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ABSTRACT: In recent times, the sediment disasters, such as slope failures, debris flows, and landslides, 

caused by typhoons or cloudbursts have occurred in Japan. The progression of global warming will increase 

the scale of typhoons and cloudbursts striking the Japanese Islands, and there is a concern that the frequency 

of sediment disasters may increase. Therefore, it is important to identify slopes with a higher risk to sediment 

disasters to prevent future disasters. In this study, a method based on artificial neural networks and 

mathematical statistics was used to identify such slopes. In the proposed method, the self-organizing map 

(SOM), cluster analysis, and Hayashi’s second method of quantification are combined. The proposed method 

was applied to the data gathered from periodical inspections of road slopes. In the results, slopes with a higher 

risk to slope failure were identified and ranked according to their risk. 
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1. INTRODUCTION

In Japan, where mountainous districts occupy 

70% of the land, sediment disasters, such as slope 

failures, debris flows, and landslides have occured 

each year [1]. With the progression of global 

warming, the intensity of rainfall brought by 

typhoons and cloudbursts has become more severe, 

and correspondingly, the number of sediment 

disasters in Japan has also increased. Therefore, 

disaster prevention planning for future sediment 

disasters should be established. 

In Japan, periodical inspections of road slopes 

are conducted to prevent future sediment disasters 

[2]. These periodical inspections are performed 

about every 5 years, and the data are gathered and 

integrated into a database. However, the data are, as 

yet, not used effectively and should be further used 

to identify slopes with a higher risk to sediment 

disasters. 

There are endogenous and exogenous factors 

related to the occurrence of sediment disasters. 

Endogenous factors refer to the characteristics of 

slopes such as topographical and geological 

features. Exogenous factors refer to those that 

trigger the occurrence of sediment disasters such as 

rainfall and ground water. It is difficult to forecast 

the time, location, and quantity of rainfall that is 

expected, and therefore, it is useful to identify 

slopes with a higher risk to sediment disasters based 

on endogenous factors.  

As there are innumerable slopes in Japan, the 

amount of data gathered from periodical inspections 

of road slopes is enormous. In addition, the time and 

expense needed to analyze this data are limited. 

Thus, a method for analyzing the characteristics of 

these slopes as efficiently and effectively as 

possible to identify slopes with a higher risk to 

sediment disasters is necessary. The method must 

be able to treat a large amount of data, and therefore, 

methods using artificial neural networks and 

mathematical statistics should be applied. 

The authors proposed a new method for 

identifying slopes with a higher risk to deep-seated 

catastrophic landslides by applying the proposed 

method to topographical information [3]. In the 

proposed method, the self-organizing map (SOM) 

(an artificial neural network technique) [4], cluster 

analysis (a mathematical statistics) [5], and 

Hayashi’s second method of quantification (a 

quality determination method) [6] are combined.   

In this study, we applied the proposed method to 

data gathered from periodical inspections of road 

slopes to identify slopes with a higher risk to slope 

failure. The purpose of this study is to identify 

slopes with a higher risk to slope failure and to 

prioritize these slopes. 

2. ANALYTICAL METHOD

2.1 Self-organizing map (SOM) 

The SOM is an artificial neural network 

technique. The SOM is known to be an effective 

technique for analyzing high-dimensional data. In 

other words, high-dimensional vectors can be 

mapped to two dimensional space for visual 

understanding. The two-dimensional representation 
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can then be used to observe patterns and 

correlations present in the high-dimensional data. In 

addition, vectors with similar characteristics are 

placed closer on the two-dimensional map and 

dissimilar vectors are located farther apart. 

Therefore, high-dimensional vectors can be 

automatically classified into several clusters when 

SOM is applied to them. Fig.1 shows an example of 

an analytical result of SOM. There are several parts 

with warm colors with certain vectors gathering at 

each warm color part. A set of vectors gathering at 

a warm color part is a cluster. 

However, SOM has a disadvantage. It is 

difficult to classify high-dimensional vectors into 

several groups objectively. For example, from the 

result of Fig.1, some users may classify them into 

five groups bounded by the white circles as shown 

in Fig.2. On the contrary, users may classify them 

into five groups bounded by the black circles. The 

subjective judgment of the user controls the 

clustering based on visual mapping. 

2.2 Cluster analysis 

Cluster analysis is one of the representative 

techniques in mathematical statistics. It can 

objectively divide a set of high-dimensional vectors 

into several clusters that are fixed previously 

according to the similarity between the high-

dimensional vectors. However, cluster analysis also 

has a disadvantage. It is necessary to determine 

previously the number of clusters before conducting 

the cluster analysis. The number of clusters cannot 

be determined automatically unlike SOM. It is 

difficult to determine the number of clusters without 

preliminary analysis. 

2.3 Combination of SOM and cluster analysis 

In this study, both SOM and cluster analysis 

were combined to overcome the two disadvantages 

of objective clustering in SOM and determination 

of the number of clusters in cluster analysis. The 

analytical process is follows. First, the number of 

clusters is visually determined by SOM. Then the 

number of clusters is applied to cluster analysis, and 

the objective clustering is performed. The results of 

cluster analysis are plotted on the map of SOM. If 

the number of clusters is wrong, the analytical 

results of SOM and cluster analysis are not matched 

as shown in Fig.3. However, if the correct number 

of clusters is applied to cluster analysis, the 

analytical results of SOM and cluster analysis are 

matched as shown in Fig.4. 

Fig.1 Example of analytical result of SOM 

Fig.2 Different clusters of SOM by individual 

difference 

Fig.3 Analytical result of SOM and cluster analysis 

in case of applying wrong number of clusters 

Fig.4 Analytical result of SOM and cluster analysis 

in case of applying correct number of clusters 
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2.4 Hayashi’s second method of quantification 

Hayashi’s second method of quantification is a 

method of mathematical statistics. It is known as a 

representative technique of the discrimination 

analysis. This method treats categorical data and 

derives dependent variables from an explanatory 

variable. In other words, Hayashi’s second method 

of quantification can divide one group into two 

groups. 

Therefore, when Hayashi’s second method of 

quantification is applied to slopes, the slopes can be 

estimated to fail or not fail. 

2.5 Method for identifying slopes with higher 

risk to slope failures 

In this study, the proposed method was applied 

to data gathered from periodical inspections of road 

slopes to identify slopes with a higher risk to slope 

failure. Fig.5 shows the flowchart of the proposed 

method. The proposed method has three stages.  

In the first stage, only failed slopes are grouped 

into several clusters through a combination of SOM 

and cluster analysis. There are all sorts of failed 

slopes and all failed slopes do not necessarily have 

the same characteristics. Therefore, the failed 

slopes are grouped into several clusters in which the 

failed slopes have almost similar characteristics in 

order to effectively perform the following 

discriminant analysis. 

 In the second stage, Hayashi’s second method 

of quantification, one of the representative methods 

of discriminant analysis, is applied to the set of 

slopes that includes the failed slopes in a cluster and 

all the not-failed slopes to identify slopes with a 

higher risk to slope failure. Slopes with a higher risk 

to slope failure can be identified this way. 

In the third stage, slopes with a higher risk are 

given a rank according to the sample score of 

Hayashi’s second method of quantification. The 

sample score indicates the risk of slopes; slopes 

with a higher sample score have a higher risk to 

slope failure. Additionally, Hayashi’s second 

method of quantification also gives the score of the 

boundary between slopes that fail and those that do 

not. In this study, the rank of slopes was determined 

by the difference between the sample score and the 

score of the boundary. In other words, the slopes 

having a higher difference between the sample 

score and the score of the boundary were given a 

higher rank. 

In this way, the proposed method, which is 

based on SOM, cluster analysis, and Hayashi’s 

second method of quantification, can identify slopes 

with a higher risk to slope failure and rank these 

slopes. 

3. APPLICABLE DATA

From the data gathered from periodical 

inspections of road slopes, that for the year 1996 

was used. The data contains 128 slopes along 

expressways and 89 slopes along national roads. 

There are eight failed slopes along expressways and 

29 failed slopes along national roads in the data 

gathered from periodical inspections of road slopes. 

Table 1 shows the parameters used to estimate the 

risk of each slope, and the categorical data 

corresponding to each parameter.  

Fig.5 Method of identifying slopes with higher risk 

Table 1 Parameters and categorical data 
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1 0.5
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・・・・
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・・・・Failed slopes (x places)
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Hayashi’s second method 

of quantification

With higher susceptibility
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4. ANALYTICAL RESULTS

4.1 Analytical results of the first stage 

The proposed method was applied to 217 slopes 

(37 failed slopes and 180 not-failed slopes). At first, 

only the failed slopes were classified into several 

clusters by SOM and cluster analysis. Fig.6 shows 

the analytical result of clustering. The result of 

SOM and cluster analysis was matched as shown in 

Fig.6, so that the failed slopes could be classified 

into five clusters. The characteristics of the failed 

slopes in each cluster were checked and the 

distribution conditions of the failed slopes in each 

cluster with respect to each parameter are shown in 

Table 2.  

There were seven failed slopes in cluster 1. All 

of them were along the slopes of expressways, and 

almost all of them had parameters associated with 

relatively lower risk to slope failures. However, the 

failed slopes in cluster 1 had higher slopes heights. 

There were seven failed slopes in cluster 2. All 

of them were dip slopes. In addition, almost all of 

them were associated with fragile lithology. 

However, their other parameters had relatively 

lower risk to slope failures. 

 

(a) Cluster 1 

(b) Cluster 2 

(c) Cluster 3 

(d) Cluster 4 

(e) Cluster 5 

0 5 stable 7

1 2 medium 0

2 or more 0 unstable 0

stable 6 without spring 1

medium 1 leakage 6

fragile 0 spring 0

stable 7 construct 1

medium 0 compound 6

fragile 0 vegetation, bare 0

opposite slope 7 H＜15 0

dip slope 0 15≦H＜30 0

small 7 30≦H＜50 5

medium 0 50≦H 2

large 0

soil spring water

lithology
covering

condition

formation
height of

slopes
difference of

permeability

parameters
number of

slopes
parameters

number of

slopes

talus cone

topsoil,

loose part

rock,

0 2 stable 4

1 2 medium 3

2 or more 3 unstable 0

stable 4 without spring 2

medium 3 leakage 2

fragile 0 spring 3

stable 0 construct 4

medium 1 compound 3

fragile 6 vegetation, bare 0

opposite slope 0 H＜15 2

dip slope 7 15≦H＜30 1

small 3 30≦H＜50 2

medium 4 50≦H 2

large 0

soil spring water

lithology
covering

condition

formation
height of

slopes
difference of

permeability

parameters
number of

slopes
parameters

number of

slopes

talus cone

topsoil,

loose part

rock,

0 1 stable 1

1 2 medium 5

2 or more 4 unstable 1

stable 2 without spring 5

medium 2 leakage 2

fragile 3 spring 0

stable 0 construct 7

medium 0 compound 0

fragile 7 vegetation, bare 0

opposite slope 7 H＜15 1

dip slope 0 15≦H＜30 3

small 1 30≦H＜50 1

medium 6 50≦H 2

large 0

soil spring water

lithology
covering

condition

formation
height of

slopes
difference of

permeability

parameters
number of

slopes
parameters

number of

slopes

talus cone

topsoil,

loose part

rock,

0 0 stable 0

1 2 medium 4

2 or more 6 unstable 4

stable 0 without spring 1

medium 0 leakage 4

fragile 8 spring 3

stable 0 construct 1

medium 1 compound 4

fragile 7 vegetation, bare 3

opposite slope 8 H＜15 6

dip slope 0 15≦H＜30 2

small 1 30≦H＜50 0

medium 6 50≦H 0

large 1

soil spring water

lithology
covering

condition

formation
height of

slopes
difference of

permeability

parameters
number of

slopes
parameters

number of

slopes

talus cone

topsoil,

loose part

rock,

0 0 stable 1

1 0 medium 4

2 or more 8 unstable 3

stable 0 without spring 1

medium 0 leakage 5

fragile 8 spring 2

stable 0 construct 4

medium 0 compound 2

fragile 8 vegetation, bare 2

opposite slope 0 H＜15 6

dip slope 8 15≦H＜30 1

small 1 30≦H＜50 1

medium 7 50≦H 0

large 0

soil spring water

lithology
covering

condition

formation
height of

slopes
difference of

permeability

parameters
number of

slopes
parameters

number of

slopes

talus cone

topsoil,

loose part

rock,

Fig.6 Analytical result of SOM and cluster analysis 

Table 2 Distribution condition of failed slopes in 

each cluster with respect to each parameter 
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There were seven failed slopes in cluster 3. All 

of them were associated with fragile lithology, but 

not with dip slopes. In addition, they were covered 

with concrete constructions. 

There were eight failed slopes in cluster 4. All 

of them were associated with fragile soils, and 

almost all of them were associated with two or more 

talus cones and fragile lithology. However, they 

were not associated with dip slopes, and they had 

relatively lower heights.  

There were eight failed slopes in cluster 5. All 

of them were associated with the highest risk 

categories of four parameters (talus cone, soil, 

lithology, formation). In addition, the other 

parameters had relatively higher risk categories. 

Therefore, the failed slopes in cluster 5 had the 

highest risk to slope failures in the five clusters. 

4.2 Analytical results of the second stage 

In this study, the characteristics of failed slopes 

were classified into five clusters according to their 

characteristics. Thus, the five clusters and not-failed 

slopes made five groups. Cluster 1 and all the not-

failed slopes formed group 1, cluster 2 and all the 

not-failed slopes formed group 2, cluster 3 and all 

the not-failed slopes formed group 3, cluster 4 and 

all the not-failed slopes formed group 4, cluster 5 

and all the not-failed slopes formed group 5. 

Hayashi’s second method of quantification was 

then applied to each group, and these analytical 

results are shown in Table 3.  

Hayashi’s second method of quantification 

estimated 25 slopes to fail in group 1 that in reality 

did not fail. Similarly, 14 such slopes were 

identified in group 2, eight in group 3, and 10 in 

group 4. However, no failures were observed in 

group 5. Five not-failed slopes were estimated to 

fail in two groups, and therefore, 52 not-failed 

slopes were estimated to fail as shown in Table 4. 

In this study, the not-failed slopes estimated to fail 

by Hayashi’s second method of quantification are 

those slopes that have a higher future risk to slope 

failure; they have a higher possibility of slope 

failure than the not-failed slopes estimated to not 

fail when heavy rain due to future typhoons or 

cloudbursts occur. On the contrary, the failed slopes 

estimated to not fail are regarded as mistakes, 

indicating that the proposed method cannot identify 

all the slopes that failed as a result of heavy rain in 

the past. In this study, there was only one failed 

slope estimated as not-failed, and therefore, the 

precision of this study can be regarded as high. 

There were no not-failed slopes estimated to fail 

in group 5. As stated above, the failed slopes in 

cluster 5 have the highest risk to slope failures, so 

that there are no not-failed slopes in this study that 

have characteristics similar to the failed slopes in 

cluster 5. Thus, if there are not failed slopes that 

have the characteristics similar to the failed slopes 

in cluster 5, they can be identified as having the 

highest risk to slope failures without using the 

proposed method. 

Table 3 Analytical results of Hayashi’s second 

method of quantification of each group 

(a) Group 1 

(b) Group 2 

(c) Group 3 

(d) Group 4 

(e) Group 5 

Table 4 Final result of Hayashi’s second method of 

quantification 

Failed Not-failed

Failed 36 52

Not-failed 1 128
Estimate

Real

Failed Not-failed

Failed 8 0

Not-failed 0 180

Real

Estimate

Failed Not-failed

Failed 8 10

Not-failed 0 170

Real

Estimate

Failed Not-failed

Failed 7 8

Not-failed 0 172

Real

Estimate

Failed Not-failed

Failed 7 14

Not-failed 0 166

Real

Estimate

Failed Not-failed

Failed 6 25

Not-failed 1 155

Real

Estimate



Int. J. of GEOMATE, June, 2015, Vol. 8, No. 2 (Sl. No. 16), pp. 1226-1231

1231

4.3 Analytical results of the third stage 

The priority of slopes with a higher risk to slope 

failure is given by the difference between the 

sample score and the score of the boundary that 

discriminates between failed slopes and not-failed 

slopes. As a result, not-failed slopes with higher risk 

can be prioritized as shown in Table 5. 

Table 6 shows the characteristics of the three 

slopes that were given the highest rank to slope 

failures. In other words, the three slopes had the 

largest difference between the sample score and the 

score of the boundary. B53 had characteristics such 

as fragile lithology and dip slope that were similar 

to the failed slopes in cluster 2. In addition, B53 was 

associated with two or more talus cones, and 

medium topsoil. B33 had characteristics such as 

fragile lithology that were similar to the failed 

slopes in cluster 3. Furthermore, B33 was 

associated with two or more talus cones, fragile soil, 

spring water, and other characteristics. These 

similarities were also identified in B11. 

Table 5 Analytical results of ranking 

Table 6 Characteristics of three slopes with the 

highest risk 

(1) B53 

(2) B33 

(3) B11 
 

Therefore, the not-failed slopes that were given 

a higher rank have characteristics similar to the 

failed slopes in a certain cluster, and also have 

characteristics that increase their susceptibility to 

slope failures.  

5. CONCLUSION

In this study, the proposed method, in which

SOM, cluster analysis, and Hayashi’s second 

method of quantification were combined, was 

applied to data gathered from periodical inspections 

of road slopes. The main conclusions of this study 

are summarized as follows. 

1. All the failed slopes can be objectively divided

into five clusters by applying the proposed 

method. In addition, the characteristics of the 

failed slopes in each cluster were elucidated.  

2. The proposed method can identify slopes with a

higher risk to slope failure and can rank these 

slopes according to slope failures susceptibility. 

3. The not-failed slopes that had characteristics

similar to the failed slopes in cluster 2, cluster 3, 

and cluster 4, and had characteristics associated 

with increased risk to slope failures were given a 

higher rank with respect to their risk to slope 

failures. Therefore, these slopes can be regarded 

as slopes with a possibility of undergoing future 

slope failure. 
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