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1. INTRODUCTION 
There are various methods for studying behavior of 
dynamically loaded uniform piles. These are continuum 
approach (Novak, [1]; Novak and Aboul – Ella, [2]; and 
Nogami, [3]), boundary element method (Kaynia and 
Kausel, [4]; Sen, Kausel and Banerjee, [5]), lumped–mass 
method (Penzien, [6]); and finite element solutions 
(Blaney, Kausel and Rosset, [7]; Wolf and Von Arx, [8]; 
chow, [9]). Novak presented an approximate continuum 
approach to account for soil-pile interaction: it is assumed 
that the soil is composed of a set of independent horizontal 
layers of infinitesimal thickness, which extend to infinity. 
As each plane is considered independent, this model may 
be viewed as a generalized Winkler model. The planes are 
homogeneous, isotropic, and linearly elastic, and they 
consider being in a plane strain state. Using Baranov’s 
[10] solution for the horizontal soil reaction to a rigid 
circular disc with harmonic horizontal displacement 
(representing a pile cross section), Novak formulated the 
differential equation of the damped pile in horizontal 
vibration. He found the steady state (particular) solution 
for harmonic motion induced through pile ends, and used 
this solution to find the dynamic stiffness of the pile head 
for different boundary conditions. 
The existent methods are few for analyzing tapered piles 
under dynamic loads, so recently it has been attracted 
many investigators. The most studies in this piles, related 
to vertical harmonic vibrations such as finite difference 
method (Saha and Ghosh, [11]) and mathematical method 
(Xie and Vaziri, [12]).  
Investigations have been done on tapered piles includes: 
Full finite element, analytical solution and laboratory tests 
(Kurian and Moola, [13]), and centrifuge model tests (El 
Naggar and sakr, [14]). Field load tests were also 
conducted on tapered piles to investigate their load-
carrying capacity (Rybnikov,) and indicate that bored cast-
in-place tapered piles can have bearing capacity 20-30% 
higher than that for cylindrical piles with the same volume 
and same mean radius. The Ghazavi has also recently 
performed full-scale tests on a tapered pile driven into a 
 

 

cohesive soil profile in the field. These tests showed that, 
in long term, the tapered pile had 80% more capacity than 
a uniform pile of the same volume and length. Zil'berberg 
and Sherstnev [15] have reported from their field tests that 
driven tapered piles in sandy soils can give a stiffer and 
stronger axial response resulting in a 200-250% increase in 
bearing capacity when compared to the capacity of 
cylindrical piles with the same volume and mean radius. 
The response of these piles under lateral static loads was 
also investigated El Naggar and Wei, [16]. El Naggar and 
Wei [17] also conducted tests in a pressure chamber on 
tapered model piles subjected to uplift loads. 
Ghazavi et al. [18] described the performance of tapered 
Pile during Pile driving and Ghazavi and Tavassoli [19] 
Study of Pile geometry on Pile driving. Also has 
proceeded analysis of kinematic seismic response of 
tapered piles (Ghazavi,  [20]) and Response of tapered 
piles to axial harmonic loads and effect of angles on 
tapered piles has been discussed then obtained has been 
verified whit finite element methods and they were 
satisfactory (Ghazavi, [21]).  
SSM (Segment by Segment Method) is based on continuum 
method of Novak elasto- dynamic approach for analysis of 
piles. The SSM has been applied to uniform piles under 
axial compressive loads (Ghazavi et al. [22]), uplift static 
loads (Ghazavi et al. [23]), and axial and lateral harmonic 
vibrations (Ghazavi, [24], Ghazavi and Dehghanpour [25]) 
in this paper SSM was applied to analyze dynamic behavior 
of tapered piles under lateral harmonic loads. 
 
2. ANALYTICAL MODEL 
 
The characteristic effects of surrounding soil on the pile 
response are determined with stiffness   and damping 
parameters of soil – pile system. These effects can be 
taken in to account if a proper soil reaction is employed.  
For analyzing tapered pile, it was idealized to some 
cylindrical segments with different diameter that 
connected together by rigidly at nodes. This idealization 
was used in tapered piles under harmonic axial vibration 
[11-12] and [21]. 
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Surrounding soil reaction to the loaded tapered pile 
segments had been presented by Vs(z, t) and Vr(z, t), that 
shear resistance per unit length of the pile shaft and 
horizontal reaction at the horizontal annular projections of 
the pile shaft, respectively. Parameters z and t represent 
depth and time in order as shown in Fig l. 
 
 

 
Fig.1 Idealization of tapered pile for dynamic analysis in 

laterally inhomogeneous media using segment by segment, 
(a) Actual pile; (b) Idealized pile 

 

The soil response with time to motion of the pile toe, Fb(t), 
is taken as that of a viscoelastic half – space to rigid, mass 
less, circular disc of radius rb undergoing harmonic 
vibration. This can be expressed as:  
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Where Gb is the soil shear modulus at the pile toe, Cul , Cu2 
are dimensionless complex parameters given in the form 
of polynomial expressions (Veletsos and Vbric, [26]),  
ub(t) is the toe horizontal displacement, rb is pile radius at 

the pile tip, 
b

b
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  ,  where Vb is shear wave Velocity 

of soil below the tip,   is circular frequency,   is 
Poisson's ratio, D is material damping.  
The soil reaction on the pile is represented by springs and 
dashpots, which are modeled on elasto – dynamic theory. 
The interaction of the soil and the pile is then determined 
for each segment according to the characteristics of soil. 
This interaction can be demonstrated by a complex 
displacement, shear force, rotation and bending moment at 
the end of the adjacent segment. This procedure is 
performed from the lowest pile segment and extends to the 
next upper segment. This manner is continued to reach the 
topmost segment. That is why this procedure is called the 
SSM (Ghazavi [18-25]). 
In the analysis, it is assumed that the soil reaction 
associated with a given soil layer is identical to that of an 
infinite rigid pile undergoing a uniform displacement of 
the same properties as the soil of that layer. This 
assumption is essential to the solution and will be 
examined subsequently using other, existing solutions. 
This assumption has also been used by other researcher 
[2]. In one dimensional finite element analysis of 

cylindrical piles under torsional vibrations, Novak and 
Howell also used the same assumption. A somewhat 
similar assumption was also made and by Mylonakis and 
Gazetas [30] for axially loaded cylindrical piles in a 
layered soil profile. It is note that Novak and Aboul – Ella 
used finite element method (FE) for analysis of piles 
embedded in inhomogeneous soil and subject to lateral 
harmonic vibrations. By considering the typical embedded 
segment j at depths, shown in Fig 1 and on the basis of the 
above assumption, the following governing dynamic 
differential equation of a soil – pile system subjected to 
harmonic lateral load can be obtained [1]: 
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Where mpj the pile mass per unit length, Cpj is the damping 
coefficient of the pile material, EpjIpj is the bending 
stiffness of the pile segment j, Gsj is the shear modulus of 
the soil layer surrounding  the pile segment j , uj (z, t) is 
the local time – dependent complex amplitude at depth z 
from the top of segment j and Suj is Complex 
dimensionless soil resistance parameter defined elsewhere 
[1] as a function of Poisson's ratio and dimensionless 

frequency, 
sj

oj
j V

r
a


    Here roj is the pile segment 

radius,   is the circular frequency, and Vsj the shear 
Wave velocity of the soil surrounding the pile segment j.  
The four terms in (2) represent the inertia force due to 
lumped mass of the pile, the damping force of pile 
material, the lateral interaction between pile segments, and 
the soil resistance, respectively. For harmonic vibration, 
the local displacement uj (z, t) is given by:  

 ti
ejj zutzu )(),(                                                                  (3)   

Where uj(z) is the complex amplitude at depth z from the 

top of segment j and   is the excitation frequency: 
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Combining (2) and (3) gives  
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The above equation can be solved explicitly. The solution 
for the displacement at a point at vertical distance z below 
the upper node of segment j is given by: 
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Where Aj, Bj, Cj and Dj are integration constants 
determined using appropriate boundary conditions.  
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If the displacement, rotation, shear force and bending 
moment transmitted by the pile at node 2 of segment j are 
know, the integration constants Aj, Bj, Cj and Dj can be 
calculated. Thus, the displacement, rotation, bending 
moment and shear force at node 1 of segment j are 
respectively given by (8a-8d). 
 
3. PARAMETRIC STUDIES FOR PILE GEOMETRY 

EFFECT 

In this section, four type of piles whit difference geometry 
under lateral harmonic load and have same length and 
volume had been studied and the results are compared. 
Properties of tapered piles and soil have presented in Table 
1. All piles are 10m of length and there volumes are 1.36 
m3. Pile C is cylindrical. Pile T-C consists of a top tapered 
segment with 5m length and a lower cylindrical segment 
with 5m length. Pile C-T has top cylindrical part with 5m 
followed by a tapered part with 5m length. Pile T is 
tapered. Taper angles of piles are 5.0  and 5.1  that has 
been shown in Fig 2 and Table 2. 
  

 
 

Fig. 2 Pile configurations 
 
 
 

 

 

Table 2 Dimension of tapered piles for Fig 3. 
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(8a)- (8d) 
 

Table1. Properties of tapered piles and soil 

Radius of equivalent circular pile, 

req
* 

0.208 m 

Shear wave velocity in soil, Vs 84m/s 

Soil Poisson’s ratio, s 0.45 

Soil unit weight, s 17.5 kN/m3

Pile modulus of elasticity, pE  1.962×107 

kN/m2 

Soil modulus of elasticity, sE  3.58×104 

kN/m2 

Pile unit weight, p 25 kN/m3 

(* req is radius of cylindrical pile of the same volume and 
length as tapered pile) 

 

 

 

5.1 5.0 Taper 
Angl

e 

Piles

D2=0.126m D1=0.65mL=10m D2=0.326m D1=0.5m L=10m T 
D2=0.416m D1=0.416

m 
L=10m D2=0.416m D1=0.416mL=10m C 

D2=0.342
m 

D1=0.603
m 

L2=5
m 

L1=5
m 

D2=0.393
m 

D1=0.48mL2=5
m 

L1=5
m 

TC 

D2=0.2111
m 

D1=0.4729
m 

L2=5
m 

L1=5
m 

D2=0.3497
m 

D1=0.4369
m 

L2=5
m 

L1=5
m 

CT 
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 SSM was applied with assumption pinned–ended for all of 
above piles and Fig. 2 illustrate the dimensionless 
amplitude lateral versus the excitation frequency for piles 
with taper angles 5.0   that results have been shown in 
Fig. 3 the T pile have the least lateral and rotary response 
amplitude and after T Pile. There are T –C, C-T and C 
respectively. 

 

0

2

4

6

8

10

12

14

0 5 10 15 20 25 30

Frequency (Hz)

A
m

pl
it

ud
e,

 A
(u

)

T

TC

C

CT

 

Fig. 3 Variation of lateral dimensionless amplitude versus 

frequency for T pile ( 5.0 ) 

It is noted that in the C piles, the resulted values of are 
exactly the same as those reported by Novak [1].  
In Fig. 4, the dimensionless amplitude lateral versus the 
excitation frequency had been compared based on taper 
angle in T pile and observed with increasing taper pile, 
dimensionless response amplitudes will decrease.  
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Fig. 4. Comparison variation of lateral dimensionless 

amplitude versus frequency for T pile according to taper 
angle 

 

5. CONCLUSION  

A simple approach, called SSM, has been presented in 
this paper for determination of stiffness and damping 
parameters of laterally loaded tapered piles subjected to 
harmonic vibrations. The soil-pile interaction in this 
method is modeled within each segment and applied via 
the segment nodes to the analysis of the adjacent segment. 
Therefore, the stiffness and damping parameters for the 
whole pile-soil system are determined. According to 
results SSM, T, TC,  

 
 

CT and C piles respectively have the least lateral and 
rotary response amplitude and observed that for tapered 
piles of the same volume and length under lateral 
harmonic vibrations, with increasing the taper angle, the 
resonant frequency increases slightly. However, the 
reduction of the amplitude is more pronounced. 
The SSM is an efficient and simple method for analysis of 
tapered piles under harmonic vibration. In particular, the 
effects of the soil in homogeneity in the vertical direction 
even with complicated stratifications can be easily 
captured. This method involves less computational work 
than available numerical method based on the FE. 
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