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ABSTRACT: In this study, mortars containing locally available natural pozzolan (NP) in Almadinah 
Almunawara, Kingdom of Saudi Arabia, were investigated as a partial substitute for sand or cement in mortars 
and silica fume (SF). The benefit of using local NP powder as a replacement for cement is that it reduces the 
carbon dioxide emission during the cement manufacturing process, whereas the benefit of using local NP as 
fine aggregates is that it reduces the density of the produced mortars and improves its properties because of its 
pozzolanic effect. Because of these reasons, there is a need to develop an effective predictive model to estimate 
the compressive strength of mortars with partial replacement of cement or sand with NP and with SF as a 
replacement for cement at 28 days. Data of 68 cubic specimens of 50 mm were established through 
experimental work with other researchers, and they were chosen to create a database for the proposed model. 
There were three input parameters: a) level of partial substitution of cement with NP powder, b) level of partial 
substitution of sand with NP, and c) level of partial substitution of cement with SF. The output parameter was 
compressive strength. Best correlations were obtained between the compressive strength and sand replacement 
with NP. To predict the compressive strengths of cement mortars containing NP and SF, multivariate regression 
models were proposed and compared to find the best one. It was concluded that the full quadratic model was 
the best model with highest correlation when compared with other proposed models.  
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1. INTRODUCTION 

 
Concrete is considered a primary construction 

material because of its high compressive strength 
and durability. The partial substitution of cement in 
concrete with supplementary cementitious 
materials to improve its properties has complex 
behavior [1]. Silica fume (SF) is considered a highly 
effective pozzolanic material. The effect of partial 
substitution of cement with SF has been 
investigated by many researchers. Cement 
replacement with SF up to 7.5% improved the 
compressive strength of concrete [2]. 

The partial substitution of cement in concrete 
with SF and fuel ash leads to a higher strength than 
that with partial substitution of cement with iron 
filings [3]. Carmela et al. [4] used rice husk ash as 
a partial substitute for cement in mortars. 
Replacement level up to 10% of cement with rice 
husk ash is best for maximizing the strength of 
cement mortars. Arifi and Cahya [5] replaced 25% 
of cement in recycled aggregate pervious concrete 
with fly ash, leading to an improve in the 
mechanical properties. Lejano et al. [6] replaced 5% 
of cement in mortars with powdered eggshells, 
leading to an increase in the compressive strength 

by 36.4%. The 10% replacement of cement in 
concrete with coconut shell ash led to 92.1% of the 
strength of conventional concrete [7].  

Many studies have been conducted on the 
possibility of utilizing different substances as 
partial substitutes for fine aggregate in concrete to 
improve its properties. The utilization of natural 
pozzolan (NP) as a partial replacement for sand in 
mortar cubes increased the compressive strengths 
for replacement levels up to 20%, 30%, and 40% for 
mortars with cement replacement with SF of 0, 5 
and 10%, respectively [8]. Tampus et al. [9] utilized 
wood ash as a partial substitute for sand in mortars. 
The full substitution of sand with wood ash 
increased the compressive strengths of mortars. 

The partial substitution of fine aggregate in 
concrete with plastic waste showed improvement in 
energy absorption under impact loading [10]. 
Granite quarry can be used as a substitute for sand 
in concrete at levels up to 60% to improve the 
compressive and flexural strengths [11]. The 
utilization of raw vermiculite as a substitute for sand 
in cement mortars decreased strength at high 
temperatures [12]. The replacement of 5% of 
cement and 15% of sand in concrete with limestone 
fines increased the compressive strength [13]. It 
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was recommended to replace sand in concrete with 
copper slag up to 50% to produce eco-friendly 
concrete [14].  

Because of the complex behavior of concrete, 
many predictive models were proposed to study the 
effects of partial substitution of sand or cement in 
concrete with various supplementary cementitious 
materials on its compressive strength. A predictive 
model using multi-objective optimization method 
for the compressive strength of concrete containing 
SF have been proposed with achievement of 31 
optimized Artificial Neural Networks (ANN) 
models [15]. A multivariate regression analysis 
model for studying the effect of cement replacement 
with various proportions of blast furnace slag and 
steel slag on the compressive strength of concrete at 
28 days was developed [16]. 

Chithra et al. [17] constructed ANN and 
multiple regression analysis models for the 
prediction of the effect of utilizing nano silica and 
copper slag as partial substitutes for fine aggregate 
and cement in high-performance concrete on its 
compressive strength. Jinjun et al. [18] proposed 
ANN and multiple nonlinear regression models for 
the simulation of the mechanical properties of 
recycled aggregate concrete. Jalal et al. [19] 
developed multivariable regression models to 
predict the compressive strength of rubberized 
concrete. Elevado et al. [20] developed predictive 
models for the compressive strength of concrete 
with cement substitution with fly ash and partial 
substitution of coarse aggregates with ceramic tiles 
using ANN. Sakthivel et al. [21] developed a 
predictive model for the mechanical strength of 
fiber reinforced mortars using statistical regression 
analysis. Richard et al. [22] proposed a model for 
prediction of carbonation depth of reinforced 
concrete structures using ANN. Pham et al. [23] 
proposed a model for predicting mechanical 
properties of geopolymer concrete using ANN. 
Kandiri et al. [24] developed a predictive model by 
using ANN algorithm to estimate the effect of 
utilizing blast furnace slag on the compressive 
strength of concrete. 

The purpose of the present study is to investigate 
and predict the complex effects of utilizing NP as a 
partial substitute for sand or cement in cement 
mortars containing SF. For reliable prediction of 
compressive strength of cement mortar containing 
SF with cement or sand replacement with NP, 
several models, such as the linear strength model, 
pure quadratic model, interaction strength model, 
and full quadratic strength model, were adopted as 
tools to model the complex behavior instead of 
conducting direct laboratory tests to save energy, 
cost, and time. Different conditions for cement 
replacement with NP powder, sand replacement 
with NP, and cement replacement with SF were 
used as major data inputs in the models. 

2. MATERIALS AND METHODS 
 

The data used in this study was based on 
experimental work with other researchers [8]. 
Locally available natural pozzolan was the primary 
material used in this research work. Besides that, for 
cement mortar mixing purposed, ordinary Portland 
cement, local natural sand, and silica fume were 
used. The properties of cement mortars ingredients 
are as follows. 
 
2.1 Materials 
 
2.1.1 Powders 

The used powders in this study were cement of 
type I, SF conforming ASTM C1240, and ground 
NP powder of 2000 to 3000 cm2/g fineness. The 
chemical composition of cement, SF, and NP were 
determined using X-ray fluorescence analysis and 
the results are as given in Table 1. 

 
Table 1 Chemical composition of powders 
 

Oxides Cement SF NP 
SiO2 19.97 92 41.12 
Al2O3 5.85 1.0 15.44 
Fe2O3 3.43 1.0 17.35 
Ca O 64.13 0.3 11.21 
Mg O 0.6 0.6 4.47 
SO3 2.8 0.3 0.18 
K2O 0.72 0.54 1.05 
Na2O 0.16 0.24 0.25 
LOI 1.60 1.57 2.20 

 
2.1.2 Aggregates 

The bulk density, specific gravity, and water 
absorption of natural sand and NP were (1670 kg/m3, 
2.60, and 0.21%) and (1100 kg/m3, 2.51, and 
5.23%), respectively. The gradations of sand and 
NP with upper and lower limits are shown in Fig.1. 
 

 
 
Fig.1 Gradations of sand and NP 

 
2.1.3 Water 

Normal tap water was used for both mixing and 
curing purposes for mortars. Table 2 lists the 
quantities of the used materials. 
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Table 2 Cement mortar constituents 
 

Specimen Sand 
(gm) 

Cement 
(gm) 

w/c 
ratio 

Control 1356 490 0.49 
 
2.2 Experimental Work 
 

Sixty-eight cubic specimens of 50 mm of 
different mortar mixes with different ratios of local 
natural pozzolan were prepared. The experimental 
program focused on studding the effect of cement 
replacement with local NP powder and SF, and the 
effect of sand replacement with local NP on the 
compressive strength of cement mortars. 

The levels of replacement of cement with NP 
(CRNP) by weight ranged from 10% to 40%. The 
levels of cement replacement with SF (CRSF) were 
5 and 10%. The levels of replacement of sand with 
local NP (SRNP) by volume ranged from 10% to 
40%. The curing period was 28 days. 

 
2.3 Compressive Strength 
 

The compressive strength results of cement 
mortar cubes at different conditions of cement 
replacement with NP powder, sand replacement 
with NP, and cement replacement with SF at 28 
days are presented in Table 3, Fig.2, and Fig.3.  
 

 
 
Fig.2 Compressive strengths (replacing C-28 days) 
 
 
Table 3 Compressive strength results 
 

NP 
Replacing 

Repl. 
Level 

Silica Fume 
0% 5% 10% 

Control 0 45.8 60.4 62.6 
Sand 10 48.7 56.1 58.9 

20 47.3 54.8 55.5 
30 44.6 46.5 51.9 
40 38.2 42.9 47.3 

Cement 10 39.6   
20 37.5   
30 28.5   
40 21.1   

 

 
 
Fig.3 Compressive strengths (replacing S-28 days) 
 
2.4 Multiple Linear Regression (MLR) 

 
Regression analysis is an effective mathematical 

method that employs statistics to forecast the 
existence of the relationship among multiple 
variables. MLR attempts primarily to understand 
more about the interactions between multiple 
independent variables or predictors and dependent 
variable [25]. This method is commonly used to 
predict concrete compressive strengths at various 
ages. 

The provision of a single value of a criterion 
derived from one variable predictor is a straight 
forward linear regression, whereas two or more 
variables forecast the criterion in the MLR. Thus, 
multiple regression explores the relationships 
between various independent and dependent 
variables. The general equation form of MLR is: 

 

1

n

i i
i

Y a b x ε
=

= + +∑                                          (1) 

 
Where:  
Y is the dependent variable 
Xi is the independent variable, and n is the number 
of variables  
bi is the regression coefficient 
a is the constant 
ϵ is error 
 
2.5 Multiple Nonlinear Regression Analysis 

 
The dynamic relationship among the 

independent variable and the function is estimated 
by utilizing nonlinear regression. The interaction of 
various independent and dependent variable 
parameters is estimated by nonlinear multivariable 
regression. This refers to various modelling and 
regression methods for certain factors, particularly 
factors where there is a limited data supply [26].  
The most important variables are described in step-
by-step regression, which may account for the 
strongest correlation between the response variable 
and independent variables. This approach is an 
algorithmic one intended to select the right model 
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subsets to filter in a forward or reverse direction. 
The first direction involves choosing a permanent 
model and using model terms before maximizing 
their fitness. That is, step-by-step regression may be 
seen as a forward selection method that, at each step, 
tests the relevance of all variables used previously. 
If the partial square sums for previously used 
variables fail to conform to the minimal norm to 
remain in the model, improvements to the 
retroactive exclusion process will be introduced and 
variables will be eliminated one at a time before the 
other variables quantities fitting the minimum 
criteria. Step-by-step regression involves more 
calculations than forward or backward detailed 
calculations, but it comprises a better probability of 
discovering the right subset models [27]. 

A multiple nonlinear regression (MNR) analysis 
on the mechanical properties was shown with the 
second-order polynomial firstly suggested by 
Scheffe´ [28]. 

Various forms of MNLR, such as pure quadratic 
and complete quadratic versions, have been 
investigated.  

The following sections discuss mathematical 
expressions as well as each model. Table 
descriptions are also given, such as root mean 
Square Error, R2 (coefficient of determination), and 
F-value (p) of each model. 

 
Coefficient of Determination (R2) 

 
The degree to which the explanatory variables 

account for the calculated response variable is 
defined (R2), evaluates how solid the linear 
relationship is between two or more variables. The 
higher the R2 value, the greater this model's 
predictive power. The mathematical expression for 
R2 is given as follows: 

 

2 1

2 2
1 1

( )( )

( ( ) )( ( ) )

n
i ii

n n
i ii i

X X Y Y
R

X X Y Y
=

= =

− −
=

− −

∑
∑ ∑

(2) 

 
Root mean square error RMSE 

 
A statistical indicator of predictive precision is 

the Root Mean Squared Error (RMSE). The RMSE 
calculates the sum of variation to be explained by a 
formula in the response variable. The equation of 
the RMSE is as follows: 

 

2

1

1 ( )
N

i
i

RMSE y y
N =

= −∑                         (3) 

 

In Eq. (3), iy  and iy    are the actual 
measures from the laboratory  experiments and the 

magnitude estimated by employed model, 
respectively, whereas N is the sum  of data set A 
lower RMSE would mean lower values in a model’s 
overall errors and would result in a more beneficial 
predictive strength. 

 
3. RESULTS 

 
The summary of the data statistics of the 

proposed models is presented in Table 4. 
 

Table 4 Data Statistics 
 

Parameter N Min. Max. Mean Std. Dev. 
NP Repl. Cement  68 0 40 4.85 11.13 
SF Repl. Cement 68 0 40 3.75 4.09 
NP Repl. Sand  68 0 40 14.71 15.11 
Stress, MPa 68 20.88 63.56 46.89 10.46 

 
The trend of the compressive strength (Fcu28) of 

cement mortars is presented in Fig.4 for cement 
replacement with NP powder at 28 days and in Fig.5 
for sand replacement with NP at 28 days. 
 

 
 
Fig.4 Compressive strength trend (cement) 

 

 
 
Fig.5 Compressive strength trend (sand) 
 
3.1 Multivariate Regression Models 

 
In the context of concrete construction, strength 

at 28 days is the referred measurement of design 
strength and the critical quality control parameter. 

fc28 = -0.6365 CRNP + 47.063
R² = 0.9294
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Compressive strength at 28 days is a generally 
agreed indicator, which typically measures the 
strength of the concrete by means of a standard axial 
compression test.  In section, hereinafter the Multi 
linear regression model to estimate compressive 
strength of mortar cubes is demonstrated. In 
addition to the Multi linear regression, the pure 
quadratic, complete quadratic and interaction 
models are fully explored and compared to find out 
the best model to predict the compressive strength 
of cement mortars with NP and SF as partial 
replacements. 

 
3.1.1 Linear strength model 

The linear power model only includes linear 
parameters and constant terms. Mathematical 
Equation (4) demonstrates the multilinear 
compressive strength model: 
Fcu28 = 50.79 - 0.761CRNP + 1.211CRSF 
             - 0.322SRNP              (4) 

  
Fig.6 displays a normal distribution plot of the 

standardized residues of the linear regression 
process. At 28 days, the regression line runs through 
68 samples of compressive strength. The figure 
states independency of errors from each other. 
Residuals seem uniformly distributed around zero. 
The mathematical description of the model is shown 
in Table 4. It is obvious that the likelihood is less 
than 0.0005 (Table 4) based on the F statistic (Fisher 
statistic).  

The proposed multilinear regression for 
compressive strength at 28 days is extremely 
statistically significant with more than 99.95 
confidence. It shows the goodness of the model for 
the data. R2 of the multilinear mortar strength model 
is 89.6%, which designates a good fit, and the 
RMSE is 3.45. Fig.7 displays the scattered plot of 
the experimental and expected compressive 
strengths on the data order of the experiments' tests. 
It revealed a similarity between predicted 
magnitude of strength and laboratory results during 
the experimental program. 

The coefficients of the equation for Fcu28 are 
assessed statistically to understand the contribution 
of each parameter used in the experiments; Table 5 
shows that all parameters are significant, with their 
corresponding probability less than 0.0005 and their 
confidence level more than 99.95 %. 

 
3.1.2 Pure quadratic model 

The pure quadratic model includes linear 
parameters and constant as well, and it can be used 
when the pattern does not seem linear and the 
relationship between parameters seems somewhat 
curved. The following equation illustrates the pure 
quadratic model for mortar compressive strength at 
28 days. 

 
Fcu28 = 48.516 – 0.66CRNP + 2.691CRSF  
             + 0.322SRNP – 0.001CRNP2   
             – 0.162CRSF2 –0.008SRNP2                   (5) 
 

 
 

Fig.6 Normal probability of standardized residuals 
of multilinear regression model 

 

 
 
Fig.7 Experimental versus predicted strengths 
 

Table 5 displays the quadratic strength model’s 
statistical summary. The model’s significance (p) 
value is extremely low, indicating a strong data 
model. The model determination coefficient (R2) is 
93.30%, it is greater than that of the MLR strength 
model. The pure quadratic model’s RMSE is 2.83, 
less than the linear strength model (3.45). The pure 
quadratic model suits the data in a more improved 
form than the multilinear model because both R2 
and RMSE are better for the former model than for 
the multilinear one. 
 

 
 
Fig.8 Normal probability of standardized residuals 
of pure quadratic model 
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Fig.9 Experimental versus predicted compressive 
strengths 

 
3.1.3 Interaction strength model 

The interaction mathematical model utilizes 
interaction (product), and parameters in a linear 
form and constant terms to establish interaction 
terms between quantitative predictors, allowing the 
response relationship to differ from the values of 
another predictor. Interestingly, this offers an 
alternative way to curvature and MLR model.  

The following equation shows the interaction 
mortar compressive strength model. 

 
Fcu28 = 48.443 – 0.682CRNP + 1.985CRSF 
            - 0.177SRNP – 0.038CRNP×SRNP           (6) 

 
Table 5 shows the interaction model summary. 

This could be established that the model's 
significance (p) value is incredibly low, indicating 
a strong data model. The model's determination 
coefficient (R2) is 92.90 %, slightly less than in the 
pure quadratic model (93.30 %). The interaction 
strength model's RMSE is 2.87, somewhat greater 
than value from the pure quadratic compressive 
strength model which is 2.83. Both models show 
minor variations in their predictions. This model 
equips data better than the multilinear model since 
the determination coefficient is larger, and the 
RMSE is smaller than the model of interaction 
power. 

 

 
 
Fig.10 Normal probability of standardized residuals 
of interaction model 

 

 
 
Fig.11 Experimental versus predicted strengths 
 
3.1.4 Full quadratic strength model 

The suitability of the complete quadratic model 
has been examined to predict the strength of cement 
mortar with NP and SF replacements, in this model 
each parameter will be in a squared, interaction 
(product), linear and constant terms, Equation (7) 
shows the revealed model. H Wang and CM Cortés 
[29] apply the same model to find 28 days’ 
compressive strength of mortar and pervious 
concrete with co-utilization of coal fly ash and 
waste glass powder as partial cement replacements, 
in which it was successfully predict the compressive 
strength at 28 days. Fig.12 shows that all-quadratic 
strength model residuals are uniformly distributed 
about zero. There appear to be no signs that error 
terms are associated with model predictions. 

 
Fcu28 = 47.452 - 0.577CRNP + 2.907CRSF  
            - 0.014SRNP - 0.002CRNP2 - 0.125CRSF2  
            - 0.005SRNP2 - 0.026CRSF×SRNP            (7)  
 

 
 
Fig.12 Normal probability of standardized residuals 
of full quadratic model 
 

RMSE of the full quadratic model is 2.58, which 
is the least of all strength models. The results of 
prediction from the full quadratic strength model 
are in well agreement with the experimental results 
as shown in Table 5 and  model’s determination 
coefficient (R2) is 94.5% in which it the highest 
among all models. Fig.13 shows the scatter plot of 
the experimental and predicted compressive 
strengths versus the experimental data order. It 

R² = 0.933

10

20

30

40

50

60

70

10 20 30 40 50 60 70

Pr
ed

ic
te

d 
st

re
ng

th
, M

Pa

Experimental compressive strength, MPa

Quadaratic Model Data
Validation Data

R² = 0.929

10
20
30
40
50
60
70

0 10 20 30 40 50 60 70

Pr
ed

ic
te

d 
st

re
ng

th
, M

Pa

Experimental compressive strength, MPa

Interaction strength model
Validation Data



International Journal of GEOMATE, June., 2021, Vol.20, Issue 82, pp.68-76 

74 
 

shows that the predicted values are very close to 
values revealed experiments. This model better fits 
the data of all the strength models discussed in this 
study. 
 

 
 
Fig.13 Experimental versus predicted strengths 
 
Table 5 Statistical summary of strength models 
 
Model R2 (%) RMSE F-value P-Value 
Linear 89.6 3.45 183.61 2.20E-31 
Pure quadratic 93.3 2.83 141.53 7.01E-34 
Interaction 92.9 2.87 206.31 1.91E-35 
Full quadratic 94.5 2.58 148.02 2.10E-35 
 
3.2 Model Validation 
 

In model validation using cement mortars with 
various replacements, built models were utilized to 
predict 28-day strength, integrating replacement 
with marginally different replacement ratios. A total 
of 10% of the data were picked to validate each 
model. Figures 7, 9, 11, and 13 demonstrate that the 
variability between the predicted and experimental 
values for strength ranged from 3.5% to 8%. These 
differences can be attributed to differences in the 
properties of the constituents’ material and 
experimental conditions. At the same time, the 
differences were not important. Thus, the models 
can be used to predict various replacement abilities, 
but within the range of replacements considered for 
the production of the models. 

 
4. CONCLUSION 
 

Four predictive models for the compressive 
strength of mortar cubes with replacement of 
cement or sand with NP and SF were proposed. The 
models were the linear strength model, pure 
quadratic strength model, interaction strength 
model, and full quadratic strength model. The 
trainings were made based on the results of 68 tests. 
The following conclusions were obtained: 
1. The multilinear regression for the compressive 

strength of cement mortars with sand or cement 
replacement with NP at 28 days is highly 
statistically significant, with confidence level 

more than 99.95%.  
2. The significance (p) values of the pure 

quadratic model, interaction model, and full 
quadratic model are close to zero, indicating 
that these models are good models for the data. 

3. R2 of linear strength model, pure quadratic 
model, interaction strength model, and full 
quadratic strength model are 89.6%, 93.30%, 
92.9% and 94.5%, respectively. The highest 
value of determination coefficients is 94.5% 
for the full quadratic strength model. 

4. RMSE of linear strength model, pure quadratic 
model, interaction model, and full quadratic 
strength model are 3.45, 2.83, 2.87 and 2.58, 
respectively. The lowest value of RMSE is 2.58 
for the full quadratic strength model. 

5. RMSE of the interaction model is slightly 
greater than that of the pure quadratic model, 
which indicates that both interaction and pure 
quadratic models show no significance 
difference in their predictions. 

6. The predicted values are close to the 
experimental test results for all models. 

7. The high level of correlation for the prediction 
of cement mortar compressive strength of sand 
or cement replacement with NP and SF is 
obtained from the full quadratic strength model 
with less prediction error and with best data fit 
compared with other models. 
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