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ABSTRACT: Strain-gauge type soil pressure transducers are widely used in laboratory and field investigation 
on the performance, and health monitoring of geo-structures to accurately measure the soil pressure. Even 
though these pressure plates are sold with the factory-measured calibration factors, these sensors should be re-
calibrated in the laboratory before using them because the calibration can be affected by the data-logging 
system and the length of the cable used. Therefore, in this study, a laboratory calibration procedure for strain-
gauge type soil pressure plates was proposed. The soil pressure transducer was embedded in a uniform-fine- 
sand medium in a specially designed pressure cylinder, and the pneumatic pressure was applied into the system 
as gradual increments. After that, the calibration chart of the pressure gauge was developed based on the sensor 
outputs for different pressures applied. Then the calibrated soil pressure transducer was used in the laboratory 
pavement model test to measure soil pressure at the base-subgrade interface under a surface loading area. The 
measured soil pressure values were compared with the estimated vertical stresses from elastic theories to 
validate the pressure measurements and the calibration process of the soil pressure transducer. Test results 
revealed that there is a satisfactory agreement between the pressure measured by the soil pressure transducer 
and theoretical estimations. Thus, the calibration process of the soil pressure transducer and its outputs are 
proven to be accurate. 
 
Keywords: Vertical stress in soil, Geotechnical Instrumentation, Pavement subgrade, Soil pressure 
transducers 
 
 
1. INTRODUCTION 
 

Well-constructed and maintained geotechnical 
structures are crucial for the economy of any 
country. It is mainly because these structures are 
integral parts of many civil engineering projects 
related to embankments [1-9], road and railways 
[10-21], landfills [22,23], costal protection [24-26] 
and tunnel construction [30-32]. Therefore, the 
accurate measurement of soil or earth pressure is 
essential in laboratory and field investigation on the 
performance, and health monitoring of these geo-
structures [30-38]. Vibrating wire and strain-gauge 
type pressure plates are widely used to measure soil 
pressures. Strain-gauge type soil pressure plates are 
commonly used in laboratory model tests due to its 
high accuracy, less sensitivity to temperature, and 
availability in different sizes. Even though these 
pressure plates are sold with the factory-measured 
calibration factors, it is important to re-calibrate 
these transducers in the laboratory prior using them 
[39] as the calibration can be affected by several 
factors such as the data-logging system and the 
length of the cable used. Therefore, as a common 
practice, several laboratory methods are used to 
calibrate soil pressure sensors.  

The most common calibration methods of soil 
pressure cells are Dead Weight Calibration (DWC), 
fluid/pneumatic calibration and soil calibration. In 
the DWC method, the calibration is performed by 
placing known dead weights directly on the sensing 

area of the pressure cell in increments.  Majority of 
the researchers prefer to calibrate pressure sensors 
by DWC method as it is less time consuming, 
economical and easy to perform without much-
advanced equipment and technical experience [40]. 
Generally, fluid/pneumatic calibration is highly 
recommended compared to the DWC method as the 
former method provides more accurate results [41]. 
In this method, the calibration is performed in a 
calibration chamber by applying hydrostatic or air 
pressure in increments. However, this method 
demands advanced laboratory facilities and 
technical knowledge, which are not available in 
most laboratories. As an alternative, the soil-
calibration method can be used in the laboratory to 
calibrate soil pressure cells. Therefore, in this study, 
a laboratory calibration procedure for strain-gauge 
type soil pressure plates using sand is proposed. 
Then the calibrated soil pressure transducer was 
used in a laboratory pavement model test to measure 
soil pressure at subgrade-base interface under a 
circular-area loading applied on the top surface. The 
measured soil pressures were compared with the 
estimated vertical stresses from elastic theories to 
validate the pressure measurements and the 
calibration process of the soil pressure transducer. 

 
2. SOIL PRESSURE TRANSDUCER  
 

A soil pressure transducer (See Fig.1) with 
1MPa capacity was used in this experimental study. 
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The outside diameter and the thickness of the 
pressure plate are 200mm and 25.5mm, respectively. 
The percentage of rated output (%RO) of the 
pressure gauge has been specified as 1%, and the 
diameter of the sensing area is 166mm. It is 
designed with a dual-diaphragm structure that can 
minimise the displacement of a sensing area, and 
thereby can keep the stress distribution undisturbed 
under pressure. This type of soil pressure gauges is 
widely used to measure the pressure in soil and to 
monitor the behaviour of embankments.   

 

 
 

Fig.1 Soil pressure transducer 
 
3. METHODOLOGY 
 

A specially designed pressure cylinder [42, 43] 
(See Fig.2 (a)) made of acrylic was used to calibrate 
the soil pressure transducers. The internal diameter 
and the height of the cylinder are 360mm and 
400mm respectively. A uniform-fine sand was used 
in this calibration. The particle size distribution and 
properties of the sand are given in Fig.3 and Table 
1, respectively. The sand was filled up to 250mm, 
and the sand surface was properly levelled. 
Thereafter, the soil pressure transducer was placed 
on top of the sand layer. The level of the top surface 
of the sensor was checked with a spirit level (bubble 
level), as shown in Fig.2 (b). Then the sand was 
filled to have a 50mm thick sand layer above the top 
of the sensor. The sand surface was levelled, and the 
inner wall of the cylinder was cleaned to remove all 
the attached sand and dust. Lubricating oil was 
applied on the inner wall of the cylinder to minimise 
the friction between the wall and the piston. After 
that, the piston was placed inside the cylinder and 
valves were connected to supply the pneumatic 
pressure into the setup.  

A pressure above 750kPa (i.e. 785kPa) was 
applied into the setup for 24 hours to allow the 
particle rearrangement of the sand under high 
pressures. From the initial trials conducted prior to 
this experiment, it was found that the required 
pressure to overcome the friction between the piston 
and the wall of the cylinder is negligible. Since the 
sand thickness above the top surface of the sensor is 
thin (i.e. 50mm), and the friction is negligible, it is 

reasonable to assume that the pressure applied on 
the sensor is equal to the applied pressure into the 
setup. The pressure into the system was increased 
approximately up to 750kPa in 50kPa increments. 
The pressure gauge was connected to a data logger, 
and the sensor readings were recorded in parts per 
million (ppm) for each pressure increment. Based 
on the sensor outputs for different applied pressures, 
the calibration chart of the pressure gauge was 
developed.  

 

   
(a)           (b)  

 
Fig.2 calibration of soil pressure transducers; (a) 
The pressure cylinder; (b) Embedding the soil 
pressure transducer in the cylinder 
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Fig.3 Particle size distribution of sand used in the 
calibration of soil pressure transducers 

 
This soil pressure transducer was used to 

measure the pressure applied at the base-subgrade 
interface of unbound-granular pavement-models 
during a cyclic loading test series. The schematic 
diagram of the experimental setup of the cyclic-
loading pavement test is shown in Fig.4. A granular 

Bubble level 
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pavement with 200mm unbound-granular base and 
500mm thick subgrade with 2.5% unsoaked-CBR 
was selected in the present study to verify the 
pressure measurements given by the pressure gauge. 
The pressure gauge was embedded in the subgrade 
close to the base-subgrade interface and below the 
centre of the loading area as shown in Fig.5. In this 
experiment, the maximum load of 17.31kN was 
applied through a 25mm thick and 200mm diameter 
steel plate to create a tyre-contact pressure of 
550kPa with a frequency of 0.33Hz. More details of 
the conducted test can be found in [44] and [45]. 
The pressure sensor was connected to the data 
logger, and the readings were recorder for every 
five seconds. After that, the captured sensor outputs 
were converted to pressure readings using the 
developed calibration equation.  
 
Table 1 Properties of sand used in the calibration of 
soil pressure transducers 
 

Property  Value 
D10 (mm) 0.165 
D30 (mm) 0.220 
D60 (mm) 0.340 

Coefficient of curvature (Cc) 2.06 
Coefficient of uniformity (Cu) 0.86 

 
 

Fig.4 The schematic diagram of the experimental 
setup of the cyclic-loading pavement test 

 
The measured soil pressure values were 

compared with the calculated values from two 
elastic-theories methods, namely Boussinesq 

method [46] and Fox L. method [47], to validate the 
measured values and the calibration process of the 
soil pressure gauge. Even though Boussinesq 
equation for vertical stresses under uniformly 
loaded circular area has been derived for 
homogeneous, elastic, and isotropic mediums, it 
was used for this two-layer system for a rough 
estimation of vertical stresses at the base-subgrade 
interface. In addition, the pressure applied at the 
base-subgrade interface was also computed based 
on the chart for the vertical stresses on the interface 
stresses developed by Fox L. method. 

 

 
  

Fig.5 Installation of the soil pressure transducer 
 

4. RESULTS AND DISCUSSION 
 

The applied vertical pressure values were plotted 
against the corresponding sensor readings to 
develop the calibration chart of the soil pressure 
transducer, as shown in Fig.6. The equation for the 
regression line of the plotted points was adopted as 
the calibration equation of the sensor. The obtained 
calibration equation perfectly fits the data as the 
coefficient of determination is equal to one (R2=1). 
Later, this calibration equation was utilised to 
determine the vertical stresses applied at the base-
subgrade interface of the laboratory-scale unbound-
granular-pavement model. 

In a previous experimental study, two tactile 
pressure sensors of dimensions of 25 mm × 25 mm 
× 2 mm with 345 kPa capacity were calibrated using 
the DWC and fluid calibration methods. The R2 
values of the non-linear calibration curves obtained 
from the DWC method have been reported as 0.992 
and 0.998 [40]. During the fluid calibration, the 
observed output voltage from a tactile pressure 
sensor for applied pressure was much lesser 
compared to that of DWC results. An R2 value has 
not been calculated/mentioned for the calibration 
equation obtained from the fluid calibration method. 

Fig.7 illustrates the variation of the vertical stress 
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at the base-subgrade interface of the laboratory-
scale unbound-granular-pavement model. Three 
curves were produced depending on the technique 
(e.g. pressure gauge, Boussinesq method and Fox L. 
method) used to measure/estimate vertical stresses 
during the test. All three curves were plotted 
approximately up to 120,000 cycles where the 
cycling loading test was stopped. Results show that 
estimated vertical stresses from the Boussinesq 
method are always higher than Fox L. method. Soon 
after the commencement of the loading, the vertical 
stress applied at the base-subgrade interface was 
measured as 170kPa whereas estimated stresses 
were 169kPa and 144kPa respectively from the 
Boussinesq equation and Fox L. method. The 
measured vertical stresses follow the similar shape 
and magnitudes of the vertical stress development 
computed by Boussinesq method in the initial stage 
of the test, approximately up to 27,000 cycles where 
the measured vertical stress lies at 260kPa. Then, 
measured vertical stresses by the soil pressure 
transducer fluctuate in between the vertical stress 
values estimated by the two elastic-theory methods 
up to 100,000 cycles, afterwards, follow the similar 
shape and magnitudes of the vertical stress variation 
estimated by Fox L. method until the end of the test 
where the measured vertical stress was 313kPa.  
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Fig.6 Calibration chart of the soil pressure 
transducer 
 

As mentioned in the methodology section, 
Boussinesq equation has been developed to 
estimate vertical stresses of homogeneous, elastic 
and isotropic mediums but the tested pavement 
section has two layers (i.e. subgrade layer and 
granular base layer) which have completely 
different material properties. Each layer alone can 
be considered as homogeneous and elastic; however, 
both subgrade and granular materials are cross-

anisotropic. The referred chart from Fox L. method 
for the vertical stresses on the interface has been 
developed for two-layer pavement systems 
considering the influence of the ratio of the elastic 
modulus of the top and the bottom layers (E1/E2). 
As the subgrade CBR value is 2.5%, the elastic 
modulus of the subgrade was estimated to be 
25MPa based on the approximation that elastic 
modulus of pavement material is ten times its CBR 
value as specified in Austroads Guide to Pavement 
Technology Part 2: Pavement Structural Design 
[48].  Based on the mechanistic-pavement design 
principals, the average elastic modulus of the 
granular base, which was limited by the weak 
subgrade was estimated as 51MPa. Therefore, the 
E1/E2 of the tested pavement section is 
approximately two (i.e. E1/E2 = 2). However, in the 
Boussinesq case, E1/E2 ratio must be assumed as 
one (i.e. E1/E2=1) even when it is used for a two-
layer system. These assumptions may result in 
slight differences between the actual pressure 
measurements and estimated vertical stresses from 
methods based on the elastic theory. Overall, it is 
evident that a reasonable agreement between the 
pressures measured by the sensor and the theoretical 
estimations is apparent. Thus, the calibration 
process of the soil pressure transducer and its 
outputs are proven to be accurate. Therefore, the 
proposed calibration method can be used to 
calibrate soil pressure cells in the laboratory 
accurately. 
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Fig.7 Development of the vertical stress at the base-
subgrade interface 
 
5. CONCLUSION 
 

Based on the test results of the calibration of the 
pressure transducer and the comparison of 
measured pressures with theoretical estimations, the 
following conclusions can be drawn: 
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•The developed calibration equation perfectly 
fits the data as the coefficient of determination is 
equal to one (R2=1); therefore, it can be assumed as 
accurate.  

•A satisfactory agreement between the sensor 
measurements and theoretical estimations is evident. 
Thus, the calibration process of the soil pressure 
transducer and its outputs are proven to be accurate. 

•The presented calibration method can be 
effectively used as a laboratory calibration 
methodology to calibrate soil pressure cells 
accurately. 
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