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1. INTRODUCTION 

The discontinuities (e.g. joint, crack, and void) which exist 
previously or appear during the evolution often control the 
instability and final failure in the brittle materials. In recent 
years, a lot of experiments and numerical simulations have 
been carried on crack growth in brittle materials, such as 
rock, concrete and so on. It has been widely acknowledged 
that FEM is one of the effective methods used to model the 
crack problem because of its good adaptability and 
scalability. But conventional FEM has many difficulties in 
dealing with the strong discontinuities, which mostly lead 
to high density meshes on the crack tip or repeated 
remeshing as crack grows [1]. 
The Extend Finite Element Method (XFEM) originally 
proposed by Belytschko and Black [2, 3] in 1999, is very 
powerful for discontinuous problems in fracture mechanics. 
They added discontinuous enrichment function to the finite 
element approximation to account for the presence of the 
crack. Later, other researchers improved the method, and 
applied it in many subjects in fracture mechanics. 
 Actually, the extended finite element method (XFEM) is 
an extension of the conventional finite element method 
based on the concept of partition of unity. It allows the 
presence of discontinuities in an element by enriching 
degrees of freedom with special displacement functions. It 
does not require the mesh to match the geometry of the 
discontinuities. It allows contact interaction of cracked 
element surfaces based on a small-sliding formulation and 
allows both material and geometrical nonlinearity [4].  
 During the numerical analysis, the contact is a typical 
nonlinear problem, which not only due to the complicated 
mechanical model for the contact surface, but also more 
originate from the special discontinuous constraint of 
contact surface. The convergent results are difficult to 

 
 

obtain only when the appropriate friction model is chosen.  
In the simulation of the paper, the penalty method is used to 
deal with the frictional contact of the crack surfaces during 
the load process, which can better model the impact on the 
contact surface when the wing crack grows. 
This paper intends to contribute to the understanding of 2D 
crack growth under uniaxial compress load in brittle 
material with frictional contact, and a series of numerical 
modeling are carried out whose results are compared with 
experimental ones [5]. The effects of inclination and 
coefficient of the friction of the pre-set cracks on growth of 
wing cracks are examined. 

2. THE XFEM APPROXIMATION 

In the classical FEM, the approximation to displacement 

field  xu  is expressed as [1] 
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where iN  is the interpolated shape function associate with 

the node i; iu is the classical vectorial DOF(degrees of 

freedom) at node i. For each computational point (x, y) in 

the field, iN  should satisfy PU (partition of unit): 
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The XFEM enriched a standard approximation locally on 
the crack with discontinuous functions. 

       

       
1 2

4 4
1 1 2 2

1 1

, ,

h
i i j j

i I j J

l l
k k l k k l

k K l k K l

N H x N

N r N r   

 

   

 

   
    

   

 

   

u x x u x a

x b x b

  (3) 

Numerical simulation of 2D crack growth with frictional contact in brittle 
materials 

ABSTRACT: In this paper, the extended finite element method (XFEM) is applied in modeling the 2D crack 
growth with frictional contact under uniaxial compress load in the rock-like materials. First, the implementation of 
XFEM is incorporated into a commercial FEM software (ABAQUS) in which the constitutive law of linear 
elasticity and the criterion of maximum tangential stress (MTS) is adopted. Then a user subroutine is coded and 
incorporated into ABAQUS to simulate the growth of wing crack with the frictional contact in the crack faces. A 
series of numerical simulations of 2D plane strain rectangle with central pre-set crack are carried out, and 
computed results are compared with experimental ones. The effects of inclination and coefficient of the friction of 
the pre-set cracks on growth of wing cracks are examined. In addition, size effect of materials is also investigated, 
and these jobs contribute to the understanding of 2D crack growth.   
 
Keywords: Extended finite element method (XFEM); Rock-like materials; Crack growth; Frictional contact; Size 
effect 

Kai Zhang.1, 2, 3 Qing Yang.1, 3 Jing-Cai Jiang.2  
1School of Civil Engineering, Dalian University of Technology, China; 

2Faculty of  Engineering, The University of Tokushima, Japan; 
3The State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology, China 

Int. J. of GEOMATE, Sept., 2012, Vol. 3, No. 1 (Sl. No. 5), pp. 339-342 
Geotec., Const. Mat. & Env., ISSN:2186-2982(P), 2186-2990(O), Japan 



Int. J. of GEOMATE, Sept., 2012, Vol. 3, No. 1 (Sl. No. 5), pp. 339-342 
 

340 
 

 

where I is the set of all nodes in the mesh; J is the subset of 
nodes which support is intersected by the crack but do not 
cover any crack tips (e.g. the circled nodes in Fig. 1.); 

21, KK is the subset of nodes which support conclude the 

first and second crack tips (e.g. the squared and diamond 
nodes in Fig. 1). 

 

Fig. 1 An arbitrary crack placed on a mesh 

 

The function  xH  is a “generalized Heaviside” function, 

in which the discontinuity is aligned with the crack 

surface d . ja is the corresponding additional DOF for the 

discontinuity. Given a point in the domain, we denote the 
vectorial distance x  between it and the closet point 

on d . Also, the normal vector to d  is constructed. The 

function  xH  is then given by the sign of the scalar 

product nex : 
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The set of near-tip functions   ,rl  are a set of additional 

shape functions which span the exact asymptotic crack-tip 
fields for a linear elastic material: 
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where  ,r  are the local polar coordinates at the crack tip. 

Except this, l
kb  is corresponding additional DOF for the 

crack tip. 

3. FRICTIONAL BEHAVIORS 

3.1  Conventional friction theories  

Usually, when the inner surfaces of the crack are in contact, 
the shear force will be transmitted as well as the normal 
force across the interface. We now consider unilateral 
contact with friction on the interface. 
The crack faces or the interface are assumed as 

  ddd    with the unit normal vector to d  denote 

by n  in Fig. 2, and in the later modeling flat ellipse is 

chosen which is close to the real situation of rock-like 
material. We also introduce the displacement and traction 

on each face of the crack:  tw ,  on d  and  tw ,  on 
d [6].  

 
Fig. 2 The crack faces 

 
The frictional model is easily described by using the 
appropriate form of the displacement and traction on the 
crack faces. The normal components are expressed in the 
condition of no contact and in contact: 

  ,0  nww   (6A) 

n,tnt0,nt0,nt    (6B) 

   0nwwnt    (6C) 

The tangential component will satisfy the equilibrium: 

    0ntnntn   , (7) 

so that the standard value of the tangential component can 
be represented by 

 ntn  p . (8) 

The additional equations depend on whether or not there is 
friction. When the friction is idealized using a Coulomb law, 
two contacting surfaces can carry shear stress up to the 
maximum frictional force before they start sliding relative 
to each other: 

nt  g , (9) 

where   is the coefficient of friction. 

There is two states (sticking and sliding) and two equations 
to be satisfied are: 

   nwnnwn          if gp   (stick),  (10A) 

    0  nwnnwn  if gp   (slide).  (10B) 

3.2  Stiffness method for friction  

The stiffness method used for friction is a penalty method 
that permits some relative motion for the surfaces called 
elastic slip when they should be sticking. While the surfaces 
are sticking, the magnitude of sliding is limited to the 
elastic slip and adjusted to enforce this condition. 
The stiffness method requires the appropriate selection of 
an allowable elastic slip i . Using a larger i  makes the 

convergence of the solution more rapid, but brings the bad 
accuracy. If  i  is chosen very small, convergence 

problems may occur. So the value of allowable slip used in 
the simulation which works very well must provide a 
conservative balance between efficiency and accuracy. 
The allowable elastic slip is given as [4] 
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i f iF l   (11) 

where fF  is the slip tolerance, and il  is the characteristic 

contact surface length.  

4. NUMERICAL EXAMPLES 

4.1 The pre-set of parameters 

The models used in the numerical study are rectangle 
blocks with dimension 240 mm high and 120 mm wide. A 
pre-existing flaw (25 mm long and 0.5 mm wide) with 
different inclinations and coefficients of friction is set up in 
the center of each model (Fig. 3). The flaw will close during 
the loading procedure. The other parameters of the flaw and 
the parameters of the material see Table 1 and Table 2.  

 
Fig. 3 The model of a flaw under compression 
(2a: the length of the flaw, θ: the initial angle) 

 
Table 1 The dimension parameters of the flaw 

No
. 

Inclinatio
n α/° 

Coefficien
t of 

friction μ 

No
. 

Inclinatio
n α/° 

Coefficien
t of 

friction μ

1-1 30 0.5 2-2 45 0 
1-2 45 0.5 3-2 45 0.1 
1-3 60 0.5 4-2 45 0.3 

   5-2 45 0.7 
 

Table 2 The parameter of material 
Compressive 

strength 
/MPa 

Tensile 
strength 

/MPa 

Yonng’s 
modulus 

/GPa 

Possion’s 
ratio 

38.5 3.2 5.93 0.14
 

4.2 Modeling and Computing 

Before the analysis of the program, we set appropriate 
loading steps and the number of iteration, which not only 
enables the convergent results, but also makes a good crack 
propagation path. During the meshing, the encryption 
(0.1mm*0.1mm) is made around the crack tip, while 
normal mesh (5mm*5mm) is chosen in other zones. After 
each converged load increment the crack propagation 
criterion is checked. If no crack growth happens, the current 
crack configuration remains unchanged and the next 
loading step is applied; otherwise a new crack segment will 
be inserted with some length (thought as the size of 
element). Subsequently, the process will continue with the 
next loading step (Fig. 4) [8]. 

4.3 Numerical results 

The main findings from the modeling are as follows: 
(1) Wing cracks are observed in all the models, which 
shows mode-I cracking is the main failure mode. Wing 
cracks appear first with a very short length at the tips of the 
initial crack, and then become wider and longer with the  

 
Fig. 4 Algorithm used for crack propagation analyses[8] 

 

     
  (1) 50 steps                (2) 100 steps               (3) 200 steps 
Fig. 5 The typical propagation path of the wing crack 
 

load increasing, finally towards the direction of the 
compressive stress (Fig. 5). The path of wing crack seems 
to be similar to the hyperbola lines in mathematics, which 
are discussed in the previous papers of Yang who is one of 
this paper’s authors. 
(2) The crack in the infinite plate will completely keep open 
or close under the loading, while in the finite plate middle 
region maybe exist, which means the crack will close partly. 
Because of the complex in mathematics, it is difficult to 
obtain the analytical solution of the problem, and the 
phenomenon is observed in this modeling. 
(3) The size has little effect in the vertical load increasing 
when the wing crack grows, so the model with fixed width 
and height is able to simulation the real results for different 
rock mass’s situation. 
(4) As the increase of the coefficient of the friction, the 
wing crack propagation will be slowly as the vertical load 
increase. Fig.7 also shows the crack faces will close when 
the length of wing crack reaches near 5mm. The curves 
extend mostly not as the line, which shows the friction over 
the crack face make the stress around the crack changed, 
thereby inhabit the propagation of the wing crack. 

Interative computation for 
current crack configuration 

Evaluation of the 
crack propagation 
criterion (MTS) 

no crack 
propagation 

crack propagation 

Determination of the crack 
growth direction (MTS) 

Crack extension by a crack 
segment with a length 

Loading step 
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 (5) The length of the wing crack increases nonlinearly as 
the vertical load increases, in details that increasing rate of 
crack length for vertical load increase at first and then 
decrease fast when the length of the wing crack reaches the 
critical value which means that the stress around the crack 
is changed due to the propagation of the crack. The initial 
load decreases as the increase of the inclination of the 

 
Fig. 6 Curve of the length of wing crack vs. 

vertical load/the plane width for μ=0.3 
 

 
Fig. 7 Curve of the length of wing crack vs. 

vertical load for β=45° 

 
Fig. 8 Curve of the length of wing crack vs. 

vertical load for μ=0.5 
 
pre-set crack. The results in Fig. 8 show the difference of 
the inclination produce the different distribution of the 
normal and tangential stress. 
 

5. CONCLUSIONS 

The mechanism of crack propagation was studied using 
brittle material with the frictional contact under uniaxial 
expression and the relationship between the length of wing 
crack and vertical load was recorded and analyzed. A 
XFEM technique was used to simulate the propagation of 
wing cracks in the specimens, and the obtained results were 
compared with the laboratory test one [5], which shows 
they were very close to the experimental ones. It proves the 
accuracy and practicability of the above method in 
modeling the frictional contact behavior. 
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