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ABSTRACT: In this paper, quantum computing (QC) inspired particle swarm optimization (QPSO) technique is 
utilized to solve economic dispatch (ED) problem, which has strong, robust and reliable search capability with 
powerful convergence properties. Here, authors use cubic criterion function to represent ED instead of the 
traditional quadratic function, to make the system robust against nonlinearities of actual power generators. Power 
balance, power loss and generator limit constraints are considered in this research work. To show the efficiency 
and robustness of the proposed method, authors have compared the obtained results with other algorithms like 
PSO and GA for ED problem on 3-unit and 5-unit power generating systems. The obtained results demonstrate 
QPSO’s superiority over other methods in terms of providing quality solutions with significant amount of 
robustness and computationally efficiency. 

Keywords: Economic dispatch, Quantum particle swarm optimization, Cubic function, Power loss, Optimization, 
Quantum computing. 

1. INTRODUCTION

Economic dispatch (ED) is one of the most crucial 
problems in power generation system. The objective 
of ED is to find an optimal combination of power 
generation in order to minimize the total production 
cost satisfying all other constraints [1]. Many 
assumptions have been made in order to optimize ED 
in power systems and these assumptions are 
sometimes impractical to real systems and can no 
longer be considered. These assumptions are later 
ignored by the researchers and instead they consider 
different constraints such as transmission loss, 
generator limit constraint, emission of pollutants, 
uncertainty, reactive power dispatch, ramp rates, and 
integration of renewable energy (RE) generators [2], 
[3]. In this work, for simplicity, authors consider only 
three objectives such as power balance, transmission 
loss and generator limit constraints. 

A significant amount of research have been done 
to get optimal solution for economic dispatch 
problem in power generation system. Various 
classical methods e.g. lambda iteration [4], gradient 
approach [5] etc. have been used to solve ED 
problems. But, these conventional methods cannot 
optimize ED problems efficiently if fuel-cost curves 
of the generating units are not piece-wise linear and 
monotonically increasing [6]. Generally, ED problem 
is represented using quadratic function. But, 
quadratic function can’t represent the actual power 
response of generating unit accurately [7]. Thus, 

higher order polynomial function is preferred to 
counter this problem. To avoid complexities of higher 
order polynomial function, authors have used cubic 
function to represent ED problem in this paper. Khoa 
et al. [3] proposed a new Mean-Variance Mapping 
Optimization (MVMOS) method to solve ED 
problems using cubic function and showed that it 
performs better than PSO, genetic algorithm (GA) 
and firefly algorithm (FA). 

The methods used previously in economic 
dispatch problem have evolved from traditional 
methods to heuristic methods, and finally to hybrid 
methods in solving optimization issues [8], [9]. 
Adhinarayanan and Sydulu [19] proposed PSO in to 
solve economic problem using cubic function, and 
showed that it improves the effectiveness of particle 
swarm optimization (PSO) in solving ED problems. 
PSO is considered as one of the modern swarm based 
heuristic algorithms for optimization problems in 
power systems [10], [11]. It is a population-based 
technique which is an alternative tool to genetic 
algorithms and this behavioral interaction technique 
gained popularity in control system applications [12]. 
It is computationally efficient and easier to implement 
compared to other evolutionary algorithms proposed 
in recent studies [13], [14]. 

One key edge is this algorithm has the capability 
to allocate memory for storage. Each particle stores 
the best solution and the solution is compared to that 
of the group's best solution to tackle optimization 
issues. PSO works best when there is no need to 
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differentiate conditional variables and the constraints 
are visible throughout the process. In practical 
applications, however, PSO has defects such as 
premature convergence [10]. The disparities of PSO 
are prone to optimization issues and the quantum 
particle swarm optimization algorithm (QPSO) 
improves such shortcomings. 

Quantum particle swarm optimization (QPSO) 
[15] is a new intelligent optimization algorithm which 
can be easily implemented into the control system 
optimization issues. The algorithm introduces 
quantum computing idea into PSO with the 
manipulation that the particles in the space have 
quantum behavior. The algorithm succeeds in 
producing quality and robust solution. The 
convergence characteristics of QPSO is also better 
than most other optimization algorithms found in the 
literature. It also retains the advantages of particle 
swarm algorithm [13]. 

The principle of quantum mechanics claims that 
the PSO technique, applied to quantum space, is an 
approach within physics and quantum mechanics [16]. 
Latest progress in solving ED problems in a large 
number of units has been struck by the high 
computational time and growing nonlinearities of 
power generating systems. To reduce the 
computational efficiency, Meng et al. [17] proposed 
Quantum PSO using quadratic function to solve this 
cost problem. QPSO proved better for its stronger 
search ability and quicker convergence speed than 
other algorithms like GA and PSO. In this research, 
we have added dimension to the previous research by 
exploiting quantum computing technique in cubic 
cost function with the help of QPSO to solve ED 
problems. Next section of this paper presents the 
QPSO methodology, describing QPSO and its 
operation with flowchart and algorithm.  After that, 
problem statement section briefly discusses about the 
economic dispatch and the constraints that have been 
considered in this paper. Finally, result and analysis 
section shows the obtained result and analysis in each 
part with tables and figures.  The paper is concluded 
with discussion and conclusion sections, where the 
contribution, short-comings of this research, future 
direction are described to make further improvement 
in solving economic dispatch problem. 

 
2. THE QPSO METHODOLOGY  

 
Quantum PSO is a new and efficient version of 

PSO which is basically the integration of quantum 
computing into PSO. Due to the introduction of 
quantum bit and quantum rotation gate along with 
implementation of self-adaptive probability selection 
and chaotic sequences mutation, QPSO demonstrates 
stronger search ability and quicker convergence 
speed. QPSO uses quantum bit and angle to depict the 
state of a particle rather than position and velocity 

used in the classical PSO. The performance and 
capabilities of the QPSO has gone beyond that of the 
classical methods, e.g. PSO, in terms of convergence 
speed and computational efficiency [18]. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1 Flowchart of standard quantum PSO 
 

QPSO uses qubit to denote particles. The basic 
difference between qubit and classical bit used in 
PSO is that qubit can simultaneously stay in the 
superposition of two different quantum states,

0 1ψ α β= +                                               (1) 
where α and β are complex numbers that satisfy the 
following equation, 

2 2 1α β+ =                                                       (2) 
|0> represents spin up state and |1 > represents the 
spin down state. From Eq.1, we can see one qubit is 
representing two state of information (|0> and |1>) 
simultaneously. This superposition state can also be 
expressed as, 

sin 0 cos 1ψ θ θ= +                                    (3) 
where θ represents the phase of the qubit. The relation 
among θ, α and β can be defined as, 

                                                                             
           (4) arctan βθ
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The structure of QPSO is depicted in fig. 1. Some 
of the main steps of QPSO are initialization of qubit 
encoding for particles, evaluation and changing 
particle forms, updating particles and decoding 
particles. Detail description of these steps are out of 
the scope of this paper. However, interested readers 
may check [19] for details.   
                                           

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2 Flowchart of proposed quantum PSO to 
solve economic dispatch problem 
 

The procedure for implementing the QPSO 
algorithm is given below as Algorithm 1. 

 
Algorithm 1. The QPSO algorithm. 

Initialize the population size (M), the positions 
and the dimensions of the particles;  

For t = 1 to Maximum Iteration T 
 Compute the mean best position C; 
 α = (α1 – α0) •(T – t)/T + α0; 
 For i = 1 to population size M 
  If f(Xi) < f(Pi) then Pi = Xi; 
  Endif  
  G = argmin (f(Pi)); 
  For j = 1 to D 
  ⱷ= rand(0,1); 
  u= rand(0,1); 
  Pij = ⱷ•Pij + (1 - ⱷ)Gj; 
   
  If (rand (0,1) > 0.5) 
  Xij=Pij + α•abs(Cj-Xij)•log(1/u); 
  Else 
  Xij=Pij - α•abs(Cj-Xij)•log(1/u); 
  Endif 
 Endfor 
 Endfor 
Endfor 
Positions of all particles in the population, M, are 

initialized randomly. The fitness value for all 
particles are then calculated and evaluated according 
to the problem at hand. The personal best (pbest) 
position of every particle is updated if the current 
fitness value is found to be better. The best pbest 
among the particles is then assigned to global best 
(gbest) in the next step. 

After the gbest is assigned, the velocity for all 
particles is determined. The calculated velocities are 
then updated to its data values and these values are 
compared to each other in iterations to get the best 
fitness value (target value). The best fitness value is 
considered as the criterion in the algorithm. 

If the criterion is not satisfied, the fitness value of 
the particle is calculated again and the steps are 
repeated until there is no further update of best fitness 
value. 

 
3. PROBLEM FORMULATION 
 

The main objective of economic dispatch is to find 
an optimal combination of generated power in order 
to minimize the total generation cost while satisfying 
all other constraints. Economic dispatch using cubic 
function can be written as: 

                (3)  
 

where, Fi is the fuel cost (in $/h) of generating unit i. 
ai, bi, ci and di are fuel cost coefficients of generating 
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unit i. Additionally, Pgi and n are the real power 
generation of the ith unit (in MW) and the total 
number of generation units, respectively. Our goal is 
to minimize total fuel cost, which can be defined as: 

 
                       (4) 
 

In this research, three constraints are considered to 
solve economic dispatch problem. The constraints are 
given below 
    Power Balance Constraint: The total output power 
should be equal to the total power demand plus 
transmission losses: 

   
                                         (5)        
                    

where P, PD and PL are total output power generated 
(in MW), total power demand (in MW) and 
transmission loss (in MW), respectively.  

Power loss constraint: Power loss or transmission 
loss (in MW) can be defined as 

 
        (6) 
    

where Bij, Bi0 and B00 are loss coefficient of George’s 
formula, transmission loss constant of generating unit 
i and Kron’s transmission loss constant, respectively.  

Generator Limit Constraint: The output power 
generation of each power generating unit has its 
minimum and maximum value. The power generation 
should be between its maximum and minimum value. 
This inequality can be formulated as below: 

 
                                         (7)  

where Pi,min and Pi,max are the minimum value and 
maximum value of power generating unit i, 
respectively.                                         
 
4. RESULT AND ANALYSIS 
 
   Quantum particle swarm optimization (QPSO) 
technique is applied here to solve economic dispatch 
problem for 3-unit and 5-unit power generation 
systems [6], [20] using cubic function, where the total 
load demand is 2500 MW and 1800 MW, respectively. 
Authors have implemented this proposed algorithm in 
MATLAB R2015a and executed with Core™ i5-
3470 CPU @ 3.20 GHz (4 CPUs), ~3.2GHz and 4GB 
RAM personal computer. Table 1 shows the 
parameter settings of QPSO. Total 100 number of 
runs are considered as a fair test of robustness and the 
average of the outcomes have been shown in this 
section. 
 

Table 1  Settings of parameters for QPSO 
Parameters Values 

Population Size 2000 
Maximum Iteration 200 

Number of Runs 100 
Dimension 3 

 
Tables 2 and 5 are showing the fuel cost coefficient 
values, minimum and maximum limit of each power 
generating unit and power loss coefficients for 3-unit 
and 5-unit system, respectively.  
 
Table 2 Cubic cost function coefficients and power 
loss coefficients for 3-unit system [6] 

Unit 1 2 3 
ai 749.55 1285 1531 
bi 6.95 7.05 6.531 

ci (10-4) 9.68 7.38 10.4 
di (10-8) 12.7 6.45 9.98 

Pi,min 320 300 275 
Pi,max 800 1200 1100 

B coefficients 
1(10-7) 14 1.5 2.6 
2 (10-7) 1.5 6.5 2.4 
3 (10-7) 2.6 2.4 6.9 
B0 (10-4) -76.6 -3.42  18.90 

B00 4.0357 

 
Tables 3 and 6 are showing comparison of simulation 
results among GA, PSO and QPSO. From Table 3, it 
can be seen that QPSO outperforms GA and PSO in 
terms of finding optimal value for both 3-unit and 5-
unit systems. The obtained results are found to be 
highly robust and reliable. 

 
Table 3  Comparison of results (total cost) for 3-unit 
system without considering power loss 

Unit GA [21] PSO [21] QPSO 
1 725.02 724.99 726.866 
2 910.19 910.15 908.4451 
3 864.88 864.85 864.6898 

Total Power, P 
(MW) 

2500 2500 2500 

Total Cost, FT 
($) 

22730.14 22729.35 22728.52 

 
Table 4  Test system data for 3-unit system 
considering power loss 

 QPSO 
P1 742.192 

P2 912.193 

P3 847.965 

Total Power, P (MW) 2502.35 

Total Cost, FT ($) 22749.277 

Standard Deviation 0.0743 

1
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Figs. 3 and 5 show that the proposed QPSO provides 
excellent convergence characteristics for both 3-unit 
and 5-unit systems. The convergence graphs in figs. 
3 and 5 verify that QPSO provides steady, smooth and 
fast convergence for solving economic dispatch 
problem.  
 

 
Fig. 3 Convergence curve of the QPSO for economic 
dispatch of 3-unit system considering power loss 

 

 
Fig. 4 Total cost (in $/h) vs number of runs curve for 
economic dispatch considering 3-unit system with 
power loss constraint using QPSO. 

 
Table 5 Cubic cost function coefficients and power 
loss coefficients for 5-unit system [20, 22] 

Unit 1 2 3 4 5 
ai 749.6 1285 1531 749.6 1285 
bi 6.95 7.05 6.531 6.95 7.05 

ci (10-4) 9.68 7.38 10.4 9.68 7.38 
di (10-8) 12.7 6.45 9.98 12.7 6.45 

Pi,min 320 300 275 320 300 
Pi,max 800 1200 1100 800 1200 
 

Tables 4 and 7 represent the best result obtained by 
QPSO for economic dispatch using cubic function 
considering power loss constraint.  
 
 
 
 
 

When power loss constraint is considered, the total 
cost becomes higher than the cost without considering 
power loss. 

 
Table 6  Comparison of results (in $) for 5 units 
system without considering power loss 

Unit GA PSO QPSO 
1 320.00 320.00 320.51 
2 343.74 343.70 346.47 
3 472.60 472.60 482.95 
4 320.00 320.00 320 
5 343.74 343.70 330.08 

P (MW) 1800 1800 1800 
FT ($) 18611.07 18610.4 18610.03 

 
Table 7  Test system data using QPSO for 5 units 
system considering power loss 

 QPSO 
P1 341.86 
P2 309.48 
P3 471.46 
P4 325.28 
P5 355.90 

Total Power, P (MW) 1803.98 
Total Cost, FT ($) 18648.17 

 
   Total 100 number of runs have been conducted to 
test the reliability and robustness of QPSO to solve 
ED problem. Figs. 4 and 6 shows that QPSO provides 
reliable and robust solutions for solving economic 
dispatch problem in both 3-unit and 5-unit system 
without considering power loss. The standard 
deviation found from the total runs is also negligible 
(the standard deviation for 3-unit and 5-unit systems 
are ~0.09147 and ~0.2218, respectively). 
 

 
Fig. 5 Convergence curve of the QPSO for economic 
dispatch of 5-unit system considering power loss 
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Fig. 6 Total cost (in $/h) vs number of runs curve for 
economic dispatch considering 5-unit system with 
power loss constraint using QPSO. 

 
5. DISCUSSION 

 
  This paper considers 3-unit and 5-unit systems to 
compare the obtained results with other methods like 
GA and PSO. For comparison purposes, authors have 
taken the same coefficients value and have not 
considered power loss. Simulation results show 
QPSO performs better to predict minimum total cost 
function for 3-unit and 5-unit systems than other 
methods like GA and PSO. QPSO is computationally 
more powerful and shows better convergence 
characteristics than PSO. The quality of the solutions 
are found to be reliable, robust and suitable. Authors 
have also shown the results for 3-unit and 5-unit 
system considering power loss. However, for cubic 
cost function, the authors couldn’t manage data for 
large number of units and thus couldn’t be able to 
present results for larger systems. 
 
6. CONCLUSION 

 
   In this paper, QPSO technique is presented to solve 
the ED problem using cubic function. QPSO 
technique is successfully implemented into ED 
problems considering 3-unit and 5-unit systems with 
power balance, power loss and generator limit 
constraints. Simulation results show its effectiveness 
in solving ED problems by demonstrating better and 
stable results. The obtained results are compared with 
PSO and GA which demonstrates QPSO superiority 
over these methods. To reduce the nonlinearities of 
power generating systems, cubic function is used to 
represent ED. In this paper, total 100 number of runs 
are considered as a fair test of robustness of the 
proposed method. The obtained results for the test 
systems confirm that the proposed method gives 
better global solution, is more robust and 
computationally powerful in solving the ED problems. 
To the best of the authors’ knowledge, this is the first 
work on single objective economic dispatch problem 
with cubic function using QPSO. Authors’ next work 

is to include emission dispatch as another objective 
i.e. it will be a multiobjective problem, where the 
authors shall consider quantum integrated advanced 
computational intelligence-based methods e.g. 
quantum cuckoo search (QCS), quantum bat 
algorithm (QBA) etc. to test the feasibility of their use 
in this multiobjective power dispatch problem. 
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8. NOMENCLATURE 

 
Fi – Fuel cost ($/h) of generating unit i. 
ai, bi, ci, di – Fuel cost coefficients of generating unit i 
Pi – Real power generation of the ith unit 
n – Total number of generation units  
P – Total output power generated (in MW)  
PD – Total power demand (in MW) 
PL – Transmission loss (in MW) 
ED – Economic dispatch 
FA – Firefly algorithm 
GA – Genetic algorithm 
MVMOS – Mean-variance mapping optimization 
PSO – Particle swarm optimization 
QBA – Quantum bat algorithm 
QCS – Quantum cuckoo search 
QPSO – Quantum particle swarm optimization 
RE – Renewable energy 
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