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ABSTRACT: This paper presents a numerical methodology for a nonlinear analysis model to investigate the 
complete load vector versus strain vector and the deformational response of structural concrete members rein-
forced with unbonded post-tensioned steel and conventional nonprestressed steel. The adopted calculation pro-
cedure of this methodology includes an iterative algorithm for determining the strain and the stress in concrete, 
unbonded prestressed steel and nonprestressed steel at different loading steps including the ultimate stage.  
Based on the nonlinear analysis that performed at different sections along the beam and depending on the at-
tained stress-strain state of the structural concrete member under the applied loading, the stress in unbonded steel 
is determined using an extensive iterative procedure. During any loading step, the analysis is repeated until the 
strains in concrete, unbonded prestressed steel, and nonprestressed steel are evaluated within a reasonable toler-
ance, an experimental verification was carried out using test results taken from four different investigations that 
performed between 1976 and 1991 on different flexural concrete members. It was observed that an excellent 
correlation was found between the results of the proposed methodology and the experimental tests.  
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1. INTRODUCTION 
 

The analysis of concrete members prestressed 
with unbonded steel is varying from that of concrete 
members prestressed with bonded steel. In the latter, 
the change in strain and thereby the change in stress 
beyond the effective prestress can be determined 
from strain compatibility between the bonded steel 
and adjacent concrete, so, it is a section dependent 
analysis. This procedure is not reliable for the con-
crete members prestressed with unbonded steel due 
to the lack of bonding between the post-tensioned 
steel and the surrounding concrete. The change in 
strain in the unbonded steel is a member dependent 
that is a function to the average change in the strain 
distribution along the adjacent concrete fibers over 
the whole length of the steel, so it can be assumed 
uniform between the anchorage zones of the member. 

Several equations have been suggested for 
predicting the flexural stress at ultimate 𝑓𝑓𝑢𝑢𝑢𝑢  in un-
bonded prestressed steel based on the experimental 
studies carried out by different researchers depend-
ing on several variables as Warwaruk et al. [1], Pan-
nell [2], Mattock et al. [3], and Mojtahedi and Gam-
ble [4]. Based on these studies, different expressions 
were proposed for the flexural stress at ultimate 𝑓𝑓𝑢𝑢𝑢𝑢 
and consequently to the methodologies adopted in 
international practice codes.  

Over the last few years, researches with experi-
mental and/or analytical studies have continued to be 
published to cover this important subject [5-15]. 

The ACI 318M-14 code [16] adopted the follow-

ing expressions to estimate 𝑓𝑓𝑢𝑢𝑢𝑢 in (MPa). Mainly, 
when 𝑙𝑙 ℎ⁄ ≤ 35 
 

𝑓𝑓𝑢𝑢𝑢𝑢 =  𝑓𝑓𝑝𝑝𝑝𝑝 +  70 +
𝑓𝑓𝑐𝑐′

100 𝜌𝜌𝑝𝑝𝑝𝑝
                            

𝑓𝑓𝑢𝑢𝑢𝑢  ≤ 𝑡𝑡ℎ𝑒𝑒 𝑙𝑙𝑒𝑒𝑙𝑙𝑙𝑙𝑡𝑡 𝑜𝑜𝑓𝑓 �𝑓𝑓𝑝𝑝𝑝𝑝 + 420� 𝑙𝑙𝑎𝑎𝑎𝑎 (𝑓𝑓𝑝𝑝𝑝𝑝)
      (1) 

      
when 𝑙𝑙 ℎ⁄ > 35 
 

𝑓𝑓𝑢𝑢𝑢𝑢 =  𝑓𝑓𝑝𝑝𝑝𝑝 +  70 +
𝑓𝑓𝑐𝑐′

300 𝜌𝜌𝑝𝑝𝑝𝑝
                            

𝑓𝑓𝑢𝑢𝑢𝑢  ≤ 𝑡𝑡ℎ𝑒𝑒 𝑙𝑙𝑒𝑒𝑙𝑙𝑙𝑙𝑡𝑡 𝑜𝑜𝑓𝑓 �𝑓𝑓𝑝𝑝𝑝𝑝 + 210� 𝑙𝑙𝑎𝑎𝑎𝑎 (𝑓𝑓𝑝𝑝𝑝𝑝)
        (2) 

 
where 𝑙𝑙 is the length of the clear span measured face 
to face of support in mm, ℎ is the overall thickness, 
height or depth of member in mm, 𝑓𝑓𝑝𝑝𝑝𝑝  effective 
stress in prestressing steel after all prestress losses in 
MPa, 𝑓𝑓𝑐𝑐

′  is specified compressive strength of con-
crete in MPa, 𝑓𝑓𝑝𝑝𝑝𝑝  is the specified yield strength of 
prestressing steel in MPa, and 𝜌𝜌𝑝𝑝𝑝𝑝 is the prestressing 
steel ratio (𝜌𝜌𝑝𝑝𝑝𝑝 = 𝐴𝐴𝑝𝑝𝑝𝑝 𝑏𝑏𝑎𝑎𝑝𝑝⁄ ) in which 𝐴𝐴𝑝𝑝𝑝𝑝 is the area 
of the prestressed reinforcement in tension zone in 
mm2, 𝑏𝑏 is the width of compression flange of the 
member in mm, and 𝑎𝑎𝑝𝑝 is the distance from the ex-
treme compression fiber to the centroid of prestress-
ing reinforcement in mm.   

The objectives of the present study includes the 
suggestion of a numerical methodology for a nonlin-
ear analysis model to predict the stress in internal 
unbonded prestressed steel at different stages of ex-
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posure of structural concrete members to monotonic 
static loading and, consequently, to evaluate the 
strength, deformability, and the load-carrying capac-
ity of such structural members under different types 
of static loading. Also, verification of the proposed 
model with the available experimental previous 
studies will be carried out using test results from 
Tam and Pannell [17], Du and Tao [18], Harajli and 
Kanj [19], Campbell and Chouinard [20]. The results 
of the proposed model will be compared to the re-
sults of ACI 318M-14 prediction equations [16]. 
 
2. STRAIN COMPONENTS RELATIONSHIP  
 

Non-linear stress-strain relationships (𝑓𝑓𝑚𝑚 − 𝜀𝜀𝑚𝑚 ) 
proposed by Karpenko et al. [21] were used for con-
crete in tension and compression and for steel. These 
relationships are based on the secant modulus of 
elasticity of the material 𝐸𝐸�𝑚𝑚, (see Figs. 1-3), which 
can be formulated as follow: 
 
𝑓𝑓𝑚𝑚 = 𝐸𝐸�𝑚𝑚. 𝜀𝜀𝑚𝑚                                                                  (3) 
                                                          
𝐸𝐸�𝑚𝑚 = 𝐸𝐸𝑚𝑚. 𝜈𝜈𝑚𝑚                                                                 (4) 
                                         
𝜈𝜈𝑚𝑚 = �̂�𝜈𝑚𝑚 ∓ (𝜈𝜈𝑜𝑜 − �̂�𝜈𝑚𝑚)�1 − 𝑒𝑒1𝑚𝑚𝜂𝜂𝑚𝑚 − 𝑒𝑒2𝑚𝑚𝜂𝜂𝑚𝑚2        (5) 
       
 

 
 
Fig.1 Stress-strain diagram of concrete 
 
where 𝜈𝜈𝑚𝑚 is the coefficient of elasticity of the mate-
rial, �̂�𝜈𝑚𝑚 is the value of 𝜈𝜈𝑚𝑚 at the vertex of the stress-
strain diagram, 𝜈𝜈𝑜𝑜 is the value of 𝜈𝜈𝑚𝑚 at the start of 
the stress-strain diagram, 𝑒𝑒1 and 𝑒𝑒2 are diagram cur-
vature parameters in which (𝑒𝑒2𝑚𝑚 = 1 − 𝑒𝑒1𝑚𝑚 ), and  
𝜂𝜂𝑚𝑚 is the stress level beyond the proportional limit 
which can be determined by the following equation:  
 

 𝜂𝜂𝑚𝑚 =
𝑓𝑓𝑚𝑚 − 𝑓𝑓𝑚𝑚,𝑝𝑝𝑒𝑒

𝑓𝑓𝑚𝑚 − 𝑓𝑓𝑚𝑚,𝑝𝑝𝑒𝑒
      ,        0 ≤  𝜂𝜂𝑚𝑚 ≤ 1                   (6) 

                     

To find the value of 𝜈𝜈𝑚𝑚 for the material, Eq. (5) can 
be rearranged in Eq. (7), where the larger root 
should be considered. 
 

�̂�𝜈𝑚𝑚2 − (𝜈𝜈𝑜𝑜 − �̂�𝜈𝑚𝑚)2 �1 +
𝑒𝑒1𝑚𝑚 𝑓𝑓𝑚𝑚,𝑝𝑝𝑒𝑒

1 − 𝑓𝑓𝑚𝑚,𝑝𝑝𝑒𝑒
−

𝑒𝑒2𝑚𝑚 𝑓𝑓𝑚𝑚,𝑝𝑝𝑒𝑒
2

�1 − 𝑓𝑓𝑚𝑚,𝑝𝑝𝑒𝑒�
2� − 

𝜈𝜈𝑚𝑚 �2�̂�𝜈𝑚𝑚 −
𝜀𝜀�̃�𝑚(𝜈𝜈𝑜𝑜 − �̂�𝜈𝑚𝑚)2

�̂�𝜈𝑚𝑚�1 − 𝑓𝑓𝑚𝑚,𝑝𝑝𝑒𝑒�
�𝑒𝑒1𝑚𝑚 −

2𝑒𝑒2𝑚𝑚 𝑓𝑓�𝑚𝑚,𝑝𝑝𝑒𝑒

1 − 𝑓𝑓𝑚𝑚,𝑝𝑝𝑒𝑒
�� +   

𝜈𝜈𝑚𝑚2 �1 +
𝑒𝑒2𝑚𝑚(𝜈𝜈𝑜𝑜 − �̂�𝜈𝑚𝑚)2𝜀𝜀�̃�𝑚2

�̂�𝜈𝑚𝑚2 �1 − 𝑓𝑓𝑚𝑚,𝑝𝑝𝑒𝑒�
2 � = 0                               (7) 

 

 
 
Fig.2 Stress-strain diagram of mild steel 
 

 
 
Fig.3 Stress-strain diagram of high strength steel 
 
3. LOAD-STRAIN COMPONENTS RELA-
TIONSHIP  

 
Consider the cross-section of a partially pre-

stressed flexural concrete member that reinforced 
with internal unbonded post-tensioned steel and or-
dinary (nonprestressed) mild steel (Fig. 4) and ex-
posed to normal force and biaxial bending moment.  

According to the Bernoulli’s assumption in 
which the plane section before bending remains 
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plane after bending, the strain at any fiber can be 
calculated according to the following expression: 
 
𝜀𝜀𝑚𝑚 = (𝜀𝜀𝑚𝑚𝑚𝑚 + 𝜀𝜀𝑜𝑜) + 𝜓𝜓𝑥𝑥𝑦𝑦𝑚𝑚 + 𝜓𝜓𝑝𝑝𝑥𝑥𝑚𝑚                          (8) 
           
         

 
 
Fig.4 Section geometry and positive sign convention 
 
where 𝜀𝜀𝑚𝑚𝑚𝑚  is the initial strain in the material; 𝜀𝜀𝑜𝑜  is 
the axial strain at the reference point; 𝜓𝜓𝑥𝑥 is the cur-
vature of the member’s longitudinal axis in the OYZ 
plane; 𝜓𝜓𝑝𝑝 is the curvature of the member’s longitu-
dinal axis in the OXZ plane. Figure (4) shows the 
adopted positive sign convention.  

Equation (8) can be rewritten in a matrix form: 
 
𝜀𝜀𝑚𝑚 = 𝑍𝑍 {𝜀𝜀}̅                                                              (9) 
 
𝑍𝑍 = {1   𝑦𝑦   𝑥𝑥 }                                                      (10) 
 
{𝜀𝜀}̅ = �(𝜀𝜀𝑚𝑚𝑚𝑚 + 𝜀𝜀𝑜𝑜)   𝜓𝜓𝑥𝑥   𝜓𝜓𝑝𝑝 �                                (11) 
 
While the force vector takes the following shape: 
 

{𝐹𝐹} =  �
𝑁𝑁
𝑀𝑀𝑥𝑥
𝑀𝑀𝑝𝑝

� =  

⎩
⎪⎪
⎨

⎪⎪
⎧ � 𝑓𝑓𝑚𝑚 𝑎𝑎𝐴𝐴𝑚𝑚

 

𝐴𝐴𝑚𝑚
    

� 𝑓𝑓𝑚𝑚 𝑦𝑦𝑚𝑚 𝑎𝑎𝐴𝐴𝑚𝑚
 

𝐴𝐴𝑚𝑚

� 𝑓𝑓𝑚𝑚 𝑥𝑥𝑚𝑚 𝑎𝑎𝐴𝐴𝑚𝑚
 

𝐴𝐴𝑚𝑚 ⎭
⎪⎪
⎬

⎪⎪
⎫

                      (12) 

 
Substituting Eq. (3) and Eq. (9), Eq. (12) will adopt 
a new form 
 

{𝐹𝐹} = �
𝑁𝑁
𝑀𝑀𝑥𝑥
𝑀𝑀𝑝𝑝

� = �
𝐶𝐶11 𝐶𝐶12 𝐶𝐶13
𝐶𝐶21 𝐶𝐶22 𝐶𝐶23
𝐶𝐶31 𝐶𝐶32 𝐶𝐶33

�  �
(𝜀𝜀𝑚𝑚𝑚𝑚 + 𝜀𝜀𝑜𝑜)

𝜓𝜓𝑥𝑥
𝜓𝜓𝑝𝑝

� (13) 

 
where 𝐶𝐶𝑚𝑚𝑖𝑖 is the element (𝑖𝑖𝑖𝑖) of the stiffness matrix 
that depends on the geometry of the section and the 

attained stress-strain condition in the components of 
the cross-section under the applied load. 𝐶𝐶𝑚𝑚𝑖𝑖 can be 
calculated as follow: 
 

𝐶𝐶11 = 𝐸𝐸�𝑚𝑚 � 𝑎𝑎𝐴𝐴𝑚𝑚
 

𝐴𝐴𝑚𝑚
 

𝐶𝐶12 = 𝐶𝐶21 = 𝐸𝐸�𝑚𝑚 �  𝑦𝑦𝑚𝑚 𝑎𝑎𝐴𝐴𝑚𝑚
 

𝐴𝐴𝑚𝑚
 

𝐶𝐶13 = 𝐶𝐶31 = 𝐸𝐸�𝑚𝑚 � 𝑥𝑥𝑚𝑚 𝑎𝑎𝐴𝐴𝑚𝑚
 

𝐴𝐴𝑚𝑚
                                 (14) 

𝐶𝐶22 = 𝐸𝐸�𝑚𝑚 � 𝑦𝑦𝑚𝑚2  𝑎𝑎𝐴𝐴𝑚𝑚
 

𝐴𝐴𝑚𝑚
 

𝐶𝐶23 =  𝐶𝐶32 =  𝐸𝐸�𝑚𝑚 � 𝑦𝑦𝑚𝑚  𝑥𝑥𝑚𝑚 𝑎𝑎𝐴𝐴𝑚𝑚
 

𝐴𝐴𝑚𝑚
 

C33 = E�m� xm2  dAm

 

Am
 

 
The stiffness matrix in Eq. (13) depends on the 

value of {𝜀𝜀}̅ which has not determined yet. So an 
iteration process should be performed in which, 
 
{𝜀𝜀}̅𝑚𝑚 = [𝐶𝐶({𝜀𝜀}̅𝑚𝑚−1)]−1 ∗  {𝐹𝐹}
{𝜀𝜀}̅0 = 0 ,   𝑖𝑖 = 1, 2, 3, … … .                                    (15) 

  
Through each iteration the new value of the 

strain vector {𝜀𝜀}̅𝑚𝑚 should be compared to the old val-
ue which determined at the previous iteration. The 
comparison process should be continuing until the 
convergence is achieved.  

Whenever the strain vector is determined, the 
strain in concrete fibers and in bonded steel rein-
forcement can be estimated depending on the strain 
compatibility using Eq. (8). In case of the internal 
unbonded steel reinforcement, due to the lack of 
bonding and in turn the violation of the strain com-
patibility, in this paper, it is suggested that the strain 
in this type of steel can be calculated by integrating 
the strain value of concrete at the level of the cen-
troidal axis of the unbonded steel along its entire 
length and dividing the integrated value by the 
length of the considered steel between anchorages. 
 

∆𝜀𝜀𝑢𝑢𝑢𝑢 =
1
ℓ𝑢𝑢𝑢𝑢

 � ∆𝜀𝜀𝑐𝑐𝑢𝑢𝑢𝑢(𝑧𝑧).𝑎𝑎𝑧𝑧

ℓ𝑢𝑢𝑢𝑢

0

                                 (16) 

 
where ∆𝜀𝜀𝑐𝑐𝑢𝑢𝑢𝑢  is the change in the strain in the un-
bonded steel due to the applied load, ℓ𝑢𝑢𝑢𝑢  is the 
length of the unbonded steel between anchorages, 
and ∆𝜀𝜀𝑐𝑐𝑢𝑢𝑢𝑢 is the change in strain in concrete fiber at 
the level of the centroidal axis of the unbonded steel. 
The value of ∆𝜀𝜀𝑢𝑢𝑢𝑢 is considered as the average value 
for the change of strain along the unbonded steel. 
Adding ∆𝜀𝜀𝑢𝑢𝑢𝑢 to the initial prestrain 𝜀𝜀𝑢𝑢𝑢𝑢𝑚𝑚 that induced 
in this steel reinforcement and, consequently, using 
the constitutive relationship that represents the men-
tioned steel element, the total stress can be estimated. 
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𝜀𝜀𝑢𝑢𝑢𝑢 = 𝜀𝜀𝑢𝑢𝑢𝑢𝑚𝑚 + ∆𝜀𝜀𝑢𝑢𝑢𝑢                                                     (17)                                                 
 
𝑓𝑓𝑢𝑢𝑢𝑢 = 𝑓𝑓(𝜀𝜀𝑢𝑢𝑢𝑢)                                                               (18)                                                          
 
where 𝑓𝑓  is the nonlinear function that relates the 
flexural stress in the unbounded steel with its flexur-
al strain.  

It is worth to mention that the ultimate flexural 
stress value is determined when the force vector in 
Eq. (13) represents the ultimate strength that the 
critical section can resist. 

 
4. LOAD-DEFLECTION RELATIONSHIP  
 

The deflection value at any point along the beam, 
during any loading stage, can be determined by dis-
tributing the curvature values 𝜓𝜓𝑥𝑥, calculated from Eq. 
(15) for that loading stage, along the beam and then 
double integrating them. In this study, Newmark's 
numerical integration method [22] is utilized to de-
termine deflection values from the curvature using 
the following procedure (see Fig. 5):  
1. The member is divided into an even number of 
segments by a number of stations or points which 
are equal to the number of segments plus one. Each 

point 𝑖𝑖 is with a known value of the curvature 𝜓𝜓𝑥𝑥(𝑚𝑚) 
(𝜓𝜓𝑥𝑥(𝑚𝑚)- fictitious loading on the conjugated beam). 
2. The value of equivalent concentrated curvature 
𝜓𝜓�𝑥𝑥(𝑚𝑚), (fictitious reaction on the conjugated beam), is 
determined for the left side of the beam using Equa-
tions (19) and (20) for the 2nd-degree parabolic cur-
vature (M/EI) and the straight-line curvature, respec-
tively. 
 

𝜓𝜓�𝑥𝑥(𝑚𝑚) =
∆𝑍𝑍
12

 �𝜓𝜓𝑥𝑥(𝑚𝑚−1) + 10𝜓𝜓𝑥𝑥(𝑚𝑚) + 𝜓𝜓𝑥𝑥(𝑚𝑚+1)�         (19) 
          

𝜓𝜓�𝑥𝑥(𝑚𝑚) =
∆𝑍𝑍
6

 �𝜓𝜓𝑥𝑥(𝑚𝑚−1) + 4𝜓𝜓𝑥𝑥(𝑚𝑚) + 𝜓𝜓𝑥𝑥(𝑚𝑚+1)�           (20)  
           
3. The value of slopes 𝑆𝑆𝑚𝑚, (fictitious shearing forces 
in the conjugated beam), which determined sequen-
tially starting from the midspan point C, where: 
 

𝑆𝑆𝑐𝑐 =
𝜓𝜓�𝑥𝑥(𝑐𝑐)

2
                                                                   (21) 

                                    

𝑆𝑆𝑚𝑚 = �𝜓𝜓𝑥𝑥(𝑖𝑖)

𝑐𝑐−1

𝑖𝑖=𝑚𝑚

+ 𝑆𝑆𝑐𝑐                                                    (22) 

 

 
 

Fig.5 Formulas for equivalent concentrated loads 
 
For a simply supported beam, the values of 𝜓𝜓𝑥𝑥(𝑚𝑚) and 
the slope in both ends are unknown; therefore these 
values can be substituted equal to zero (i.e., 𝜓𝜓𝑥𝑥(1)= 0 
and 𝑆𝑆𝑐𝑐= 0).  
4. The value of deflection, (moment in the conjugat-
ed beam), for each point, is then determined from Eq. 
(23). 
 

∆𝑚𝑚= �𝑆𝑆𝑖𝑖

𝑚𝑚

𝑖𝑖=2

∆𝑥𝑥                                                              (23) 

 
where 𝑖𝑖 = 2, 3, … … … ,𝐶𝐶. 
Since the beam is considered symmetric about mid-
span, the values of deflection for another half of the 
beam is determined according to the fact that 

(∆𝑝𝑝+1= ∆𝑛𝑛−𝑝𝑝), where (𝑝𝑝 = 1, 2, … … ,𝐶𝐶 − 1) and 𝑎𝑎 
is the number of points (sections) along the beam. 
 
5. VERIFICATION OF LOAD-STRAIN COM-
PONENTS RELATIONSHIP  
 

To verify and evaluate the proposed methodolo-
gy for predicting the stress in unbonded steel and in 
turn the load-carrying capacity of the structural con-
crete member, experimental data for 60 flexural 
members with different effective parameters that 
influenced the above-mentioned stress and strength 
were collected from other researchers, treated in the 
present study, and comparisons have been made.  

Tam and Pannell [17] tested eight simply sup-
ported beams with straight unbonded prestressed 
reinforcement. The ratio of the clear span of the 
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member 𝑙𝑙  to the effective depth of the prestressed 
steel 𝑎𝑎𝑝𝑝  was ranged between 18 and 43. These 
beams were exposed to a single concentrated load at 
midspan. The experimental and numerical results 
obtained with the proposed methodology are shown 
in Table (1).  

Du and Tao [18] tested 20 simply supported 
beams with straight unbonded steel. All beams were 
with the rectangular cross-sectional configuration of 
(160 x 280) mm. The span-to-depth ratio of all 
beams was 19.1, see Table (2).  

 
                                                 

Table 1 Experimental and numerical results for Tam and Pannell tests [17]  
 

Beam 
ID 

𝑙𝑙
𝑎𝑎𝑝𝑝

 

Stress at ultimate in unbonded steel 𝑓𝑓𝑢𝑢𝑢𝑢, MPa Failure moment 𝑀𝑀𝑢𝑢, kN.m 
test 

record 
proposed 

methodology 
ACI 318M-14 

approach 
test 

record 
proposed 

methodology 
ACI 318M-14 

approach 

𝑓𝑓𝑢𝑢𝑢𝑢
𝑝𝑝𝑥𝑥𝑝𝑝 𝑓𝑓𝑢𝑢𝑢𝑢𝑝𝑝𝑝𝑝𝑒𝑒 

𝑓𝑓𝑢𝑢𝑢𝑢𝑝𝑝𝑝𝑝𝑒𝑒

𝑓𝑓𝑢𝑢𝑢𝑢
𝑝𝑝𝑥𝑥𝑝𝑝 𝑓𝑓𝑢𝑢𝑢𝑢𝑝𝑝𝑝𝑝𝑒𝑒 

𝑓𝑓𝑢𝑢𝑢𝑢𝑝𝑝𝑝𝑝𝑒𝑒

𝑓𝑓𝑢𝑢𝑢𝑢
𝑝𝑝𝑥𝑥𝑝𝑝 𝑀𝑀𝑢𝑢

𝑝𝑝𝑥𝑥𝑝𝑝 𝑀𝑀𝑢𝑢
𝑝𝑝𝑝𝑝𝑒𝑒 

𝑀𝑀𝑢𝑢
𝑝𝑝𝑝𝑝𝑒𝑒

𝑀𝑀𝑢𝑢
𝑝𝑝𝑥𝑥𝑝𝑝 𝑀𝑀𝑢𝑢

𝑝𝑝𝑝𝑝𝑒𝑒 
𝑀𝑀𝑢𝑢

𝑝𝑝𝑝𝑝𝑒𝑒

𝑀𝑀𝑢𝑢
𝑝𝑝𝑥𝑥𝑝𝑝 

B1 18.0 962.19 914.74 0.951 944.08 0.981 40.13 39.92 0.995 42.75 1.065 
B2 23.5 898.43 857.36 0.954 877.01 0.976 60.65 55.68 0.918 69.91 1.153 
B3 27.5 1046.40 993.13 0.949 1036.38 0.990 30.75 35.00 1.138 35.96 1.169 
B4 28.6 969.68 963.9 0.994 984.20 1.015 38.38 40.24 1.048 47.94 1.249 
B5 29.3 1071.84 1079.08 1.007 1097.42 1.024 22.14 25.57 1.155 29.46 1.331 
B6 31.4 944.74 964.39 1.021 983.07 1.041 22.47 27.54 1.226 36.07 1.605 
B7 38.8 859.97 884.34 1.028 902.43 1.049 22.84 25.67 1.124 31.97 1.400 
B8 43.0 732.67 772.5 1.054 833.02 1.137 21.01 18.59 0.885 16.21 0.772 

Average of 
(𝑓𝑓𝑢𝑢𝑢𝑢𝑝𝑝𝑝𝑝𝑒𝑒 𝑓𝑓𝑢𝑢𝑢𝑢

𝑝𝑝𝑥𝑥𝑝𝑝⁄ ) or (𝑀𝑀𝑢𝑢
𝑝𝑝𝑝𝑝𝑒𝑒 𝑀𝑀𝑢𝑢

𝑝𝑝𝑥𝑥𝑝𝑝⁄ ) 0.995 
 

1.027 
 

1.061 
 

1.218 

Standard of deviation (σ) 0.040 0.052 0.121 0.247 
Coefficient of variation (COV) 0.040 0.051 0.114 0.203 

 
Table 2 Experimental and numerical results for Du and Tao tests [18] 
  

Beam 
ID 

𝑙𝑙
𝑎𝑎𝑝𝑝

 

Stress at ultimate in unbonded steel 𝑓𝑓𝑢𝑢𝑢𝑢, MPa Failure moment 𝑀𝑀𝑢𝑢, kN.m 
test 

record 
proposed 

methodology 
ACI 318M-14 

approach 
test 

record 
proposed 

methodology 
ACI 318M-14 

approach 

𝑓𝑓𝑢𝑢𝑢𝑢
𝑝𝑝𝑥𝑥𝑝𝑝 𝑓𝑓𝑢𝑢𝑢𝑢𝑝𝑝𝑝𝑝𝑒𝑒 

𝑓𝑓𝑢𝑢𝑢𝑢𝑝𝑝𝑝𝑝𝑒𝑒

𝑓𝑓𝑢𝑢𝑢𝑢
𝑝𝑝𝑥𝑥𝑝𝑝 𝑓𝑓𝑢𝑢𝑢𝑢𝑝𝑝𝑝𝑝𝑒𝑒 

𝑓𝑓𝑢𝑢𝑢𝑢𝑝𝑝𝑝𝑝𝑒𝑒

𝑓𝑓𝑢𝑢𝑢𝑢
𝑝𝑝𝑥𝑥𝑝𝑝 𝑀𝑀𝑢𝑢

𝑝𝑝𝑥𝑥𝑝𝑝 𝑀𝑀𝑢𝑢
𝑝𝑝𝑝𝑝𝑒𝑒 

𝑀𝑀𝑢𝑢
𝑝𝑝𝑝𝑝𝑒𝑒

𝑀𝑀𝑢𝑢
𝑝𝑝𝑥𝑥𝑝𝑝 𝑀𝑀𝑢𝑢

𝑝𝑝𝑝𝑝𝑒𝑒 
𝑀𝑀𝑢𝑢

𝑝𝑝𝑝𝑝𝑒𝑒

𝑀𝑀𝑢𝑢
𝑝𝑝𝑥𝑥𝑝𝑝 

A1 19.1 1458 1500 1.029 1213 0.832 31.1 30.1 0.968 24.6 0.791 
A2 19.1 1430 1362 0.952 1084 0.758 46.8 41.3 0.882 36.6 0.782 
A3 19.1 1176 1242 1.056 959 0.815 63.6 54.3 0.854 50.8 0.799 
A4 19.1 1465 1447 0.988 1122 0.766 38.3 34.1 0.890 29.3 0.765 
A5 19.1 1315 1303 0.991 1017 0.773 51.2 46.8 0.914 43.4 0.848 
A6 19.1 1063 1142 1.074 993 0.934 72.4 67.9 0.938 66.5 0.919 
A7 19.1 1436 1329 0.925 1230 0.857 41.5 39.9 0.961 37.9 0.913 
A8 19.1 1290 1325 1.027 1162 0.901 59.4 56.2 0.946 54.1 0.911 
A9 19.1 1108 1099 0.992 1064 0.960 102 90.3 0.886 90.0 0.882 
B1 19.1 1645 1679 1.021 1352 0.822 30.3 33.5 1.106 26.8 0.884 
B2 19.1 1564 1595 1.020 1221 0.781 50.4 47.3 0.938 40.4 0.802 
B3 19.1 1361 1443 1.060 1128 0.829 61.0 62.8 1.030 57.6 0.944 
B5 19.1 1520 1538 1.012 1250 0.822 53.4 52.5 0.983 48.1 0.901 
B6 19.1 1402 1409 1.005 1181 0.842 75.8 74.3 0.980 71.4 0.942 
B7 19.1 1603 1583 0.988 1422 0.887 42.5 43.9 1.033 40.7 0.958 
B9 19.1 1346 1402 1.042 1295 0.962 89.7 93.5 1.042 92.4 1.030 
C1 19.1 1396 1423 1.019 1173 0.840 33.6 35.9 1.068 28.6 0.851 
C3 19.1 1316 1249 0.950 969 0.736 67.3 59.5 0.884 54.2 0.805 
C7 19.1 1411 1398 0.991 1322 0.937 44.6 50.5 1.132 44.3 0.993 
C9 19.1 1109 1096 0.988 1047 0.944 101.0 98.0 0.970 101.6 1.006 

Average of 
(𝑓𝑓𝑢𝑢𝑢𝑢𝑝𝑝𝑝𝑝𝑒𝑒 𝑓𝑓𝑢𝑢𝑢𝑢

𝑝𝑝𝑥𝑥𝑝𝑝⁄ ) or (𝑀𝑀𝑢𝑢
𝑝𝑝𝑝𝑝𝑒𝑒 𝑀𝑀𝑢𝑢

𝑝𝑝𝑥𝑥𝑝𝑝⁄ ) 1.007 
 

0.850 
 

0.970 
 

0.886 

Standard of deviation (σ) 0.038 0.071 0.078 0.079 
Coefficient of variation (COV) 0.038 0.084 0.080 0.089 



International Journal of GEOMATE, May, 2020, Vol.18, Issue 69, pp. 9 - 17 

14 
 

The main variables were the area of prestressed 
steel 𝐴𝐴𝑝𝑝𝑝𝑝, the concrete compressive strength 𝑓𝑓𝑐𝑐

′, and 
the effects of varying amounts of nonprestressed 
reinforcement 𝐴𝐴𝑝𝑝 on the stress in unbonded pre-
stressed tendons in partially prestressed concrete 
beams at ultimate load. All tested specimens were 
exposed to a progressively increased, up to the fail-
ure, third point monotonic static loading over (4200) 
mm effective span. Table (2) shows the experi-
mental and the calculated, according to the proposed 
methodology and the ACI 318M-14 approach results 
for the ultimate stress in unbonded prestressed steel 
and the failure moments.  

Harajli and Kanj [19] tested 26 simply supported 
partially prestressed concrete beams with three 
groups having span-to-depth ratios equal to 19, 12 
and 7.8, respectively. Three different contents of 
tension reinforcement (i.e., reinforcing index) were 
used. In their experimental program, thirteen beams 
were subjected to a single concentrated static load-
ing at the midspan section, while the other 13 spec-

imens were exposed to third-point static loading. All 
beams were tested up to failure. The comparison of 
the experimental and the numerical results for the 
ultimate stress in unbonded prestressed steel and the 
failure moments are shown in Table (3).  

Campbell and Chouinard [20] tested six simply 
supported partially presressed concrete beams of a 
rectangular cross-section of (160 x 220) mm dimen-
sions and (3300) mm span length. All beams were 
subjected to third-point monotonic static loading. 
The span-to-depth ratio was 15 for all beams. The 
main variable was the effect of the amount of bond-
ed nonprestressed reinforcement on the stress in 
unbonded prestressing steel. Table (4) shows the 
comparison of the experimental and numerical out-
comes. Tables (2)-(4) show also the average values 
of the estimated to the experimental results at failure, 
the standard of deviation, and the coefficient of vari-
ation. Figures 6 to 9 illustrate the scattering of the 
numerical results of the proposed methodology from 
the experimental findings.  

 
Table 3 Experimental and numerical results for Harajli and Kanj tests [19] 
 

Beam ID 
𝑙𝑙
𝑎𝑎𝑝𝑝

 

Stress at ultimate in unbonded steel 𝑓𝑓𝑢𝑢𝑢𝑢, MPa Failure moment 𝑀𝑀𝑢𝑢, kN.m 
test 

record 
proposed 

methodology 
ACI 318M-14  

approach 
proposed 

methodology 
ACI 318M-14 

approach 

𝑓𝑓𝑢𝑢𝑢𝑢
𝑝𝑝𝑥𝑥𝑝𝑝 𝑓𝑓𝑢𝑢𝑢𝑢𝑝𝑝𝑝𝑝𝑒𝑒 

𝑓𝑓𝑢𝑢𝑢𝑢𝑝𝑝𝑝𝑝𝑒𝑒

𝑓𝑓𝑢𝑢𝑢𝑢
𝑝𝑝𝑥𝑥𝑝𝑝 𝑓𝑓𝑢𝑢𝑢𝑢𝑝𝑝𝑝𝑝𝑒𝑒 

𝑓𝑓𝑢𝑢𝑢𝑢𝑝𝑝𝑝𝑝𝑒𝑒

𝑓𝑓𝑢𝑢𝑢𝑢
𝑝𝑝𝑥𝑥𝑝𝑝 𝑀𝑀𝑢𝑢

𝑝𝑝𝑝𝑝𝑒𝑒 𝑀𝑀𝑢𝑢
𝑝𝑝𝑝𝑝𝑒𝑒 

PP2R3-3 19.0 1261.3 1284.6 1.018 1247.7 0.989 21.2 17.9 
PP2R3-0 19.0 1245.6 1178.4 0.946 1238.0 0.994 19.3 15.6 
PP3R3-3 19.0 1106.9 1155.7 1.044 1066.1 0.963 32.7 30.2 
PP3R3-0 19.0 1068.9 1002.1 0.938 1068.9 1.000 32.7 32.5 
P1R3-3 19.0 1280.0 1348.7 1.054 1365.8 1.067 14.0 7.0 
P1R3-0 19.0 1351.7 1351.1 1.000 1366.1 1.011 14.4 7.0 
P2R3-3 19.0 1212.4 1262.0 1.041 1055.0 0.870 20.3 15.2 
P2R3-0 19.0 1206.9 1147.9 0.951 1046.9 0.867 19.6 15.0 
P3R3-3 19.0 1160.7 1178.1 1.015 1033.8 0.891 25.5 20.5 
P3R3-0 19.0 1127.6 1107.6 0.982 990.3 0.878 24.4 19.7 

PP1R2-3 12.0 1281.3 1231.0 0.961 1224.0 0.955 33.21 30.9 
PP1R2-0 12.0 1229.7 1218.7 0.991 1187.6 0.966 33.6 29.7 
PP2R2-3 12.0 1217.2 1227.5 1.009 1098.8 0.903 41.8 37.9 
PP2R2-0 12.0 1259.3 1154.6 0.917 1077.9 0.856 41.2 37.6 
PP3R2-3 12.0 1086.2 1160.5 1.068 1057.7 0.974 63.1 61.2 
PP3R2-0 12.0 1157.2 1124.9 0.972 1089.2 0.941 63.75 61.7 
P1R2-3 12.0 1400.0 1415.2 1.011 1231.5 0.880 24.1 18.1 
P1R2-0 12.0 1205.5 1210.7 1.004 1036.8 0.860 26.8 19.8 
P2R2-3 12.0 1233.1 1234.8 1.001 1014.4 0.823 34.3 27.0 
P2R2-0 12.0 1186.2 1169.9 0.986 1009.5 0.851 34.4 26.9 

PP1R1-3 7.8 1200.0 1240.4 1.034 1185.8 0.988 49.2 42.7 
PP1R1-0 7.8 1281.3 1155.4 0.901 1213.0 0.947 49.9 44.5 
PP2R1-3 7.8 1217.2 1203.0 0.988 1140.9 0.937 75.1 68.0 
PP2R1-0 7.8 1182.8 1161.9 0.982 1103.6 0.933 65.0 56.7 
PP3R1-3 7.8 1120.7 1169.5 1.044 1053.2 0.940 79.7 71.0 
PP3R1-0 7.8 1079.3 1102.9 1.022 1043.3 0.967 79.6 70.7 
Average of (𝑓𝑓𝑢𝑢𝑢𝑢𝑝𝑝𝑝𝑝𝑒𝑒 𝑓𝑓𝑢𝑢𝑢𝑢

𝑝𝑝𝑥𝑥𝑝𝑝⁄ ) 0.995 
 

0.933 
Standard of deviation (σ) 0.042 0.060 
Coefficient of variation (COV) 0.042 0.064 
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Table 4 Experimental and numerical results for Campbell and Chouinard tests [20] 
 

Beam 
ID 

𝑙𝑙
𝑎𝑎𝑝𝑝

 

Stress at ultimate in unbonded steel 𝑓𝑓𝑢𝑢𝑢𝑢, 
MPa Failure moment 𝑀𝑀𝑢𝑢, kN.m 

test 
record 

proposed 
methodology 

ACI 318M-14 
approach 

test 
record 

proposed 
methodology 

ACI 318M-14 
approach 

𝑓𝑓𝑢𝑢𝑢𝑢
𝑝𝑝𝑥𝑥𝑝𝑝 𝑓𝑓𝑢𝑢𝑢𝑢𝑝𝑝𝑝𝑝𝑒𝑒 

𝑓𝑓𝑢𝑢𝑢𝑢𝑝𝑝𝑝𝑝𝑒𝑒

𝑓𝑓𝑢𝑢𝑢𝑢
𝑝𝑝𝑥𝑥𝑝𝑝 𝑓𝑓𝑢𝑢𝑢𝑢𝑝𝑝𝑝𝑝𝑒𝑒 

𝑓𝑓𝑢𝑢𝑢𝑢𝑝𝑝𝑝𝑝𝑒𝑒

𝑓𝑓𝑢𝑢𝑢𝑢
𝑝𝑝𝑥𝑥𝑝𝑝 𝑀𝑀𝑢𝑢

𝑝𝑝𝑥𝑥𝑝𝑝 𝑀𝑀𝑢𝑢
𝑝𝑝𝑝𝑝𝑒𝑒 

𝑀𝑀𝑢𝑢
𝑝𝑝𝑝𝑝𝑒𝑒

𝑀𝑀𝑢𝑢
𝑝𝑝𝑥𝑥𝑝𝑝 𝑀𝑀𝑢𝑢

𝑝𝑝𝑝𝑝𝑒𝑒 
𝑀𝑀𝑢𝑢

𝑝𝑝𝑝𝑝𝑒𝑒

𝑀𝑀𝑢𝑢
𝑝𝑝𝑥𝑥𝑝𝑝 

1 15 1476 1420 0.962 1228 0.832 45.5 42.3 0.930 48.5 0.801 
2 15 1467 1411 0.962 1212 0.826 63.3 55.7 0.880 63.5 0.832 
3 15 1381 1320 0.956 1194 0.865 81.1 68.4 0.843 76.5 0.828 
4 15 1348 1332 0.988 1254 0.930 98.0 85.4 0.871 92.7 0.866 
5 15 1274 1263 0.991 1240 0.973 105.5 97.8 0.927 103.5 0.929 
6 15 1269 1223 0.964 1245 0.980 120.2 109.4 0.910 113.2 0.916 

Average of 
(𝑓𝑓𝑢𝑢𝑢𝑢𝑝𝑝𝑝𝑝𝑒𝑒 𝑓𝑓𝑢𝑢𝑢𝑢

𝑝𝑝𝑥𝑥𝑝𝑝⁄ ) or (𝑀𝑀𝑢𝑢
𝑝𝑝𝑝𝑝𝑒𝑒 𝑀𝑀𝑢𝑢

𝑝𝑝𝑥𝑥𝑝𝑝⁄ ) 0.970 
 

0.901 
 

0.894 
 

0.980 

Standard of deviation (σ) 0.015 0.070 0.034 0.049 
Coefficient of variation (COV) 0.016 0.077 0.038 0.050 

 

 
 
Fig. 6 Experimental and numerical stress relation-
ship at ultimate in unbonded steel for Tam and Pan-
nell tests [17]  
 

 
 
Fig. 7 Experimental and numerical stress relation-
ship at ultimate in unbonded steel for Du and Tao 
tests [18] 

 
 
Fig. 8 Experimental and numerical stress relation-
ship at ultimate in unbonded steel for Harajli and 
Kanj tests [19] 
 

 
 
Fig. 9 Experimental and numerical stress relation-
ship at ultimate in unbonded steel for Campbell and 
Chouinard tests [20] 
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6. VERIFICATION OF LOAD-DEFLECTION 
RELATIONSHIP 
  

To verify the predicted values of deflection, ex-
perimental data are also used for other researchers. 
Du and Tao [18] reported the experimental values of 
midspan deflection for 22 of the tested beams, (even 

they reported the results of stress in the unbounded 
tendons for only 20 tested beams). Table (5) shows 
the comparison between the proposed in this study 
methodology for computing deflection to the exper-
imental values and to the values obtained theoreti-
cally by Du and Tao [18]. 

 
Table 5 Experimental and numerical results of midspan deflection values for Du and Tao tests [18] 
 

 
Beam 

ID 

Deflection at ultimate load (mm) 
 

Beam 
ID 

Deflection at ultimate load (mm) 
test 

record 
proposed 

methodology 
Du and Tao 

methodology 
test 

record 
proposed 

methodology 
Du and Tao 

methodology 
𝛥𝛥𝑝𝑝𝑥𝑥𝑝𝑝 

 
𝛥𝛥𝑝𝑝𝑝𝑝𝑒𝑒 

 
𝛥𝛥𝑝𝑝𝑝𝑝𝑒𝑒

𝛥𝛥𝑝𝑝𝑥𝑥𝑝𝑝
 𝛥𝛥[18] 𝛥𝛥[18]

𝛥𝛥𝑝𝑝𝑥𝑥𝑝𝑝
 

𝛥𝛥𝑝𝑝𝑥𝑥𝑝𝑝 
 

𝛥𝛥𝑝𝑝𝑝𝑝𝑒𝑒 
 

𝛥𝛥𝑝𝑝𝑝𝑝𝑒𝑒

𝛥𝛥𝑝𝑝𝑥𝑥𝑝𝑝
 𝛥𝛥[18] 𝛥𝛥[18]

𝛥𝛥𝑝𝑝𝑥𝑥𝑝𝑝
 

A1 110.7 107.93 0.975 108.9 0.984 B3 68.5 62.17 0.908 61.8 0.902 
A2 100.0 71.45 0.715 71.5 0.715 B4 123.7 108.24 0.875 119.0 0.962 
A3 57.3 57.27 0.999 52.0 0.908 B5 99.6 74.06 0.744 81.8 0.821 
A4 119.0 96.11 0.808 93.9 0.789 B6 66.6 53.82 0.808 46.8 0.703 
A5 75.4 65.49 0.869 64.7 0.858 B7 103.0 81.975 0.796 120.1 1.166 
A6 44.5 45.2 1.016 43.2 0.971 B8 99.8 68.58 0.687 74.3 0.744 
A7 101.5 87.26 0.86 79.6 0.784 B9 48.5 46.55 0.96 54.2 1.118 
A8 70.9 57.5 0.811 60.9 0.859 C1 81.8 82.91 1.014 104.2 1.274 
A9 39.4 35.37 0.898 37.2 0.944 C3 65.4 57.97 0.886 52.9 0.809 
B1 109.2 115.26 1.055 138.2 1.266 C7 73.0 73.33 1.004 82.0 1.123 
B2 92.5 88.15 0.953 93.8 1.014 C9 43.4 39.63 0.913 36.2 0.834 

Average of ( 𝛥𝛥
𝑒𝑒𝑒𝑒𝑒𝑒

𝛥𝛥𝑒𝑒𝑒𝑒𝑒𝑒
  ) or ( 𝛥𝛥

[18]

𝛥𝛥𝑒𝑒𝑒𝑒𝑒𝑒
 ) 

 
0.889 

 
0.934 

Standard of deviation       (σ) 0.103 0.168 
Coefficient of variation (COV) 0.116 0.180 

 
7. CONCLUSIONS  
 

The methodology presented in this paper focuses 
on the determination of the stress in unbonded pre-
stressing steel and bonded conventional reinforce-
ment, the curvature and the deflection of the section 
at different loading stages including the nominal 
strength, in addition to, the load-carrying capacity of 
the structural concrete members under different ef-
fects of static loading.  
Based on the results of the numerical investigation, 
the following conclusions are drawn:  
1. The comparison of the numerical results of the 
stress in unbonded prestressing steel at ultimate de-
termined according to the proposed in this paper 
methodology to the experimental data of 60 structur-
al concrete members tested between 1976 and 1991 
showed that the average value of the estimated to the 
experimental stresses at failure is 0.997 with a 
standard of deviation and coefficient of variation 
each of 0.039. On the other hand, these values at-
tained 0.914, 0.085, 0.093, respectively, according to 
the analytical method-ology proposed by the ACI 
318M-14. 
2. The comparison of the numerical results of the 
proposed methodology of the failure moment to the 
test data available for 34 structural concrete mem-
bers proved that the average value of the predicted to 

the observed during testing failure moments is 0.978 
with a standard of deviation and coefficient of varia-
tion of 0.099 and 0.101, respectively. Meanwhile, 
these values reached 0.96, 0.195, 0.203, respectively, 
based on the ACI 318M-14 approach.  
3. The comparison of the numerical midspan deflec-
tion to the available experimental findings for 22 
structural concrete members indicated that the aver-
age value for the estimated to the measured deflec-
tions is 0.889 with a standard of deviation and coef-
ficient of variation of 0.103, and 0.116, respectively. 
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