and the integralsesetuated
analytically. The polynomial terms in the Area atioates are employed to interpolate plate deflectio this
approach, the convergence is always assured dthetoompleteness of interpolating polynomials. Bsiee
buckling factors are presented for several seledtgdt-angled and isosceles triangular plates ofous edge
support conditions and subjected to composite phétes under various in-planes compressive loadstlam

results are validated to the other results.
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1 INTRODUCTION

In many engineering applications such as isogrigctires
(waffle plates), reinforced plates or panels, adraetures,
., it is very important to predict buckling befa of
triangular plates. Buckling phenomenon is critigall
dangerous to structural components because théimgiok
plates usually occurs at a lower applied stresgendrates
large deformation. This led to a focus on the stody
buckling behavior in plates or panels. The useoofigosite
materials in place of more traditional isotropictengls has
increased dramatically over the past decades asaech
as the civil and aerospace industry. With the wide of
composite plate structures in modern industriesadyic
and static analysis of plates of complex geomeggomes
an important part of engineering design. Composi
materials have been widely used due to their exceligh
strength-to-weight ratio, modulus-to-weight ratiodathe
controllability of the structural properties witlanation of
fiber orientation. The problem regarding bucklirfigptates

under various shapes and boundary conditions has be

studied in some famous classic and academic refertenxt
books [1,2] and some of numerous literature woBk6][

It is interesting to note that buckling of trianguplates has
received far less attention than
counterparts. Woinowsky-Krieger [7] derived the &xa
buckling load for a simply supported equilater@ngular
plate under an isotropic in-plane compressive loal
Burchard [8] studied the buckling of simply suppeait
right-angled triangular plates under uni-axial coaggion.
There are several researches investigated theibgaki
isosceles triangular plates under various loadamglitions.
Wakasugi [9,10] investigated the buckling of simply

supported and clamped equilateral triangular plates
Conway and Leissa [11] searched the buckling of
equilateral triangular plates subjected to isotrapiplane
compression. Tan et al. [12] and Tan [13] employfes
finite element method to study the buckling of gahe
triangular plates. In the recent years, Wang amavL]iL4]
utilized their pb-2 Rayleigh-Ritz method to investie the
buckling of isosceles and right-angled trianguldates
under isotropic in-plane compressive load.

The basic aim of this research is to study and tbaite the
effect of plate geometry aspect ratio and fibeemtation to
determine critical value of buckling load factorr fa
composite triangular plate of various boundary diors
and various in-plane (compression and shear) Idgds

t%sing an approximate-analytical solution for ficsitical

mode predominantly.

2 THEORETICAL FORMULATION
2.1 Area Coordinate

In this section, the use of triangular coordindteslefine
the interior of a triangular area is briefly debed. This
description is important when formulating trianguiiaite

their rectangulaﬁ'lements' The triangle in Fig. 1 is defined by damates

xi,yz,)of its vertices in the coordinate systéMir,y).

gartesian coordinates are usually employed to desany

point (%’yo) on a rectangular area. They are, however,

difficult to use when the boundary and the interidra
triangular area need to be defined. In order tandeé

triangular area, the coordinateso, yo) can be expressed
in the following way,
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T = mlLl + $2L2 + :1:3L3
y =y, L, +y,L, +y,L

3

Thin plate theory is used in the present analy$isvever,
to obtain the strains differentiation operator witispect to
Cartesian coordinates needs to be carried out.i§liene

where L , L,, L, are triangular coordinates. The values of'® follows,

the triangular coordinate range between 0 and Invihe
following constraint is used,

L+L+L =1 @

g 2('1"27 yg)

1($1, yl)

0

Fig. 1. Area coordinates in arbitrary triangular plate

Equation (1) together with (2) can be used to definy
point (:cﬂ,yo) in the triangle. The coordinates

L,L, L, represent dimensionless areas of triangles

Zl, ZQ, Z:s as depicted in Fig. 1. These coordinates can
expressed as follows:

A+A4,+4=4
i €)
L =— =123
A
whereA is the area of the triangle defined as,
T T, Z,
— 4
2A - yl yg y3 ( )
1 1 1

when constraint (2) is accounted for, the triangula

coordinates can be solved from (5) as follows,
L :i(a. +Br+7y), =123 )
2 2A 2 2 3

Where a, a coefficient that depends on is coordinates

z,,y, of the three nodes in the coordinate syst¥m, y).

The coefficients can be expressed as follows,

Oéi = :Ejyk _yjzw 6, = yj - yka

6
Y :xk_x]-; j;k:17273 ©

In the latter equation and belgwk andi form a cyclic
permutation.

3 OL. 1 &
= or o= lor
TR ST T Ty ;
2 1 3 3
2 1 3 3
8ay2 - 8%8% 2Nl a%a%
9? 0 0 1 &

All expressions remain polynomial in the Area cooates
and can be easily integrated.
In other words,

82
oL
82
9 9’ oL,
ed 9L, oz’ 9 ®)
£ 0 a* oL’
Gl= Rz | =Rl o
o L, oy 20
dy 9 20° dLIL,
8L3 O0xdy 20?2
8L28L3
20?2
OLOL,
where,
[R]:i B, B, B, C)
241m %
g6 B
_ 1 2 2 2
[Q]_ 4A2 ,-Yl rYg rYg
287, 28,7, 26,7, (10)
ryerQ 72’}/5 73’}/1

(B +98,) (87 +%8,) (87 +7,8)

[R] and [Q] are transfer matrices.

2.2 The Displacement Vector Field

For the displacement field ih,, L, and L; the Area
coordinate system is used for the function as ¥alo

254



Int. J. of GEOMATE , June, 2012, Vol. 2, No. 2 (9. No. 4), pp. 253-260

w=ww

U v

11
wu = wu(Ll’L27L3)’ wv = wv(LI’LQ’LB) -

2.3 The Rayleigh-Ritz M ethod

The Rayleigh-Ritz method consists of assuming sbate

w (L, L,,L,) is taken as the product of the boundaryiesired deflection pattern can be approximated fyear

equations and the internal line/curved support gous
and w (L,L,,L,) is a polynomial in the Area

coordinates with an undetermined coefficient thia¢ t

combination of deflection functions, each of whaetiisfied
the rigid boundary conditions of the problem, ahént
finding the coefficients governing this linear candtion
by minimizing the total energy of the deformed bauhd

holder of the displacement field is expanded. Ththe in-plane loads. Clearly, a proper choice ofdéection

w (L, L,,L,) function is defined,
aT1h TC

L1L2L3

where the valuea, b, ¢ depending on the free, simply
supported or clamped boundary conditions are 0,2L o

w (L,,L,,L,) shape function includes terms with

w (12)

u

unknown coefficientg) . as follow,
ik
p P P

i=0 j=0 k=0
i+j+k=p, 0<4,5,k<p

So that the polynomial ordgy andi, j, k, respectively,
display the correct coordinateg, L,, L3, varies from zero

(13)

expression is important to ensure good accuracytifer
final solution. The total energy is the sum of tdteain
energy of the platel), and the potential energy of the
in-plane loadsy.

3 GOVERNING EQUATIONS

In this paper, an elastic, composite, flat and thamgular
plate is used. The edges of the plate may be §iemly
supported or clamped supported. The boundary sfilaie
defined by the equation,ls1 =0,L,=0,L, =0 and the

boundary conditions are provided by choosing, c. It is
noteworthy that even ¥ andy axes are not coincided with
the main purpose, there is no limit to the formolat The
problem at hand is to determine the buckling besraef
composite triangular plates with various edge bamnd

top. w (L,,L,,L,) ,shape function can be demonstratedonditions and in-plane compressive loads.

with uncertainty factor that is just an index aof@s. Such
a display of computer programming is essential tfa

shape functionw (L, L,,L,)

N
w’u[ = Z \I,
I=1

iTiTk
IL1L2L3
where is number of sentences ahbis the count of
sentences. Performing some mathematical operatians
be shown that a simple choice for the, k using the
following equation,

i=1—jN—kN*—1

2
j:[NTJ 1 kN]

(15)
k=INT [%]
second shape function is obtained by,
N
_ erf 719
W, = Z \IIJL1L2Lé (16)
J=1
where,
e=J—fN—gN° -1
2
f= INT J—1—eN ]
17)
g=INT J-1
N?

and the count sentences is possible by the foligwi
equation,

N:%@+D@+m

and thus specifying the order of the polynongiand the
number of sentence can get symhojsk with number of
sentence' ".

(18)

In accordance with established stiffness proceduttes
vector of infinitesimal buckling strains consist§ two

parts. (i) The linear flexural straiﬂ} , and (i) the nonlinear

flexural straire  , that are given by,
T
{SL} = {gL.’L" sLy}
2
ow
oz |’

9 T

ow
Jy

{EN} - {ngf’ENy’Eszy}T
w 0w 20w '
oz* 9y 0xdy

Infinitesimal buckling Linear and Nonlinear strainsan
Area coordinate system are defined,

(19)

{C:L} = {€L1’ €20€13 }T
2 2 2 r
_J|Qw| |Ow] | ow
oL, ) "loL, ) | oL,

(20)

T
{ENN EN?’ €N37 ENl?’ ENZB’ E;"\’Bl}

&}

Gw v Pw_dw_dw_du
or oL’ o oLAL, dLOL, OLOL,

jT
between vectors{eL} , {§L} and{sN}, {§N}using the

relationship between Cartesian coordinates andAtiea
coordinates are expressed as the following,
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{eu) = 8){=.)
{ev) =1e]ter)

so that transfer matri[<R] , [Q] with fixed array is

(1)

calculated and available in (8).

3.1 Strain Energy

Adopting the classical thin plate theory, the strmergyJ
due to bending is given in the matrix form, by,

U:fL%{EN ! 5N}dA

where "D" is the standard matrix of elastic conttaor

(22)

w[ = wuwv] =< él(Ll’LZ’Lfi) > {\II[}’ (29)
_ ga+ipb+j etk

‘IDI = Ll L2 ]Lg

and for second shape function,

w, =ww, =< ®J(L1,L2,L3) > {\PJ}’ (30)

_ gategb+f e+
CDJ o Ll L2 L3 !
By substituting (29) and (30) into (27), strain Ejein

Area coordinate is given by,

single layer composite plate transformed to theallocgg that,

element coordinate system and is given by,

_ du d12 0
[D] = dlZ dzz 0 (23)
0 0 d33
where,
B i - o v,E,
1 » g
12 (1-w,v,) 12(1-w,v,)
3 E 3 (24)
dy, = L : ylyy = t_G12
12 (1— 122)21) 12

In the above expressiorts, E,, v, 121, andGy, are elastic

constants dependent on the physical characteristitise
plate material. For the composite material,
orientation of the major direction of a lamina &fided by

6 which is the anticlockwise angle from the positive

x-direction (see Fig. 2). Then, transform matrixdéfined
by,

cos” 6 sin’ @ —2cosfsinf
[T] =| sin’#6 cos’ @ 2cosfsinf (25)
cosfsinf —cosfsinf cos®f —sin® 6
and elastic constant matrix is obtained by,
)=[r]7]] 2

by transfer elasticity matrix into Area coordinaéad
substituting (21) and (26) into (22), the straiemgyU due
to bending in Area coordinate is given by,

_fng {6, }dA

where,

[2]=[e] [P][

27)

(28)

function w using the following (11), (12), (13) and (14) are

available,

31
f fA ; [{P}aa{w} (31)
In other words,
1
U= EZ,: ZJ: K, ¥, (32)
- f fA {P dA (33)
where,
(d + Z) (d + i— 1)L(1r1+i—2)L(2b+j)L(30+k)
; ; (a+i) p(b+j-2) pctk)
b+ )0b+j-1L * L2+J 2L3+
(a+i) 7(b+7) y(ct+k—2)
{P} _ e+ R)(e+ k=1L L;f Lt -
1(6x1) 2(0, +’L)(b +])L11L+I L(b+]71)L(:;+k—1)
(a+i=1) 7(b+7) T(c+h=1)
(b+j)(C+k)L1+ 1L2b+j L3+k 1
(C + k)((l + Z)L(a-m l)L(2b+])L(;+k 1)
{P} {p(a b,c,e, f, )} is obtained similarly.
J(6x1)
Provided thatthe arrays of  matrix {p} if

the exponent is characteristics a negative, tolmsen as

theerfib absolutely zero.

3.2 Potential Energy

The potential energyV of the orthotropic in-plane
compressive and shear load can be expressed matmix

form, as,
{e,Jaa

vl

While [N] contains the in-plane compressive and shear

(35)

loads in the manner,

=]y

In the above expressiondl, , N, and N, are in-plane
compressive and shear load. By conversion loadxmato
Area coordinate and substituting (21) and (36) (8&), the
potential energy due to bending in Area coordinate is
given by,

v= [ %{gL}T (N]{z, }da

where,

[~]=A] [v][7]

(36)

(37)

(38)
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function w using the following (11), (12), (13) and (14) are
available,

w, =ww, =<® (L,L,L)>{¥ ],

I

[K] is the stiffness matrix calculated in

small-displacements rangﬁg] is the geometric stiffness

O — [otiphipeth (39 matrix corresponding to a reference load)\ » is the

1 172 78 eigenvalue, that is the load factor to multiply tioe
and, reference load to obtain the critical value. Awiften, the
w, =ww, =< CI>J (LNLQ’L?’) > {\IJJ} equation system appears as an eigenvalues detéionina

(40) problem, then for found some values:Qf,

_ gategb+fretg
(I)J - L1 LQ L3
by substituting (39) and (40) into (37), potentakergy in

Area coordinate is given by,

T 1 T~
V= {q;} ffAE{Z} [N]{Z}dA{\I;} (41) 4 RESULTSAND DISCUSSION
Although the Rayleigh-Ritz method in Area coordiat
presented in this paper can be used to study mackif

det([K] - )\[G]) =0 (49)

In other words,

V = lz Z G U T (42) general triangular plates, we will concentrate analysis
Qe on right-angled and isosceles orthotropic plategestied to
so that, in-plane compressive and shear load with varioustary
Tr~ conditions. To describe the Boundary conditionsain
Gu - fL{Z}] [N} {Z}J dA (43)  composite thin plate, we use lett&rsor free,Sfor simply
where supported andC for clamped edges. Consider an
' . . orthotropic triangular plate with lengty a vertex angle
(a+ DI DL LD M y
1 "2 =3 o, , uniform thickness, the modulus of elasticiti, , E; ,
{Z} — (b _|_ j)L(a+z)L(l)+]71)L(n+k) (44) . . - . o
1(3x1) Loz 3 and Poisson's ratia, , v, , as shown in Fig. 2. This figure
(C + k)L(a+7,)L(b+])L(c+k71) . . ;
1 2 3 shows the selected right-angled and isosceles csitepo

{Z} . _ {Z(C% b, g)} is obtained similarly. triangular thin plate studied in this paper.
J(6x1

It can be shown that when integrating polynomialks,j L,

andL; over a triangle ared, the following relation holds, 1
: alblc!
[[ nrraa= 24 (45)
A ‘ (a +b+c+ 2)! b
3.3 Total Energy
> X
Finally, with the function of both strain energydathe o |%s a
potential energy of the total energy is written as, Yy |
M=U-V w
T 1 Ti~ ) o ) )
= {\If} ffAE{P} [DHP}dA {\IJ} — 46) Fig. 2. Composite isosceles and right-angled triangulaepla
T 1 T ~
{o} [ 57} [V){z}aa{w} -
4.1 Validation
In other words, . . . . .
1 As the Rayleigh- Ritz method used in this studyais
== KovVUv —G U ¥ approximate numerical approach, convergence and
Z Z,< e e "> “7) comparison studies are essential to ensure theatness
and convergence of the buckling results. Thesdtseare
3.4 Linear Buckling Analysis given in Table. | and Table. II.

Linear buckling technique allows one to obtain jtist
critical load and the corresponding deformed stadpihe
modeled structure. To obtain this result, the ctmaliof
neutral equilibrium between external loads and rivéte
reactions is searched, solving the equation,

Table. |. Comparison of the buckling factor
(/\._ - sz/w2D> of the isotropic triangular plat

A L s |
[ Ref[14] | 45.827| 52637 98.6%
([&]-Alc]){w} = {o} (48) Presentwork| 46.142  52.666  99.000

W
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Table. II. Comparison of the buckling factor

(/\’ — ]Vbz/ﬂ2D> of the isotropic triangular plate 3000 |-
b 1 2 2700 ;—
/a /\/g 24005—
Ref [14] 6.609 8.371 E
2100 |/
Present work 6.626 8.386 :
1800 |~
~< 15005—
4.2 Effect of Parameterson Buckling Factors 1zoo§—
To take some results for more deliberation of prese 900 |-
formulation, at this step we consider orthotroiosiceles 600 |-
and right-angled triangular plates with followingtd and wF
specifications, 3
E'1 = 155Gpa,E2 = 8.07Gpa, G12 = 4.55Gpa % 10 20 a0 40 .9. Ijol 60 70 80 %0
e
v, = 0.22,0, = 0.22,¢ = 0.001016m (cea
and so for plate geometry we considef (m), for instance.
Now we determine the critical buckling loads inner of
non-dimensional parametex, = ]VbZ/EZt?‘ , where N is 120

the critical buckling compressive or shear loadsuilary
conditions are defined as C=Clamped, S=Simple Supp«

\bla=2 b. (SS9) s
’.\.‘

C N N—>

and F=Free Support Conditions.

In Figures. 3a — 3e the buckling factors for istexe

\.

\ -
. ) - : \"\ v\N /tga=0.5
triangular plates for different combinations of edg « ; ’

conditions, fiber orientations and width-to-heightios, b/a B0Nb/a= 15 T e
=0.5, 1, 1.5 and 2 are presented for the suppoditons ; ’
(CCC-SSS-SFS-CFC-FCF). The following observation 40
are made from these figures,

100

80

LI L L BRI PP

"
e

20

LI 2 L N B B L B

- The buckling load factor is higher for BC-a (Cfor all
the width-to-height ratios 0
- For BC-a (CCC), buckling factor has an increggrend

until @ = 25° for b/a=1, 1.5, 2 and will decrease by
increasingf to # = 65°. By increasing width-to-height
ratios from b/a=0.5 to b/a=2, the buckling factacreased
until 6 = 65"

- For BC-b (SSS), buckling factor has a decrepsiend
until @ ~ 35" and will increase by increasirfy.

- For BC-d (CFC), buckling factor has an incragsrend 14
for b/a=0.5, 1 and decreasing trend for b/a=1.5ngl 12
0 =70". < 10
- For BC-e (FCF), for width-to-height ratios of b5, 1,

1.5 and 2, buckling load factor increases f@r—= 0° to

R

10 20 30 40 50 60 70 80 90
6(deg)

o

18
bla= 15 c. (SF9)
16

N—p

R R R R R

bla=1
. \
0 = 75",60°,50°,45", then it decreases. N
\
o N\l
F \. = ~~.
Fbia=05 =T - = = =~ - e
0'.ﬁﬁ.-r.-r.T.T.||||||||||||||||||||||||\|ﬁﬁu~
0 10 20 30 40 50 60 70 80 90

0(deg)
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e
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= /
1350 |- \ ,
1200 E— a (cco) § b/a/:’O.S
F —* /
1050 |- N \ /
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900 = ‘ / pla :_/1
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300
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150
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o
O T

0 10 20 30 40 50 60 70 80 90 10 20 30 40 50 60 70 80 90
6 (deg) 6 (deg)
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C - N, N
18 F r '\,'b/a: 2
o 280 N\
- cooN b. (SSS
16 o r \ ( ) /N
F 240 - \
14— F *
12F E
< 105— v AS ~< <
8F . : N\ E
F/ . V4 E
oF bia= 17 d E
o s e N—p C
4= ‘/' 7 ;
Vs N
£ bla= 05~ =
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Fig. 3. Variation of buckling factor for isosceles triangul
plate with respect to fiber orientation for diffate
width-to-height (b/a) and different boundary coratis 60

b/a= 15

al
o

N
o
o_’lll|llll'(llll|llll|llll|llll

In Figures. 4a — 4d the buckling factors for rightgled

c. (SFS
triangular plates for different combinations of edg (5F9) /N
conditions, fiber orientations and width-to-heigitios, b/a 40 N—>
=0.5, 1, 1.5 and 2 are presented for the suppoditons <

(CCC-SSS-SFS-CFC). The following conclusions ar 80
made from these figures,

- The buckling load factor is higher for BC-a (CfJor all
the width-to-height ratios
- For BC-a (CCC), maximum and minimum bucklingdo 10
factors atd = 90" are seen in b/a=0.5 and 2.
i e S P RSOy oy L T ok i i = I = S S ey Py
- For BC-b (SSS), buckling factor decreasesfoe 0°to 10 20 30 40 50 60 70 8 90

6(d
0 ~ 65° becoming minimum atf ~ 65" and then (ce0

increases fof) ~ 65" to # = 90" for b/a=1, 1.5, 2.
- For BC-c (SFS), buckling factor decreasesfor= 0°to
0 ~ 50° and then become constant for b/a=1, 1.5.
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