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ABSTRACT: A fragility curve is a primary component in the risk assessment, which is useful for evacuation 
planning, estimation of potential losses, and estimation of the damage to residential buildings caused by 
natural hazards. In general, a fragility curve represents the relationship between the probability of exceeding 
a specific damage state of a structure and natural hazard intensity. For determining such a curve, two 
parameters: the median and standard deviation are estimated. A fragility curve can be constructed using 
empirical data and analytical data. Numerical fitting data is used to develop the fragility curve. Various 
methods have been proposed using numerical fitting data to approximate the fragility curves. However, the 
most widely used methods for developing fragility curves are the least-squares method and the maximum 
likelihood method. In this present study, these two different numerical fitting data methods for fragility curve 
development are analyzed and compared. Basic assumptions and limitations of each method are also 
discussed. The building damage data used in all methods to derive the fragility curve is generated from 
hypothetical damage data assuming a lognormal distribution. Finally, the maximum likelihood method is 
proven to be optimal for developing fragility curve based on structural damage data. 
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INTRODUCTION 
 

Each year, several countries are affected by a 
variety of natural hazards, including hurricanes, 
tropical storms, strong winds, floods, earthquakes, 
and tsunamis. Therefore, risk assessment is the key 
to provide a way to prevent and mitigate damages 
or losses resulting from natural disasters in the 
future. The risk assessment process includes 
natural hazard identification, building inventory, 
and fragility curve. The Natural hazard is 
identified at any given site to determine the likely 
impacts in the form of a hazard map. The building 
inventory is a classification procedure in which 
buildings are grouped based on similar 
damage/ability/loss characteristics into a set of 
predefined building classes. Model building types 
are further constructed by developing the damage 
and loss prediction models to represent the average 
building population characteristics within each 
class. A fragility curve is utilized to estimate a 
vulnerability, which expresses a relationship 
between the probability of being in or exceeding 
building damage state and the intensity of natural 
hazard. Therefore, a fragility curve is the key 
parameters in risk assessment for evaluating the 
damage probability at a specific damage level 

under the hazard. Statistical methodology is 
applied to establish a fragility curve. The building 
damage data, which is assumed to follow the 
lognormal distribution [1], is used in exploring the 
relationship of damage probability and hazard 
intensity. In general, methods most commonly 
used to develop the fragility curve are the least 
squares estimation (LSE) [2]-[3] and maximum 
likelihood estimation (MLE) [4]-[10]. Thus, in this 
study, the two most commonly used methods of 
estimation are compared, and the optimal method 
of fragility curve development is demonstrated 
based on statistical principles. 

 
FRAGILITY CURVE  
 

In this section, the concept and the key 
parameters of a fragility curve are described here 
to provide a basic understanding of analysis in 
fragility curve development for obtaining the 
appropriate method. A fragility curve describes a 
relationship between the level of damage 
probability and hazard. The probabilities defined 
in fragility curve are conditional probabilities as 
shown in Eq. (1): 
 

[ ] { }|    1, 2,...d DF D d X x d N≥ = ∈= P       (1) 
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where dF represents the fragility function for 
damaged state d  evaluated at the hazard level of 
x  P[A|B] is the probability that event A occurs 
given that event B has taken place. D is a damaged 
state of a particular component, which takes on a 
value of {0,1,…,nD}, and d is a damaged state. X 
is an uncertain excitation which is called demand 
parameter (DP) and x  is a particular value of X. 

The structural failure data follows a lognormal 
distribution as shown in Fig.1. The probability 
density function (PDF) as defined in Eq. (2) 
represents the probability of structural damage. 
The dispersion or width of distribution indicates 
the uncertainty of each damage state. Then the 
probability of the structural failure can be obtained 
by cumulative distribution function of the 
lognormal distribution with intensity measure on 
the horizontal axis. The probability of structural 
failure is obtained through the cumulative standard 
log-normal distribution function in which the 
horizontal axis represents the intensity measure. 
The log-normal cumulative distribution function 
expresses the fragility curve as defined in Eq. (3). 

 

 ln(IM) 

PDF 

CDF 

ln(IM)=x  
Fig. 1 Cumulative distribution function with 

intensity measure equal to x 
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where [.]Φ  represents the standard normal 
cumulative distribution function, α  and β  are 
parameters which controls the shape of the 
fragility curve. Thus, α  is the median which 
controls the location of the fragility curve and β  
is the log-normal standard deviation which 
represents the dispersion of the fragility curve. 

 

ESTIMATION METHOD FOR FRAGILITY 
CURVE 
 

In this paper, we compare the results of two 
different estimation methods, LSE and MLE, for 
establishing the fragility curve. The optimal 
method is statistically proven based on the 
assumptions and properties inherent to each 
method. 

Least Squares Estimation 
 

Least squares estimation is the method which 
gives the minimum sum of squared errors in 
finding the optimal parameter values. The error 
term expresses the difference between the sample 
values, iY , and the estimated values, ｵ

lY . The 
estimated values ｵlY can be written as E[Yi|Xi]. The 
least squares estimation is used for a simple linear 
regression. Given X is an independent variable, Y 
is a dependent variable, and β  is a constant. Then, 
a linear relationship between Y and X can be set up 
as shown in Eq. (4): 
 

0 1 1 2 2Y X Xβ β β+ +=                                               (4) 
 

Considering the population regression model 
with p  parameters and n  observations written as 
follows: 

1 1 1 0 1 1,1 2 2,1 1 1,1
ˆ ( ) ... p pY E Y X x x xβ β β β − −= = + + + +  

2 2 2 0 1 1,2 2 2,2 1 1,2
ˆ ( ) ...

                                                            
p pY E Y X x x xβ β β β − −= = + + + +

M M M M
 

0 1 1, 2 2, 1 1,
ˆ ( ) ...n n n n n p p nY E Y X x x xβ β β β − −= = + + + +               (5) 

Then, the matrix form is cast in the following 
form:  
ˆ ( )E =Y = Y X X β           

(6) 
1 1,1 2,1 1,1 1

1,2 2,2 1,2 22

1, 2, 1, 1

ˆ 1
ˆ 1ˆ ; ;

1ˆ

p

p

n n p n pn

Y x x x
x x xY

x x xY

β
β

β

−

−

− −

     
     
     
     
     
         

K
K

M M M M MM
K

Y = X = =β  

 

Estimates of the error terms refers to the 
differences between the observed value of the 
dependent variable and its predicted value in the 
model: 
 

ˆ
i i iY Y ε− =           (7) 

ˆ
i i i i i iY Y Y E Y Xε = − = −            (8) 

( ) ( )
2 22

0 1
1 1 1

n n n

i i i i i i
i i i

S Y E Y X Y Xε β β
= = =

 = = − = − − ∑ ∑ ∑      (9) 
 

Eq. (9) can be expressed in matrix form as 
follows: 
 

( ) ( )′′= = − −S Y Xβ Y Xε ε β

  2′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′= − − + = − +Y Y β X Y Y X β X X Y Y X Y β X Xβ β β β   (10) 
 

It should be noted that ′ ′β X Y  and ′Y X β  are the 
same scalar. Then, the least squares estimation of 
β  is shown in Eq. (11) and Eq. (12) 

 

ˆ2 2 0ˆ ˆ
′∂ ∂ ′ ′= = − + =

∂ ∂
S X Y X Xε ε β
β β

     (11) 

( ) 1ˆ
OLS

−′ ′= X X X Yβ       (12) 
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where ˆ
OLSβ  is the least squares estimator of β . 

Assumptions of LSE 
1. The dependent variable, Y , is continuous. 
2. The relationship between the dependent variable, 

Y , and the independent variable, X , is linear. 
3. Observations are independently and randomly 

drawn. 
4. The error term has the expected value equal to 

zero and the variation equal to 2σ . 
[ ] 0iΕ ε = ;   [ ] 2

iVar ε σ= I  
5. The error term is not auto correlated. 

, 0i jCOV ε ε  =  ;   if i ≠ j 
6. The error term, ε , is independent of X . 

, 0i jCOV X ε  = 
;   for all i and j 

7. The error term is approximately normally 
distributed. 

( )20,i Nε σ≈ ;   for i = 1, 2, …, n 

We can write this in matrix form 
as ( )20,N σ≈ Iε  where I is identity matrix. From 
this assumption, the distribution of the dependent 
variable, Y , is written as: ( )2N σ≈ IY X β,  

 
The properties of LSE 

1. The estimator of least squares method is 
unbiased estimator. The estimator is unbiased if 
and only if the expected value of an estimator, 

ˆE β 
 

 equals parameter β , that is,  
 

ˆΕ β β  = 
        (13) 

From Eq. (12), we derive the following 
equation: 
 

( ) ( ) ( )
( ) ( ) ( )

1 1

1 1

ˆ

      
OLS

− −

− −

′ ′ ′ ′= = +

′ ′ ′ ′= +

X X X Y X X X X

X X X X X X X

β β ε

β ε
 

      ( ) 1−′ ′= + X X Xβ ε                                         (14) 

[ ] [ ]-1 -1ˆ
OLS E E EΕ    = + = +   X Xβ β ε β ε  

According to Assumption 4, if [ ] 0iΕ ε =  
then ˆ

OLSΕ   = β β   

Therefore, ˆ
OLSβ  is an unbiased estimator of β . 

 

2. The least squares estimator is an efficient 
estimator. The estimator is efficient if and only if 
the variance of estimator, ˆV β 

 
is minimum  

( )( )ˆ ˆ ˆ
OLS OLS OLSVar E  ′  = − −    

β β β β β                       (15) 

From Eq. (14), we now obtain: 
( ) 1ˆ

OLS
−′ ′= X X Xβ − β  ε  

( )( ) ( )( )1 1ˆ
OLSVar E − − ′  ′ ′ ′ ′=     

X X X X X Xβ ε ε  

  ( ) [ ] ( )1 1E− −′ ′ ′ ′= X X X X X Xεε  
According to Assumption 4, given 

[ ] [ ]( )22
iVar E 2ε σ ε − Ε ε Ε ε   = = =   

I  then 

( ) ( )1 1ˆ
OLSVar σ− −  ′ ′ ′=  I2X X X X X Xβ  

               ( ) 1σ −′= 2 X X                                         (16) 
3. The estimator of least square method is 

the best unbiased estimator.  
Given ( ) 1ˆ − ′ ′=  X X X + A Y∗β , where A  is a matrix 

which treats ˆ∗β  as the unbiased parameter.  
 

ˆΕ   = 
∗β β  

( ) [ ]1 E− ′ ′=  X X X + A Yβ  

   = + AXβ β  

Thus, if AX  = 0 then ( ) 1ˆ ˆ
OLS

−′ ′= X X X Y =∗β β  

( )( )ˆ ˆ ˆVar E  ′  = − −    
∗ ∗ ∗β β β β β  

( )( ) ( )( )1 1E − − ′′ ′ ′ ′= − − = + 
 

X X X Y + AY X X X Y + AY ; Y Xβ β β ε
 

( )( ) ( )( )1 1 ;  E 0− − ′′ ′ ′ ′= + + + + 
 

X X X AX A X X X AX A AX =ε β ε ε β ε
 

( )( ) ( )( )1 1E − − ′′ ′ ′ ′= + + 
 

X X X A X X X Aε ε ε ε  

( ) ( )( ) ( ) ( ) ( )( )1 1 1 1 2 ;  0σ− − − − ′′ ′ ′ ′ ′ ′= + +  
X X X X X X AA + X X AX AX X X AX =

( ) 1 2σ− ′ ′= + X X AA  

Given ( )ijb′AA = B = , where is ijb  > 0. Then, 

ˆVar  
 

∗β  is minimum if and only if ijb  = 0 for all 

i=1, 2,…,p.  
Given ( )ija=A , 2

1
0

n

ii ij
j

b a
=

= =∑  Therefore,  

ija  = 0 for i =1, 2, …, p and j = 1, 2, …, p 

That is, when 0=A , ( ) 1ˆ ˆ
OLS

−′ ′= X X X Y =∗β β  is 
the minimum variance parameter of β. 

The least squares estimation has many 
assumptions. This estimation method is considered 
to be improper to develop the fragility curve using 
structural damage data due to some invalid 
assumptions. For instance, Assumption 4, 

[ ] 2Var iε σ= I , which assumes the error term has a 
constant variance and Assumption 6, 

, 0i jCOV X ε  =  , which implies that the error is 
uncorrelated with all independent variables. The 
variance of the errors of structure damage is small 
when the IM (intensity measure) is small (most 
structures are not damaged). That is, the variance 
increases when the structure starts to damage and 
then the variance decreases again when IM is large 
because most structures are damaged. As a result, 
the variance of the errors is not constant and 
depends on IM. Thus, Assumption 7, ( )20,i Nε σ=  
becomes invalid. In addition, review of the 
literature indicates that the data of structural 
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component failure appear to fit the log-normal 
distribution well. Although the log-normal 
distribution can be transformed to linear logarithm, 
properties of the error term are changed. 
 
The Method of Maximum Likelihood 
 

Maximum likelihood estimation is a method 
for parameter estimation by maximizing the 
likelihood function. Given X  is a random variable 
with probability distribution function f(X θ ), 
where θ  is a single unknown parameter. Let 

1 2, ,..., nx x x  be the observed values in a random 
sample of size n . Then, the likelihood function of 
a sample is defined as: 
 

( )1 2( ) , ,..., ( )
n

n i
i

L X L x x x f xθ θ θ= = ∏  

           1 2( , ) ( , ) ( , )nf x f x f xθ θ θ= ⋅ ⋅⋅ ⋅ ⋅     (17) 
The likelihood function depends on the 

unknown parameter θ  only. Essentially, the 
maximum likelihood estimator is the value of θ  
that maximizes the probability of occurrence of the 
sample by differentiating ( )L Xθ  with respect to 
θ  and setting that derivative equal to zero: 

 

( )
0

L Xθ
θ

∂
=

∂
         (18) 

Then, with the second derivative value being 
less than zero we have a maximum: 
 

2

2

( )
0

L Xθ
θ

∂
<

∂
        (19) 

 

The assumptions of MLE 
1) The observations are independently and 

randomly drawn. 
2) The parameter θ̂  maximizes the 

likelihood of the sample, i.e., it represents 
the maximum likelihood estimator of θ in 
which ˆ( ) ( )L X L Xθ θ≥ .  

 

Properties of MLE 
1. The maximum likelihood estimator does 

not need to be unbiased since it can be corrected. 
The estimator is unbiased if and only if the 
expected value of an estimator, ˆE θ 

 
 equals 

parameter θ .  
We consider the random sample 1 2, ,..., nx x x , 

where n  is the random sample size. The random 
sampling distribution is assumed to be normal 
which comprises two unknown parameters, µ  and 

2σ . The probability density function of normal 
distribution can be expressed as: 
 

( ) ( ) 2(1/2) /

2

1
2

xf x e µ σ

πσ
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 
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1
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σ µ
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− −∑
=      (21) 

Simplifying Eq. (21) by taking the log of both 
sides yields: 
 

( ) ( )22 2
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1

1ln ( , ) ln 2
2 2
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i
i

nL X xµ σ πσ µ
σ =

= − − −∑     (22) 
 

Then, the estimator of µ  and 2σ is 
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1
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n
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x x
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µ
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Next, we check that the estimator µ̂  gives 
maximum L :  

( )2 2 2
1 1 1

2 2 2

1 ˆ ˆln ( , ) 1 0
ˆ ˆˆ

n n n

i i
i i i

x xL X n
µ µµ σ σ

µ µµ σ σ
= = =

   
∂ − − ∂ −   ∂    = = − = − <
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∑ ∑ ∑  

( ) ( )
( )

22
2 2
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2 2 2 4

1
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n
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i

i
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n xL X n x
πσ µµ σ σ

µ
σ σ σ σ

=

=

 ∂ − − − ∂ − = = + − =
∂ ∂

∑
∑

( )22

1

1ˆ
n

i
i

x x
n

σ
=

= −∑        (24) 

And if the estimator 2σ̂  treats maximum L then  

( )

( )
( )

2
2 2 2 4

21
2 2 4 62 1

1
ln ( , ) ˆ ˆ2 2 1

ˆ ˆ ˆ2ˆ

n

i n
i

i
i

n xL X n x
µµ σ σ σ

µ
σ σ σσ

=

=

− ∂ + − ∂  = = − −
∂∂

∑
∑

( )2
4 6 4 4 4

1 ˆ 0
ˆ ˆ ˆ ˆ ˆ2 2 2
n n n nnσ
σ σ σ σ σ

= − = − = − <      OK. 

According to Eq. (19), we obtain: 
[ ] [ ] [ ] [ ] ( )1 2 3

1

1 1 1ˆ
n

n i
i

E E x E x x x x E x n
n n n

µ µ µ
=

= = + + + + = = =∑K  
(25) 

Thus, µ̂  denotes an unbiased estimator of 
µ .From Eq. (24), we now derive the following 
form: 

( ) ( ) ( ) ( )( )22 22

1 1 1

1 1 1ˆ
n n n

i i i
i i i

x x x x x x
n n n

σ µ µ µ µ
= = =

= − = − + − = − − −∑ ∑ ∑  

( ) ( ) ( )2 2 2

1 1

1 2
n n

i
i i

x n x x
n

µ µ µ
= =

 = − − − + − 
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∑ ∑  

( ) ( ) ( )2 2 22

1 1

1ˆ 2
n n

i
i i

E E x n x x
n

σ µ µ µ
= =
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           [ ] [ ]
1

1 n

i
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V x nV x
n =

 = − 
 
∑  

Based on the properties of normal distribution 

in which [ ] 2
iV x σ=  and [ ]

2

V x
n

σ
= , we obtain 

2
2 2

1

1ˆ
n

i
E n

n n
σσ σ
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 
  = −  
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∑  

          2
21 n n

n n
σσ

 
= − 
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          ( ) 2
21n

n
σ

σ
−

= ≠       (26) 
2σ̂  is the biased parameter of σ2. Then, 2σ̂  is 

corrected to be unbiased as follows 
 

( ) ( )2 22

1 1

1 1ˆ
1 1

n n

i i
i i

n x x x x
n n n

σ
= =

 = − = − − − 
∑ ∑     (27) 

 

2. The maximum likelihood estimator is 
efficient. The estimator is efficient if and only if 
the variance of an estimator, ˆV θ 

 
 is minimal and 

unbiased:  
 

[ ] 1 2 3ˆ nx x x x
V Var

n
µ

+ + =   

K  

         [ ] [ ] [ ] [ ]( )1 2 32

1
nE x E x E x E x

n
= + + + +K  

         2 2

2

n
nn

σ σ
= =        (28) 

To determine the variance of 2σ̂ , Chi-square 
distribution is utilized. Chi-square distribution is 
the distribution of the sum of squared standard 
normal deviates. Given the random variable for a 
Chi-square distribution with k degrees of freedom; 
that is,   
 

2 2 2 2
1 2 3 kQ Z Z Z Z= + + + +K ∼ 2

( )kχ      (29) 
where Zi is a standard normal distribution 

which is independently and identically distributed, 
that is, Zi ∼ N(0,1). The expected value and 
variance of Q are written as: 

( )  E Q k=  
( )  2Var Q k=        (30) 

According to Eq. (20), given xz µ
σ
−

=  which 

can be written as x µ
σ
− ∼ ( )0,1N , it can be shown 
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2

2
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1

n
i

n
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x µ
χ

σ=

− 
 
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     

∑ ∑ ∑  

              
22

1 /

n
i

i

x x x
n

µ
σ σ=

− −  = +   
   

∑  

2 2
( 1) (1)nχ χ−= +                                  (31) 

 

Considering Eq. (28), the second term on the 
right-hand side of the equation is the normal 
distribution of X which gives a Chi-square 
distribution with 1 degree of freedom. Then, the 
formula becomes 
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1
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x x
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∑                     (32) 

 

From Eq. (27), the unbiased estimator of 
parameter σ2, denoted as ( )22

1

1ˆ
1

n

i
i

x x
n

σ
=

= −
− ∑ or 

alternatively written as ( ) ( )2 2

1

ˆ1
n

i
i

x x n σ
=

− = −∑  , is 

substituted into Eq. (32): 
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Now, from Eq. (30) we have 
 

( ) ( )
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( )

4
2 2ˆ

1
V

n
σσ  =  −

      (33) 

 

3. The maximum likelihood estimation 
method appears to be the best possible or optimal 
estimator because its variance of estimator equals 
the Cramér -Rao Lower Bound which yields a 
minimum variance estimator. Let f(x| θ) be the 
probability density function of the population 
and θ̂  denotes an unbiased estimator of parameter 
θ. The Cramér -Rao Lower Bound can be 
expressed as: 
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E

V
f x

n

θ
θ
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≥
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 

∂  

      (34) 

Assuming normal distribution, it follows that  
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µ σ σ σ σ

  ∂   = − = = =
  ∂   

 

Taking into account Eq. (28), substituting the 
above equation into Eq. (34) yields  
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From Eq. (30), since 
2
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Now, the above equation is substituted into Eq. 
(34) and Eq. (33) is taken into consideration: 

( ) ( )
4 4

2
22

4
2

1 1 2 2ˆ
1 1ln ,

nE 2

V
n nf x n

σ σσ
µ σ

σ
σ

 = = < =  −    ∂        ∂  

       (36) 

4. The maximum likelihood estimator is 
consistent because it converges to the true value of 
parameter being estimated. 

From Eq. (26), despite having ( ) 2
2 21

ˆ
n

E
n

σ
σ σ

−
  = ≠  , 

but 2ˆE σ   converges to 2σ  for a large sample size 
(n-1 ≈ n). In the same way, 42 nσ  converges to 

( )
4

2 2ˆ
1

V
n
σσ  =  −

 as shown in Eq. (36). 

The development of fragility curve using the 
maximum likelihood method have been adopted in 
many previous studies [1], [4]-[10]. The review of 
literature shows that the structural component 
failure data fits with the lognormal distribution 
well. A log-normal distribution appears to set 
robust precedent in risk analysis and assessment. 
Furthermore, theoretically, applying a lognormal 
distribution yields zero probability density at and 
below zero intensity measure (IM). 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Fig. 2 The distribution of estimated value. 

 
 
 

 
 

TESTING ESTIMATION METHOD FOR 
FRAGILITY CURVE 

 
As a first step of the method for the fragility 

curve development, the parameter values of µ and 
σ2 assuming a lognormal distribution is chosen. 
Next, 100 groups of 50 data is randomly generated 
from these parameters. Finally, estimated values of 
the parameter mean and variance ( µ̂ and 2σ̂ ) are 
obtained from using the MLE and LSE methods 
for each group of data. Precisely, µ̂  is not equal to 
µ for all groups of data, as well as the estimated 
value of 2σ̂ . A summary of findings is presented 
in Table 1. The distribution of estimated parameter 
value is shown in Fig.2. The estimated probability 
density function, which is inherent in Eq. (2), 
appears to have a bell-shaped curve. The 
maximum likelihood estimation gives µ = -0.80 
and σ2 = 0.40 which has a smaller variance than 
the variance of the least square estimation.  The 
results show that the MLE method based on the 
lognormal approach yields better estimates than 
the LSE method.  
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Table 1 The estimated parameters by LSE and 
MLE 

 
Methods in 

numerical fitting 
Estimated parameter Error (%) 

µ σ2 µ σ2 
Least Squares -0.8116 0.3994 0.0065 0.0016 

Maximum 
Likelihood -0.7985 0.4003 0.0063 0.0016 

 
3.2 CONCLUSIONS 
 
In this paper, the estimated parameter of mean (µ) 
and variance (σ2) of a lognormal distribution are 
determined either by the maximum likelihood 
estimation (MLE) or by the least squares 
estimation (LSE). Then, the estimated results 
obtained from these two methods are compared 
with each other. To develop a fragility curve, the 
method starts by choosing the parameter values of 
µ and σ2, assuming a lognormal distribution. The 
results indicate that the size of variance obtained 
with MLE is smaller than the variance obtained 
with LSE. In summary, the MLE method based on 
the lognormal approach gives better outcomes of 
the estimated parameter of mean (µ) and variance 
(σ2) of lognormal distribution. In other words, 
fragility curves developed by the MLE method 
appears to be more consistent and efficient than 
those developed by the LSE method. 
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