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1   INTRODUCTION  

In many engineering applications such as isogrid structures 
(waffle plates), reinforced plates or panels, aero-structures, 
... , it is very important to predict buckling behavior of 
triangular plates. Buckling phenomenon is critically 
dangerous to structural components because the buckling of 
plates usually occurs at a lower applied stress and generates 
large deformation. This led to a focus on the study of 
buckling behavior in plates or panels. The use of composite 
materials in place of more traditional isotropic materials has 
increased dramatically over the past decades in areas such 
as the civil and aerospace industry. With the wide use of 
composite plate structures in modern industries, dynamic 
and static analysis of plates of complex geometry becomes 
an important part of engineering design. Composite 
materials have been widely used due to their excellent high 
strength-to-weight ratio, modulus-to-weight ratio and the 
controllability of the structural properties with variation of 
fiber orientation. The problem regarding buckling of plates 
under various shapes and boundary conditions has been 
studied in some famous classic and academic reference text 
books [1,2] and some of numerous literature works [3-6].  
It is interesting to note that buckling of triangular plates has 
received far less attention than their rectangular 
counterparts. Woinowsky-Krieger [7] derived the exact 
buckling load for a simply supported equilateral triangular 
plate under an isotropic in-plane compressive load. 
Burchard [8] studied the buckling of simply supported 
right-angled triangular plates under uni-axial compression. 
There are several researches investigated the buckling of  
isosceles triangular plates under various loading conditions. 
Wakasugi [9,10] investigated the buckling of simply -  
 

 
 

 
supported and clamped equilateral triangular plates. 
Conway and Leissa [11] searched the buckling of 
equilateral triangular plates subjected to isotropic in-plane 
compression. Tan et al. [12] and Tan [13] employed the 
finite element method to study the buckling of general 
triangular plates. In the recent years, Wang and Liew [14] 
utilized their pb-2 Rayleigh-Ritz method to investigate the 
buckling of isosceles and right-angled triangular plates 
under isotropic in-plane compressive load.    
The basic aim of this research is to study and formulate the 
effect of plate geometry aspect ratio and fiber orientation to 
determine critical value of buckling load factor for a 
composite triangular plate of various boundary conditions 
and various in-plane (compression and shear) loads by 
using an approximate-analytical solution for first critical 
mode predominantly.   
 
2   THEORETICAL FORMULATION 

2.1 Area Coordinate 

In this section, the use of triangular coordinates to define 
the interior of a triangular area is briefly described. This 
description is important when formulating triangular finite 
elements. The triangle in Fig. 1 is defined by coordinates 

( ),i i
x y of its vertices in the coordinate system( , )O x y . 

Cartesian coordinates are usually employed to describe any 
point 

0 0
( , )x y on a rectangular area. They are, however, 

difficult to use when the boundary and the interior of a 
triangular area need to be defined. In order to define a 
triangular area, the coordinates 

0 0
( , )x y  can be expressed 

in the following way, 
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y y L y L y L

= + +
= + +

 

where 
1 2 3
, ,L L L are triangular coordinates. The values of 

the triangular coordinate range between 0 and 1 when the 
following constraint is used, 

1 2 3
1L L L+ + =

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. Area coordinates in arbitrary triangular plate 
 

Equation (1) together with (2) can be used to define any 
point 

0 0
( , )x y in the triangle. The coordinates 

1 2 3
, ,L L L represent dimensionless areas of triangles 

1 2 3
, ,A A A as depicted in Fig. 1. These coordinates can be 

expressed as follows: 
 

1 2 3
A A A A+ + =  

, 1,2,3i

i

A
L i

A
= =  

 
where A is the area of the triangle defined as, 

1 2 3

1 2 3
2

1 1 1

x x x

A y y y=  

when constraint (2) is accounted for, the triangular 
coordinates can be solved from (5) as follows, 
 

( )1
, 1,2,3

2i i i i
L x y i

A
α β γ= + + =  

 
Where 

i
α  a coefficient that depends on is coordinates 

,
j k
x y of the three nodes in the coordinate system( , )O x y . 

The coefficients can be expressed as follows, 
 

, ,

, , 1,2,3
i j k j k i j k

i k j

x y y x y y

x x j k

α β

γ

= − = −

= − =
 

 
In the latter equation and below j, k and i form a cyclic 
permutation. 

Thin plate theory is used in the present analysis. However, 
to obtain the strains differentiation operator with respect to 
Cartesian coordinates needs to be carried out. This is done 
as follows, 
 

3 3
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∂ ∂ ∂ ∂ ∂ ∂

∑ ∑

∑ ∑
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∑∑

∑∑
 

 
All expressions remain polynomial in the Area coordinates 
and can be easily integrated. 
In other words, 

2

2

1
2

22
2
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2
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2
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where, 

1 2 3

1 2 3

1

2
R

A

β β β

γ γ γ

 
   =       

 

( ) ( ) ( )

2 2 2

1 2 3

2 2 2

1 2 32

1 1 2 2 3 3

1 2 2 3 3 1

1 2 2 3 3 1

1 2 1 2 2 3 2 3 3 1 3 1

1

4
2 2 2

Q
A

β β β

γ γ γ

β γ β γ β γ

β β β β β β

γ γ γ γ γ γ

β γ γ β β γ γ β β γ γ β



  =    








+ + + 
 

R    and Q    are transfer matrices.
 

 
 
2.2 The Displacement Vector Field 
 
For the displacement field in L1, L2 and L3 the Area 
coordinate system is used for the function as follows, 

   (1) 

   (2) 

   (3) 

   (4) 

   (5) 

   (6) 

   (7) 

   (8) 

   (9) 

   (10) 
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1 2 3 1 2 3
( , , ), ( , , )

u v

u u v v

w w w

w w L L L w w L L L

=
= =

 

1 2 3
( , , )

u
w L L L  is taken as the product of the boundary 

equations and the internal line/curved support equations 

and 
1 2 3

( , , )
v

w L L L  is a polynomial in the Area 

coordinates with an undetermined coefficient that the 
holder of the displacement field is expanded. The 

1 2 3
( , , )

u
w L L L  function is defined, 

1 2 3

a b c

u
w L L L=

 
where the value a, b, c depending on the free, simply 
supported or clamped boundary conditions are 0, 1 or 2. 

1 2 3
( , , )
v

w L L L shape function includes terms with 

unknown coefficients 
ijk
ψ  as follow, 

1 2 3
0 0 0

,

, 0 , ,

p p p
i j k

vI ijk
i j k

w L L L

i j k p i j k p

ψ
= = =

=

+ + = ≤ ≤

∑∑∑

 
So that the polynomial order p and i, j, k, respectively, 
display the correct coordinates L1, L2, L3 , varies from zero 
to p. 

1 2 3
( , , )
v

w L L L  , shape function can be demonstrated 

with uncertainty factor that is just an index as follows. Such 
a display of computer programming is essential for the 
shape function, 

1 2 3
( , , )
v

w L L L  

1 2 3
1

N
i j k

vI I
I

w L L L
=

= Ψ∑
 

where " I " is number of sentences and N is the count of 
sentences. Performing some mathematical operations can 
be shown that a simple choice for the i, j, k using the 
following equation, 

2

2

2

1

1

1

i I jN kN

I kN
j INT

N

I
k INT

N

= − − −
 − −  =    
 −  =      

second shape function is obtained by,  

 
1 2 3

1

N
e f g

vJ J
J

w L L L
=

= Ψ∑  

where, 
2

2

2

1

1

1

e J fN gN

J eN
f INT

N

J
g INT

N

= − − −
 − −  =    
 −  =    

 

and the count sentences is possible by the following 
equation, 

1
( 1)( 2)
2

N p p= + +
 

and thus specifying the order of the polynomial p and the 
number of sentence can get symbols i, j, k with number of 
sentence" I ". 

 
2.3 The Rayleigh-Ritz Method 
 
The Rayleigh-Ritz method consists of assuming that some 
desired deflection pattern can be approximated by a linear 
combination of deflection functions, each of which satisfied 
the rigid boundary conditions of the problem, and then 
finding the coefficients governing this linear combination 
by minimizing the total energy of the deformed body and 
the in-plane loads. Clearly, a proper choice of the deflection 
expression is important to ensure good accuracy for the 
final solution. The total energy is the sum of the strain 
energy of the plate, U, and the potential energy of the 
in-plane loads, V. 
 
3 GOVERNING EQUATIONS  

In this paper, an elastic, composite, flat and thin triangular 
plate is used. The edges of the plate may be free, simply 
supported or clamped supported. The boundary of this plate 
defined by the equations 

1 2 3
0, 0, 0L L L= = =  and the 

boundary conditions are provided by choosing a, b, c. It is 
noteworthy that even if x and y axes are not coincided with 
the main purpose, there is no limit to the formulation. The 
problem at hand is to determine the buckling behavior of 
composite triangular plates with various edge boundary 
conditions and in-plane compressive loads. 

In accordance with established stiffness procedures, the 
vector of infinitesimal buckling strains consists of two 
parts. (i) The linear flexural strain

L
ε , and (ii) the nonlinear 

flexural strain
N
ε , that are given by, 

{ } { }
2 2

,

,

T

L Lx Ly

T

w w

x y

ε ε ε=

      ∂ ∂    =        ∂ ∂      

 

{ } { }
2 2 2

2 2

, ,

2
, ,

T

N Nx Ny Nxy

T

w w w

x yx y

ε ε ε ε=

  ∂ ∂ ∂ =   ∂ ∂∂ ∂  

 

Infinitesimal buckling Linear and Nonlinear strains in an 
Area coordinate system are defined, 
 

{ } { }1 2 3

2 2 2

1 2 3

, ,

, ,

T

L L L L

T

w w w

L L L

ε ε ε ε=

        ∂ ∂ ∂         =             ∂ ∂ ∂        

⌢

 

{ } { }1 2 3 12 23 31

2 2 2 2 2 2

2 2 2

1 2 2 3 3 11 2 3

, , , , ,

, , , , ,

T

N N N N N N N

T

w w w w w w

L L L L L LL L L

ε ε ε ε ε ε ε=

  ∂ ∂ ∂ ∂ ∂ ∂ =   ∂ ∂ ∂ ∂ ∂ ∂∂ ∂ ∂  

⌢

  

between vectors { }Lε  , { }Lε
⌢

 and{ }Nε , { }Nε
⌢

using the 

relationship between Cartesian coordinates and the Area 
coordinates are expressed as the following, 
 
 

   (11) 

   (12) 

   (13) 

   (14) 

   (15) 

   (16) 

   (17) 

   (18) 

   (19) 

   (20) 
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{ } { }L L
Rε ε =   
⌢  

{ } { }N N
Qε ε =   
⌢  

so that transfer matrixR    , Q    with fixed array is 

calculated and available in (8). 
 
 
3.1 Strain Energy 
 
Adopting the classical thin plate theory, the strain energy U 
due to bending is given in the matrix form, by, 

{ } { }1

2

T

N N
A

U D dAε ε =   ∫∫
 

where "D" is the standard matrix of elastic constants for 

single layer composite plate transformed to the local 

element coordinate system and is given by, 

11 12

12 22

33

0

0

0 0

d d

D d d

d

 
 
   =      
  

 

where, 
3 3

1 12 2
11 12

12 21 12 21
3 3

2
22 33 12

12 21

,
12 (1 ) 12 (1 )

,
12 (1 ) 12

E v Et t
d d

v v v v

Et t
d d G

v v

= =
− −

= =
−

 

 

In the above expressions, E1, E2, v12, v21, and G12 are elastic 

constants dependent on the physical characteristics of the 

plate material. For the composite material, the fiber 

orientation of the major direction of a lamina is defined by 

θ which is the anticlockwise angle from the positive 

x-direction (see Fig. 2). Then, transform matrix is defined 

by, 

 
2 2

2 2

2 2

cos sin 2 cos sin

sin cos 2 cos sin

cos sin cos sin cos sin

T

θ θ θ θ

θ θ θ θ

θ θ θ θ θ θ

 − 
   =      

− −  
 

 
and elastic constant matrix is obtained by, 

T

D T D T       =              
 

by transfer elasticity matrix into Area coordinate and 

substituting (21) and (26) into (22), the strain energy U due 

to bending in Area coordinate is given by, 

{ } { }1

2

T

N N
A

U D dAε ε =   ∫∫
⌢

⌢ ⌢

 

where, 
T

D Q D Q       =              
⌢

 
function w  using the following (11), (12), (13) and (14) are 
available, 

{ }1 2 3

1 2 3

( , , ) ,
I u vI I I

a i b j c k

I

w w w L L L

L L L+ + +

= =< Φ > Ψ

Φ =
 

and for second shape function, 

{ }1 2 3

1 2 3

( , , ) ,
J u vJ J J

a e b f c g

J

w w w L L L

L L L+ + +

= =< Φ > Ψ

Φ =
 

By substituting (29) and (30) into (27), strain energy in 
Area coordinate is given by, 

{ } { } { } { }1

2

T T

A
U P D P dA = Ψ Ψ  ∫∫

⌢

 

In other words, 

1

2 IJ I J
I J

U = Κ Ψ Ψ∑∑  

so that, 

{ } { }T

IJ I JA
P D P dA Κ =   ∫∫

⌢

 
where, 

{ }

( 2) ( ) ( )

1 2 3

( ) ( 2) ( )

1 2 3

( ) ( ) ( 2)

1 2 3

( ) ( 1) ( 1)(6 1)
1 2 3

( 1) ( ) ( 1)

1 2 3

(

1

( )( 1)

( )( 1)

( )( 1)

2( )( )

2( )( )

2( )( )

a i b j c k

a i b j c k

a i b j c k

a i b j c kI

a i b j c k

a

a i a i L L L

b j b j L L L

c k c k L L L
P

a i b j L L L

b j c k L L L

c k a i L

+ − + +

+ + − +

+ + + −

+ + − + −×

+ − + + −

+ + −

+ + −

+ + −
=

+ +

+ +

+ + 1) ( ) ( 1)

2 3

i b j c kL L+ − + + −

                         
{ } { }

(6 1)
( , , , , , )

J
P P a b c e f g

×
= is obtained similarly. 

Provided that the arrays of matrix { }P  
if 

the exponent is characteristics a negative, to be chosen as 
absolutely zero.    
 
3.2 Potential Energy 

The potential energy V of the orthotropic in-plane 
compressive and shear load can be expressed in the matrix 
form, as, 

{ } { }1

2

T

L L
A

V N dAε ε =   ∫∫  

While N    contains the in-plane compressive and shear 

loads in the manner, 

x xy

xy y

N N
N

N N

 
   =       

 

In the above expressions, Nx , Ny and Nxy are in-plane 

compressive and shear load. By conversion load matrix into 

Area coordinate and substituting (21) and (36) into (35), the 

potential energy V due to bending in Area coordinate is 

given by, 

{ } { }1

2

T

L L
A

V N dAε ε =   ∫∫
⌢

⌢ ⌢

 
where, 

T

N R N R       =              
⌢

 

   (21) 

   (22) 

   (23) 

   (24) 

   (25) 

   (26) 

   (27) 

   (28) 

   (29) 

   (30) 

   (31) 

   (32) 

   (33) 

   (34) 

   (35) 

   (36) 

   (37) 

   (38) 
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function w  using the following (11), (12), (13) and (14) are 
available, 

{ }1 2 3

1 2 3

( , , ) ,
I u vI I I

a i b j c k

I

w w w L L L

L L L+ + +

= =< Φ > Ψ

Φ =
 

and, 

{ }1 2 3

1 2 3

( , , ) ,
J u vJ J J

a e b f c g

J

w w w L L L

L L L+ + +

= =< Φ > Ψ

Φ =
 

by substituting (39) and (40) into (37), potential energy in 
Area coordinate is given by, 

{ } { } { } { }1

2

T T

A
V Z N Z dA = Ψ Ψ  ∫∫

⌢

 

In other words, 

1

2 IJ I J
I J

V G= Ψ Ψ∑∑  

so that, 

{ } { }T

IJ I JA
G Z N Z dA =   ∫∫

⌢

 
where, 

{ }
( 1) ( ) ( )

1 2 3

( ) ( 1) ( )

1 2 3(3 1)
( ) ( ) ( 1)

1 2 3

( 1)

( )

( )

a i b j c k

a i b j c k

I
a i b j c k

a L L L

Z b j L L L

c k L L L

+ − + +

+ + − +

×
+ + + −

  +   = +    +  
 

{ } { }
(6 1)

( , , , , , )
J

Z Z a b c e f g
×
= is obtained similarly.

 
It can be shown that when integrating polynomials in L1, L2 
and L3 over a triangle area A, the following relation holds, 

1 2 3

! ! !
2

( 2)!
a b c

A

a b c
L L L dA A

a b c
=

+ + +∫∫  

 
3.3 Total Energy 

 
Finally, with the function of both strain energy and the 
potential energy of the total energy is written as, 

 

{ } { } { } { }

{ } { } { } { }

1

2
1

2

T T

A

T T

A

U V

P D P dA

Z N Z dA

Π = −

 = Ψ Ψ −  

 Ψ Ψ  

∫∫

∫∫

⌢

⌢

 

In other words, 

( )1

2 IJ I J IJ I J
I J

GΠ = Κ Ψ Ψ − Ψ Ψ∑∑
 

 
3.4 Linear Buckling Analysis 

Linear buckling technique allows one to obtain just the 
critical load and the corresponding deformed shape of the 
modeled structure. To obtain this result, the condition of 
neutral equilibrium between external loads and internal 
reactions is searched, solving the equation, 

( ){ } { }0Gλ   Κ − Ψ =        

 Κ   is the stiffness matrix calculated in 

small-displacements range, G   
is the geometric stiffness 

matrix corresponding to a reference load, " λ " is the 

eigenvalue, that is the load factor to multiply to the 
reference load to obtain the critical value. As is written, the 
equation system appears as an eigenvalues determination 
problem, then for found some values of "λ ", 

( )det 0Gλ   Κ − =      
 

 
 

4 RESULTS AND DISCUSSION 

Although the Rayleigh-Ritz method in Area coordinate 
presented in this paper can be used to study buckling of 
general triangular plates, we will concentrate our analysis 
on right-angled and isosceles orthotropic plates subjected to 
in-plane compressive and shear load with various boundary 
conditions. To describe the Boundary conditions in a 
composite thin plate, we use letters F for free, S for simply 
supported and C for clamped edges. Consider an 
orthotropic triangular plate with length a, a vertex angle 

0
α , uniform thickness t, the modulus of elasticity E1 , E2 , 

and Poisson's ratio v12 , v21 , as shown in Fig. 2. This figure 

shows the selected right-angled and isosceles composite 
triangular thin plate studied in this paper. 

 

 

 

 

 

 

 

 

 

Fig. 2. Composite isosceles and right-angled triangular plate 
 

 

4.1 Validation 

 As the Rayleigh- Ritz method used in this study is an 
approximate numerical approach, convergence and 
comparison studies are essential to ensure the correctness 
and convergence of the buckling results. These results are 
given in Table. I and Table. II. 
 
 Table. I. Comparison of the buckling factor 

( )λ π= 2 2

cr
Nb D  of the isotropic triangular plate 

b
a

 1

 

2
3

 2  

Ref [14] 45.827 52.637 98.696 

Present work 46.142 52.666 99.000 
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 Table. II. Comparison of the buckling factor 

( )λ π= 2 2

cr
Nb D of the isotropic triangular plate 

b
a

 1

 

2
3

 

Ref [14] 6.609 8.371 

Present work 6.626 8.386 

 
 
4.2 Effect of Parameters on Buckling Factors 

To take some results for more deliberation of present 
formulation, at this step we consider orthotropic isosceles 
and right-angled triangular plates with following data and 
specifications,  

1 2 12

12 21

155 , 8.07 , 4.55

0.22, 0.22, 0.001016

E Gpa E Gpa G Gpa

v v t m

= = =

= = =
 

 
and so for plate geometry we consider a=1(m), for instance. 
Now we determine the critical buckling loads in terms of 
non-dimensional parameter,

 

2 3

2
Nb E tλ = , where N  is 

the critical buckling compressive or shear loads. Boundary 
conditions are defined as C=Clamped, S=Simple Support 
and F=Free Support Conditions.  
In Figures. 3a – 3e the buckling factors for isosceles 
triangular plates for different combinations of edge 
conditions, fiber orientations and width-to-height ratios, b/a 
= 0.5, 1, 1.5 and 2 are presented for the support conditions 
(CCC-SSS-SFS-CFC-FCF). The following observations 
are made from these figures, 
 
-   The buckling load factor is higher for BC-a (CCC) for all 
the width-to-height ratios 
-   For BC-a (CCC), buckling factor has an increasing trend 

until 025θ = for b/a=1, 1.5, 2 and will decrease by 

increasing θ  to 065θ = . By increasing width-to-height 
ratios from b/a=0.5 to b/a=2, the buckling factor increased 

until 065θ =  
-   For BC-b (SSS), buckling factor has a decreasing trend 

until 035θ ≈ and will increase by increasing θ . 
-   For BC-d (CFC), buckling factor has an increasing trend 
for b/a=0.5, 1 and decreasing trend for b/a=1.5, 2 until 

070θ =  . 
- For BC-e (FCF), for width-to-height ratios of b/a=0.5, 1, 

1.5 and 2, buckling load factor increases for  00θ =  to 
0 0 0 075 ,60 ,50 , 45θ = , then it decreases. 
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In Figures. 4a – 4d the buckling factors for right-angled 
triangular plates for different combinations of edge 
conditions, fiber orientations and width-to-height ratios, b/a 
= 0.5, 1, 1.5 and 2 are presented for the support conditions 
(CCC-SSS-SFS-CFC). The following conclusions are 
made from these figures, 
-   The buckling load factor is higher for BC-a (CCC) for all 
the width-to-height ratios 
-   For BC-a (CCC), maximum and minimum buckling load 

factors at 090θ = are seen in b/a=0.5 and 2. 

-   For BC-b (SSS), buckling factor decreases for 00θ = to 
065θ ≈  becoming minimum at 065θ ≈  and then 

increases for 065θ ≈  to 090θ = for  b/a=1, 1.5, 2. 

-   For BC-c (SFS), buckling factor decreases for 00θ = to 
050θ ≈  and then become constant for b/a=1, 1.5.  
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Fig. 3. Variation of buckling factor for isosceles triangular 
plate with respect to fiber orientation for different 
width-to-height (b/a) and different boundary conditions 
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5 CONCLUSION  

This paper presents a research about the buckling of 
composite triangular plates. The total energy functional for 
a general composite triangular plate is derived, and the 
eigenvalue equation for elastic buckling of the plate is 
obtained through the application of the Rayleigh-Ritz 
method. To this end, computer code has been developed to 
simulate the buckling behavior of the composite triangular 
plate model. The new sets of buckling results are by far the 
most comprehensive and accurately obtained. Convergence 
and comparison studies are carried out to verify the validity 
and accuracy of the solution method. Extensive first-known 
buckling solutions for several selected right-angled and 
isosceles composite triangular plates are presented in the 
paper. The influence of the fiber orientation and 
width-to-height ratios on the buckling behavior of the plates 
is examined.  
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Fig. 4. Variation of buckling factor for right-angled 
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