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ABSTRACT: Gabion structure is a set of stacked prefabricated cages filled with rocks. These gabion cages 

are made of steel wire, polypropylene, polyethylene, or nylon. Constructing these gabion cages usually follows 

supplier guidelines or governmental agency design standards. Designing this gabion structure, at a minimum, 

must satisfy many design criteria in passing external stability in sliding, overturning, and bearing capacity of 

the foundation. Good gabion design requires a balance of the toe bearing stress and heel bearing stress.  With 

this requirement for the design of gabion structures to meet multi-criteria objectives, goal programming, which 

is a multi-criteria optimization technique, is used in this study. A 3-meter gabion example is used as a based 

design. Then, mixed integer nonlinear programming is introduced to rearrange a set of varying sized gabion 

cages to minimize the gabion weight and passing external stability criteria. Two goal programming models are 

introduced to meet the two design criteria in minimizing gabion weight and balancing the vertical stresses. The 

two goal programming models give the same optimum solution with the minimum weight of 48 kN/m and 

eccentricity of 0.002 meter. In contrast, the original example gives the weight of 61.92 kN/m and eccentricity 

of 0.086 meter. 
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1. INTRODUCTION 

 

1.1 Gabions 

 

Gabions are large cages or baskets usually of 

steel wire or square welded mesh, rectangular in 

shape, filled with stone. These cages or boxes are 

widely used in construction works as a retaining 

structure, erosion protection, coastal protection, 

pipe protection, and other usages such as protecting 

buried pipes [1]. Gabion retaining systems are 

gravity structures that use their self-weight to resist 

the lateral earth pressure behind it and to support 

any vertical surcharge resting on top of the gabion 

structure.  

The gabion cages typically are 2 meters long, 1-

meter-wide, and 1-meter-high shown in Fig 1. 

ASTM A975 [2] provides gabion sizes with 1 meter 

in width, varying lengths of 2, 3, 4 meters, and 

varying heights of 1, 0.5, 0.3 meters. BS8002 [3] 

also gives gabion shapes of 2 to 6 meters in lengths, 

1 to 2 meters in widths, and 0.3, 0.5, 1 meter in 

depths.   
 

1.2 Gabion Structures 

 

Arranging different sizes of gabions can 

facilitate the design of a gabion wall. The gabion 

wall can be shaped in front slope, rear slope, or 

trapezoidal shape shown in Fig.2. Flexibility in 

gabion shapes and sizes leaves room for 

improvement to utilize optimization techniques in 

setting gabion walls. 

 

 

 

 

 

 

 

 

 

Fig. 1 Gabion (left) and mattress (right) from 

BS8002 [3] 

 

 

 

 

 

 

     

 

Front Slope          Rear Slope    Trapezoidal  

 

Fig. 2 Gabion wall shapes from BS8002 [3] 

 

1.3 Designing Gabion Structures 

 

Designing a gabion structure as a gravity wall 

shown in Fig. 2 needs to meet external stability in 

sliding, bearing, and overturning. There is no need 

for internal stability checking except using gabions 

as a facing unit and combined with other 

International Journal of GEOMATE, June., 2021, Vol.20, Issue 82, pp.121-131 
ISSN: 2186-2982 (P), 2186-2990 (O), Japan, DOI: https://doi.org/10.21660/2021.82.GX347 
Geotechnique, Construction Materials and Environment 
 



International Journal of GEOMATE, June., 2021, Vol.20, Issue 82, pp.121-131 

122 

 

reinforcements. The reinforcement can be geogrid 

or even anchors shown in Fig. 3. Global stability 

checking is also omitted since the global stability 

depends on the actual site location and the global 

stability can be checked either using limit 

equilibrium method (LEM) or finite difference 

method (FEM) by using the software. Some studies 

illustrate LEM and FEM analysis such as [4]. 

 

 

   
 

Fig. 3 Gabion facing with geogrid reinforcement 

(left) from FHWA-NHI-10024 [5] compared with 

traditional gabion gravity wall (right) from FHWA-

SA-96-038 [6] 

 

1.4 Optimization Techniques Used in Designing 

Gabion Structures 

 

Designing a gabion structure is a constrained 

optimization problem since the design needs to be 

the most economical as possible while still needs to 

satisfy all stability constraints. Also, designing a 

gabion structure faces many multi-criteria by nature 

as aforementioned. Of course, the first objective is 

to design the most economic and safe solution. 

Another objective, for example, is to equalize the 

vertical stress at the toe and the vertical stress at the 

heel of the gabion structure as recommended by 

Enviromesh [7].  

Optimization techniques has been used in 

geotechnical area. Dungca [8] applies linear 

programming of soil mixes in the design vertical 

cut-off walls. Some studies apply optimization 

techniques in designing retaining walls, such as 

Saribas [9] that uses a nonlinear optimization model 

in designing reinforced concrete-cantilever 

retaining walls. Basudhar [10] applies a nonlinear 

cost optimization model in designing mechanically 

stabilized earth (MSE) walls by using sequential 

unconstrained minimization technique (SUMT) 

instead of directly solving a nonlinear optimization 

model, which may not guarantee the exact solution. 

There is no paper directly using optimization 

techniques in designing a gabion wall.  

This paper first proposes a mixed integer 

nonlinear programming model (MINLP) to design 

a gabion wall in which MINLP is frequently used in 

engineering such as [11].  MINLP are also applied 

to civil engineering [12] such in structural design 

[13], construction management [14], etc. Less 

complicate optimization techniques such as mixed 

integer linear programming (MIP) is also used in 

transportation such as maritime logistic network 

[15]. After applying MINP to the proposed gabion 

design optimization models, this paper then applies 

the goal programming approach to the proposed 

MINP models. This goal programming approach is 

suitable to handle multiple objectives in designing a 

gabion wall. Using goal programming is well 

described in [16].  

 

1.5 Aims and Scope 

 

This paper aims to introduce an optimization 

approach to rearrange gabion cages as a retaining 

wall to achieve minimum weight and balanced 

vertical stresses. Achieving these two objectives 

using a manually calculated spreadsheet will 

involve many trial and error in inputting the 

numbers to stack the varying sized gabion cages. 

The optimization models proposed in designing this 

gabion wall are goal programming applied to mixed 

integer nonlinear programming model using GAMS 

software with MINLP solver. The flow chart 

outlining the key steps in this paper is shown in Fig. 

4. 

 

 
Fig. 4 Flow chart outlining the key steps  

 

The paper begins with a design example from 

[7] that exemplifies the two models (27 system and 

39 system) suggested by [7]. The paper then 

proposes a one-step mixed integer nonlinear 

programming optimization model that tries to 

minimize the gabion weight by rearranging the 

varying sized gabion cages. The set of constraints is 

only the external stability in sliding, overturning, 

and bearing. Both internal stability and global 

stability are not considered in this paper. Then two 

goal programming models are introduced, which 

are the preemptive goal programming model and 

the weighted goal programming. These goal 

programming models are used to make a design that 

meets two objectives in minimizing weights and 

Mixed integer 
nonlinear 

programming
(section 3.2)

3.1 meters gabion 
design example 

(section 2)

Weighted goal 
programming 
(section 3.4)

2-step 
Preemptive goal 

programming 
(section 3.3)
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balance vertical stress. Issues in handling local 

optimality and convergence problems of mixed 

integer nonlinear programming are also addressed.  

Due to space limitations, this paper is scoped 

only one example of a 3 meters gabion wall 

provided by Enviromesh [7]. The results of 

optimization models are also compared with the 

example from [7]. However, this approach can be 

applied to design a gabion wall with any height or 

with more design criteria. 

 

1.6 Research Significance 

 

This paper applies two goal programming 

models: the preemptive goal  programming and the 

weighted goal programming, to a mixed integer 

nonlinear programming (MINP) model to redesign 

an original 3.1 meters gabion wall. The proposed 

models can achieve minimum weight and balanced 

vertical stresses while passing external stability in 

sliding, overturning, and bearing. Using MINP can 

make the most economical and safe design, which 

is difficult to calculate  haphazardly via a 

spreadsheet. Goal programming approach is also 

helpful if there is more than one objective to achieve 

in the design while MINP alone can achieve only 

one objective. 

 

2. DESIGN EXAMPLE 

 

Enviromesh [7] gives a design example of 3.1 

meters gabion wall with a total cross-section area of 

3.87 m2 shown in Fig. 5.  

 

2.1 Design Parameters 

 

From Enviromesh [7] example, the design 

parameters are as follows.  

 

2.1.1 Geometry 

Wall height, H = 3.1 meters where y1 = 1.0 meter, 

𝑦2 = 𝑦3 = 𝑦4 = 0.7 meter and 𝑏𝑤 = 1.7, 𝑏2 = 1.4 , 

𝑏3 = 1.0 , 𝑏4 = 0.7 meters. 

The slope angle of the retained soil, 𝜀, is 15 

degrees.  

Wall inclination, 𝛼, is 10 degrees. 

 

2.1.2 Materials 
Soil friction angle, , is 28 degrees.  

Soil density, 𝛾 = 19 kN/m3. 

Gabion density, 𝛾𝑔= 16 kN/m3. 

Foundation soil density,  𝛾𝑓= 19 kN/m3. 

Foundation soil internal friction angle, ∅𝑓, is 30 

degrees.  

 

2.1.3 Bearing capacity parameters  

The bearing capacity parameters are defined by the 

following equations from Meyerhof [17]. 

 

𝑁𝑞 = 𝑒𝜋𝑡𝑎𝑛∅𝑡𝑎𝑛2(45 + ∅/2) = 18.4        (1.1) 

 

𝑁𝑐 = 𝑐𝑜𝑡∅(𝑁𝑞 − 1) = 30.1               (1.2) 

 

𝑁𝛾 = (𝑁𝑞 − 1)𝑡𝑎𝑛1.4∅ = 15    (1.3) 

 

2.1.4 Other parameters 

Surcharge, P0 = 10 kN/m2.  

The Inclination angle to the vertical plane, 𝛽, is 

94.46 degrees.  

The retained wall friction reduction by geotextile, 

, is 28 degrees where δ =  if no geotextile or 

0.9 with geotextile.  

Active earth pressure coefficient [17], Ka = 0.364 

where 

 

𝐾𝑎 =
𝑠𝑖𝑛2(𝛽+𝜙)

𝑠𝑖𝑛2𝛽sin (𝛽−𝛿)[1+√
sin (𝜙+𝛿)sin (𝜙−𝜀)

sin (𝛽−𝛿)sin (𝛽+𝜀)
]

      (2.1) 

 

 

 
Fig. 5. The dimension of gabion structure from 

Enviromesh designed example [7] 

 

The triangular pressure acting on the wall, Pa = 

43.4 kN shown in Fig. 6 where 

 

𝑃𝑎 = 0.5𝐾𝑎𝛾𝐻2 + 𝑃0𝐾𝑎𝐻         (2.2) 

 

Horizontal component Ph = 39.8 kN where 

 

𝑃ℎ = 𝑃𝑎cos (90 − 𝛽 + 𝛿)    (2.3) 

 

Vertical component Pv = 17.3 kN where 

 

𝑃𝑣 = 𝑃𝑎sin(90 − 𝛽 + 𝛿)      (2.4) 

 

2.2 Variables 

 

The variables are as the followings.  

Wall inclination  

Slope  

700 

700 

700 

1000 

400 
300 

1700 

1400 

1000 

700 

Dimension in 

millimeters 
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Vertical distance to Pa, dh = 0.852 meter. From 

 

𝑑ℎ =
𝐻

3
(𝐻 +

3𝑃0

𝛾
)/(𝐻 +

2𝑃0

𝛾
) − 𝑏𝑤𝑠𝑖𝑛𝛼 (3.1) 

 

𝑑ℎ = 𝑑ℎ
′ − 𝑏𝑤𝑠𝑖𝑛𝛼   (3.2) 

 

as shown in Fig 7, from the moment equivalent 

 

 (
1

2
𝛾𝑠𝐻 + 𝑃0) 𝑑ℎ

′ =
1

2
𝛾𝑠𝐻

𝐻

3
+ 𝑃0

𝐻

2
.  

 

 

 

 
 

Fig. 6 Coulomb active earth pressure from 

Enviromesh [7] 

 

 

 
 

Fig. 7. dh and bv from Enviromesh [7]  

 

Resisting moment,The horizontal distance from 

the toe to Pa, 𝑏𝑣  = 1.741 meters shown in Fig. 7, 

 

𝑏𝑣 = 𝑏𝑤𝑐𝑜𝑠𝛼 − 𝑑ℎ/𝑡𝑎𝑛𝛽    (3.3) 

 

Horizontal distance to 𝑊𝑔 shown in Fig. 7, 

 

𝑋𝑔 = 𝑥𝑔𝑐𝑜𝑠𝛼 + 𝑦𝑔𝑠𝑖𝑛𝛼    (3.4) 

 

𝑀𝑟 = 𝑃𝑣𝑏𝑣 + 𝑊𝑔𝑋𝑔   (3.5) 

 

Overturning moment, 

 

𝑀𝑜 = 𝑃ℎ𝑑ℎ      (3.6) 

 

Safety factor against overturning, 

 

𝐹𝑆𝑂 = 𝑀𝑟/𝑀𝑂    (3.7) 

 

Normal force on the plane of sliding, 

 

𝑁 = 𝑊𝑔 + 𝑃𝑣    (3.8) 

 

Tangential force, 

 

𝑇 = 𝑃ℎ     (3.9) 

 

Sliding resistance, 

 

𝐹𝑟 = (𝑁𝑐𝑜𝑠𝛼 + 𝑇𝑠𝑖𝑛𝛼)𝑡𝑎𝑛𝜙  (3.10) 

 

Driving force, 

 

𝐹𝑑 = 𝑇𝑐𝑜𝑠𝛼 − 𝑁𝑠𝑖𝑛𝛼   (3.11) 

 

Safety factor against sliding, 

 

 𝐹𝑆𝑠 = 𝐹𝑑/𝐹𝑟    (3.12) 

 

Reaction eccentricity, 

 

 𝑒 =
𝑏𝑤

2
−

𝑀𝑟−𝑀𝑜

𝑁
    (3.13) 

 

where e is a free variable that is unrestricted in 

sign. Note that negative eccentricity causes reverse 

overturning to the backside (earth-filled) of the wall. 

Vertical stress at the toe, 

 

𝜎𝑡 =
𝑁

𝑏𝑤
(1 +

6𝑒

𝑏𝑤
)    (3.14) 

 

where vertical stress at the heel,  

 

𝜎ℎ =
𝑁

𝑏𝑤
(1 −

6𝑒

𝑏𝑤
)    (3.15) 

 

Allowable soil bearing stress, 

 

𝑞𝑎 = 𝑃0𝑁𝑞 + 0.5𝛾𝑠𝑏𝑤𝑁𝛾   (3.16) 

Pa = active 

thrust  

 = wall  

interaction 

 = back slope 

 = wall inclination 

Wg = 

weight of 

gabions  = effective 

plane  at 

rear of wall 

  

Pa  

  

dh 

bv 

Wg N 

R 
  

Xg 

yg 



 

  

xg 
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Safety factor against the bearing, 

 

𝐹𝑏 = 𝜎𝑡/𝑞𝑎     (3.17) 

 

2.3 Design Output 

 

Enviromesh [7] provides two approaches to 

design gabion systems. One is called “gabion 27 

system”. Another is called “gabion 39 system”. For 

this 3-meter height gabion structure example. The 

27 system has four layers, and the 39 system has 

three layers. The gabion 27 system with four layers 

is already illustrated in the calculation previously. 

The output for these two systems is compared and 

later shown in Table 2. 

 

3. OPTIMIZATION MODELS 

 

Optimization techniques are applied here. Three 

models are proposed. The first model is a mixed 

integer nonlinear programming (MINP) model. The 

other two models are goal programming models. 

One is a preemptive goal programming model. 

Another is a weighted goal programming model.  

The design parameters for the three models are 

as follows: 

 

3.1 Design Parameters  

 

The 3.1-meter design example from Enviromesh 

[7] is borrowed here. The geometrical parameters, 

soil parameters, and calculated constants are shown 

in Table 1. 

From Table 1, Instead of using the original 

Enviromesh example with four layers of gabions 

as mentioned before, this model uses 6 gabion 

layers with 𝑦1 = 𝑦2 = 𝑦3 = 𝑦4 = 𝑦5 = 𝑦6 = 0.5 

meter. The vertical centroids for the six gabion 

layers are calculated as follow: 

 

Height direction centroid 

 

𝑦𝑦1 = 𝑦1/2 = 0.25   (4.1)  

 

𝑦𝑦2 = 𝑦1 + 𝑦2/2 = 0.75   (4.2) 

 

𝑦𝑦3 = 𝑦1 + 𝑦2 + 𝑦3/2 = 1.25  (4.3) 

 

𝑦𝑦4 = 𝑦1 + 𝑦2 + 𝑦3 + 𝑦4/2 = 1.75  (4.4) 

 

𝑦𝑦5 = 𝑦1 + 𝑦2 + 𝑦3 + 𝑦4 + 𝑦5/2 = 2.25 (4.5) 

 

𝑦𝑦6 = 𝑦1 + 𝑦2 + 𝑦3 + 𝑦4 + 𝑦5 + 𝑦6/2 = 2.75    

 

     (4.6) 

 

3.2 Mixed Integer Nonlinear Programming 

 

Mixed integer nonlinear programming (MINP) 

model minimizes the minimum gabion weight 

while satisfying the external stability constraints in 

sliding, overturning, and bearing stability. This is 

done by adjusting the decision variables  

 

Table 1 Geometrical parameters, soil parameters, 

and calculated constants 

 

Description Symbol Value Unit 

Slope angle of the 

retained soil 

𝜀 15 degrees 

Inclination angle 

to the vertical 

plane 

𝛽 94.46 degrees 

Soil cohesion c 0 kPa 

Soil internal 

friction angle 

 28 degrees 

Soil density 𝛾 19 kN/m3 

Retained wall 

friction reduction 

by geotextile 

 28 degrees 

Wall inclination 𝛼 10 degrees 

Surcharge P0 10 kPa 

Base layer height y1 0.5 meter 

2nd layer height y2 0.5 meter 

3rd layer height y3 0.5 meter 

4th layer height y4 0.5 meter 

5th layer geight y5 0.5 meter 

6th layer height y6 0.5 meter 

Active earth 

pressure 

coefficient 

Ka 0.364  

Triangular 

pressure acting on 

the wall 

Pa 43.4 kN 

Horizontal 

component 

Ph 39.8 kN 

Vertical 

component 

Pv 17.3 kN 

Bearing capacity 

depth factor 

𝑁𝑞 18.4  

Bearing capacity 

shape factor 

𝑁𝑐 30.1  

Bearing capacity 

inclination factor 

𝑁𝛾 15.7  

 

 

3.2.1 Objective function 

 

Min 𝑊𝑔                (O1: MINP) 

 

3.2.2 Decision variables 

𝑏𝑤: gabion width (m) at the base layer 

𝑏𝑖  : gabion width (m) at layer i, i = 2, 3, 4, 5, 6 
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𝑥𝐹𝑖: offset (m) of gabion at the front at layer i, i = 

2, 3, 4, 5, 6 

𝑥𝐵𝑖: offset (m) of gabion at the back at layer i, i = 

2, 3, 4, 5, 6    

𝑖𝑤: positive integer variable of gabion wall width 

at the base. 

𝑖𝑖: positive integer variable of gabion wall width at 

layer i, i = 2, 3, 4, 5, 6 

 

3.2.3 Constraints  

Widths 

 

𝑏2 = 𝑏𝑤 − 𝑥2𝐹 − 𝑥2𝐵   (C1.1: layer 2) 

 

𝑏3 = 𝑏2 − 𝑥3𝐹 − 𝑥3𝐵  (C1.2: layer 3) 

 

𝑏4 = 𝑏3 − 𝑥4𝐹 − 𝑥4𝐵  (C1.3: layer 4) 

 

𝑏5 = 𝑏4 − 𝑥5𝐹 − 𝑥5𝐵  (C1.4: layer 5) 

 

𝑏6 = 𝑏5 − 𝑥6𝐹 − 𝑥6𝐵  (C1.5: layer 6) 

 

Integer widths  

 

𝑏𝑤 = 0.5𝑖𝑤     (C2.1: base) 

 

𝑏2 = 0.5𝑖2     (C2.2: layer 2) 

 

𝑏3 = 0.5𝑖3     (C2.3: layer 3) 

 

𝑏4 = 0.5𝑖4     (C2.4: layer 4) 

 

𝑏5 = 0.5𝑖5     (C2.5: layer 5) 

 

𝑏6 = 0.5𝑖6     (C2.6: layer 6) 

 

At least one integer widths  

 

𝑏𝑤 ≥ 1, 𝑏2 ≥ 1, 𝑏3 ≥ 1, 𝑏4 ≥ 1, 𝑏5 ≥ 1, 𝑏6 ≥ 1   

 

  (C3.1 - C3.6: > 1 integer width) 

 

Gabion weight 

 

𝑊𝑔 = 𝛾𝑔(𝑦1𝑏𝑤 + 𝑦2𝑏2 + 𝑦3𝑏3 + 𝑦4𝑏4 + 𝑦5𝑏5 

 

 +𝑦6𝑏6)  (C4: gabion weight) 

 

Base direction centroids  

 

𝑥𝑥1 = 𝑏𝑤/2            (C5.1: base) 

 

𝑥𝑥2 = 𝑥2𝐹 + 𝑏2/2  (C5.2: layer 2) 

 

𝑥𝑥3 = 𝑥2𝐹 + 𝑥3𝐹 + 𝑏3/2   (C5.3: layer 3) 

 

𝑥𝑥4 = 𝑥2𝐹 + 𝑥3𝐹 + 𝑥4𝐹 + 𝑏4/2  (C5.4: layer 4) 

 

𝑥𝑥5 = 𝑥2𝐹 + 𝑥3𝐹 + 𝑥4𝐹 + 𝑥5𝐹 + 𝑏5/2  

 

    (C5.5: layer 5) 

 

𝑥𝑥6 = 𝑥2𝐹 + 𝑥3𝐹 + 𝑥4𝐹 + 𝑥5𝐹 + 𝑥6𝐹 + 𝑏6/2  

 

    (C5.6: layer 6) 

 

Base direction moments  

 

𝑥𝑥𝑚1 = 𝑦1𝑏𝑤𝑥𝑥1           (C6.1: base) 

 

𝑥𝑥𝑚2 = 𝑦2𝑏2𝑥𝑥2   (C6.2: layer 2) 

 

𝑥𝑥𝑚3 = 𝑦3𝑏3𝑥𝑥3   (C6.3: layer 3) 

 

𝑥𝑥𝑚4 = 𝑦4𝑏4𝑥𝑥4   (C6.4: layer 4) 

 

𝑥𝑥𝑚5 = 𝑦5𝑏5𝑥𝑥5   (C6.5: layer 5) 

 

𝑥𝑥𝑚6 = 𝑦6𝑏6𝑥𝑥6   (C6.6: layer 6) 

 

Height direction moments 

 

𝑦𝑦𝑚1 = 𝑦1𝑏𝑤𝑦𝑦1           (C7.1: base) 

 

𝑦𝑦𝑚2 = 𝑦2𝑏2𝑦𝑦2   (C7.2: layer 2) 

 

𝑦𝑦𝑚3 = 𝑦3𝑏3𝑦𝑦3   (C7.3: layer 3) 

 

𝑦𝑦𝑚4 = 𝑦4𝑏4𝑦𝑦4   (C7.4: layer 4) 

 

𝑦𝑦𝑚5 = 𝑦5𝑏5𝑦𝑦5     (C7.5: layer 5) 

 

𝑦𝑦𝑚6 = 𝑦6𝑏6𝑦𝑦6   (C7.6: layer 6) 

 
Center of gravity 

 

𝑥𝑔 =
𝑦1𝑏1𝑥𝑥1 + 𝑦2𝑏2𝑥𝑥2 + 𝑦3𝑏3𝑥𝑥3 + 𝑦4𝑏4𝑥𝑥4

𝑦1𝑏𝑤 + 𝑦2𝑏2 + 𝑦3𝑏3 + 𝑦4𝑏4

 

 

             (C8.1: horizontal) 

 

𝑦𝑔 =
𝑦1𝑏1𝑦𝑦1+𝑦2𝑏2𝑦𝑦2+𝑦3𝑏3𝑦𝑦3+𝑦4𝑏4𝑦𝑦4

𝑦1𝑏𝑤+𝑦2𝑏2+𝑦3𝑏3+𝑦4𝑏4
  

 

   (C8.2: vertical) 

 

𝑥𝑥𝑔 = 𝑥𝑔𝑐𝑜𝑠𝛼 + 𝑦𝑔𝑠𝑖𝑛𝛼 (C8.3: level) 

 

Sliding stability 

 
𝑁 = 𝑊𝑔 + 𝑃𝑣  (C9.1: reaction) 

 
(𝑁𝑐𝑜𝑠𝛼+𝑃ℎ𝑠𝑖𝑛𝛼)𝑡𝑎𝑛𝜙

𝑃ℎ𝑐𝑜𝑠𝛼−𝑁𝑠𝑖𝑛𝛼
≥ 1.5   

 

   (C9.2: the sliding factor of safety) 
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Overturning stability 

 

 

𝑑ℎ =
𝐻

3
(𝐻 +

3𝑃0

𝛾
)/(𝐻 +

2𝑃0

𝛾
) − 𝑏𝑤𝑠𝑖𝑛𝛼  

 

    (C10.1: 𝑑ℎ) 

 

𝑏𝑣 = 𝑏𝑤𝑐𝑜𝑠𝛼 − 𝑑ℎ/𝑡𝑎𝑛𝛽   (C10.2: 𝑏𝑣) 

 

𝑀𝑟 = 𝑃𝑣𝑏𝑣 + 𝑊𝑔𝑥𝑥𝑔        

 

  (C10.3: resisting moment) 

 

𝑀𝑜 = 𝑃ℎ𝑑ℎ  (C10.4: overturning moment) 

 

𝑀𝑟/𝑀𝑂 ≥ 2  

 

 (C10.5: moment factor of safety) 

 

Eccentricity 

 

𝑒 =
𝑏𝑤

2
−

𝑀𝑟−𝑀𝑜

𝑁
            (C11.1: eccentricity) 

 
|𝑒| ≤ 𝑏𝑤/6             (C11.2: eccentricity limit)  

 

By replacing e, which is a free variable, with 𝑒+ 

and 𝑒−  which are positive variables by using the 

relationship 𝑒 = 𝑒+ − 𝑒− . This constraint (C11.2) 

is converted to 𝑒+ − 𝑒− ≤ 𝑏𝑤/6 

where 

𝑒+ : positive eccentricity. In this case, the wall will 

lean toward facing. 

𝑒− : negative eccentricity. In this case, the wall will 

lean toward the retained soil. 

 

Bearing 

𝜎𝑡 =
𝑁

𝑏𝑤
(1 +

6𝑒

𝑏𝑤
)       

 

                 (C12.1: vertical bearing stress at the toe) 

 

𝑞𝑎 = 𝑃0𝑁𝑞 + 0.5𝛾𝑠𝑏𝑤𝑁𝛾  

 

   (C12.2: soil bearing capacity) 

 

𝜎𝑡/𝑞𝑎 ≥ 2.5  (C12.3.: bearing factor of safety) 

 

3.2.4 Width/Height ratio 

As suggested by Ortigo and Sayao [18] that the 

base width (b) should occupy about 0.4H to 0.6H, 

where H is the wall height. Hence, b/H lower bound 

for all six layers is set at 0.4 in constraints (C13.1) 

to (C13.6), while the b/H upper bound is set at 0.6 

in constraint (C14) as follows. 

 

𝑏𝑤/𝐻 ≥ 0.4  

 

(C13.1: base layer minimum width) 

 

𝑏2/(𝐻 − 𝑦1) ≥ 0.4  

   

(C13.2: 2nd layer minimum width) 

 

𝑏3/(𝐻 − 𝑦1 − 𝑦2) ≥ 0.4 

 

(C13.3: 3rd layer minimum width) 

 

𝑏4/(𝐻 − 𝑦1 − 𝑦2 − 𝑦3) ≥ 0.4 

 

(C13.4: 4th layer minimum width) 

 

𝑏5/(𝐻 − 𝑦1 − 𝑦2 − 𝑦3 − 𝑦4) ≥ 0.4 

 

(C13.5: 5th layer minimum width) 

 

𝑏6/(𝐻 − 𝑦1 − 𝑦2 − 𝑦3 − 𝑦4 − 𝑦5) ≥ 0.4 

 

(C13.6: 6th layer minimum width) 

 

𝑏𝑤/𝐻 ≤ 0.6  (C14: maximum width) 

 

3.2.5 MINP solution 

By mainly adjusting the decision variables in the 

gabion layer widths  𝑏𝑤, 𝑖𝑤, 𝑏𝑖, 𝑖𝑖, i = 2, 3, 4, 5, 6, 

the solution of this mixed integer nonlinear 

programming model gives the minimum weight 

𝑊𝑔
∗ = 48 kN/m. The eccentricity 𝑒 = 0.233 meter as 

shown in Table 2.  

 

Table 2 Comparison of the designs from 

Enviromesh and mixed integer nonlinear 

programming 

 

Model 27 39 MINP 

H, m 3.1 3.0 3.0 

Wg,, kN/m 61.92 72.0 48.0 

e, m 0.086 0.172 0.233 

FSO 2.72 2.87 2.00 

FSS 1.87 1.83 1.52 

FSB 7.14 6.18 4.89 

Note: 27 is Enviromesh 27 system design. 39 is 

Enviromesh 39 system design. MINP is mixed 

integer nonlinear programming. H is wall height in 

m. Wg is gabion weight in kN/m, e is eccentricity in 

m. FSO is overturning factor of safety. FSS is 

sliding factor of safety. FSB is bearing factor of 

safety. 

 

3.3 Preemptive Goal Programming  

 

Preemptive goal programming is used in this 

model by sequential assign the two goals, as shown 

below. 

 

Goal 1: minimum gabion weight, 𝑊𝑔 
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Goal 2: minimum eccentricity, e 

 

Preemptive goal programming model will solve 

two optimization models sequentially. The first 

model will try to solve goal 1, which is the first 

priority objective. The second model will 

sequentially solve goal 2, which is the second 

priority objective, while setting the satisfied 

objective goal 1 as a constraint. Details of the two 

steps preemptive goal programming are as follows. 

The first preemptive goal is done by assigning 

the first objective function that is the first priority, 

as follows. 

 

Min   𝑊𝑔            (O2.1: preemptive goal 1) 

 

The set of constraints is the same as in MINP 

model. 

Hence, the first preemptive goal programming 

model is exactly the same as MINP model. The 

solution of the first preemptive goal has the 

minimum weight 𝑊𝑔 = 48 kN/m where the 

eccentricity 𝑒 = 0.233 meter as shown in Table 3. 

From this optimum solution in goal 1, the 

second preemptive goal is assigned with this second 

priority objective function. This second goal is to 

try to equalize the vertical stress at the toe to be the 

same as the heel vertical stress. In other words, this 

objective function is trying to minimize the 

eccentricity to be zero. Since the vertical stress at 

the toe is 𝜎𝑡 =
𝑁

𝑏𝑤
(1 +

6𝑒

𝑏𝑤
) and the vertical stress at 

the heel is 𝜎ℎ =
𝑁

𝑏𝑤
(1 −

6𝑒

𝑏𝑤
) , Equalizing 𝜎𝑡 = 𝜎ℎ 

implies that 𝑒 = 0.  This is done by adjusting the 

decision variables of the offsets 𝑥𝐹𝑖  and 𝑥𝐵𝑖  , i = 2, 

3, 4, 5, 6 of the gabion layers.  

 

The second objective function is as follows. 

 

Min   𝑒+ − 𝑒−               (O2.2: preemptive goal 2) 

 

Except one constraint is added to satisfy the first 

goal, the other constraints are the same as in model 

1. The added constraint is as follows: 

 

𝑊𝑔 = 48       (C15: satisfying the first goal) 

 

The solution of the second goal, which is the 

optimum solution of this preemptive goal 

programming model, gives the minimum 

eccentricity 𝑒 = 0.002 meters, which is less than the 

eccentricity in the previous first preemptive goal 

model at 𝑒 = 0.233 meters. Of course, the minimum 

weight 𝑊𝑔 = 48 kN/m, which is the same as the 

previous first preemptive goal model since this 

minimum weight is enforced as a constraint (C15) 

in the second preemptive goal model. Table 3 shows 

the comparison of preemptive goal programming 

with Enviromesh 27 system and 39 system. 

 

Table 3 Comparison of the designs from 

Enviromesh and preemptive goal programming 

 

Model 27 39 GP1 GP2 

H, m 3.1 3.0 3.0 3.0 

Wg,, kN/m 61.92 72.0 48.0 48.0 

e, m 0.086 0.172 0.233 0.002 

FSO 2.72 2.87 2.00 2.45 

FSS 1.87 1.83 1.52 1.52 

FSB 7.14 6.18 4.89 9.37 

Note: GP1 is step 1 preemptive goal programming 

using goal 1. GP2 is step 2 preemptive goal 

programming from using goal 2 while setting goal 

1 as a constraint. Other notations are the same as 

aforementioned in Table 2. 

 

3.4 Weighted Goal Programming  

 

Weighted goal programming is done by 

assigning a set of weights to handle the same 

objectives as preemptive goal programming in 

minimizing gabion weight ( 𝑊𝑔) and eccentricity (e).  

Hence, the objective function is: 

 

Min   𝑤𝑔𝑊𝑔 + 𝑤𝑒(𝑒+ + 𝑒−)   (O3: weighted goal) 

 

The set of constraints is the same as in MINP 

model. 

 

Table 4 Comparison of the designs from all models 

 

Model 27 39 MINP Goal 

H, m 3.1 3.0 3.0 3.0 

Wg,, kN/m 61.92 72.0 48.0 48.0 

e, m 0.086 0.172 0.233 0.002 

FSO 2.72 2.87 2.00 2.45 

FSS 1.87 1.83 1.52 1.52 

FSB 7.14 6.18 4.89 9.37 

Note: 27 is Enviromesh 27 system design. 39 is 

Enviromesh 39 system design. MINP is mixed 

integer nonlinear programming. Goal is both 

preemptive goal programming and weighted goal 

programming that give the same optimum solution. 

 

Assigning values to 𝑤𝑔 and 𝑤𝑒 is based on the 

level of importance of each goal [19] in which the 

first goal should gain greater weight than the second 

goal.  

By subjectively assigning 𝑤𝑔 = 2 and 𝑤𝑒 = 1, 

the optimal solution for the weighted goal 

programming is the same as the preemptive goal 

programming in which the minimum weight 𝑊𝑔 = 
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48 kN/m and the eccentricity 𝑒 = 0.002 meter, same 

as those in GP2 in Table 3.  

By experimentally changing the weights, the 

optimum solution is invariant that achieves the 

same optimum solution. Trial weights assigned are 

a pair of 𝑤𝑔 = 3 and 𝑤𝑒 = 2,  a pair of 𝑤𝑔 = 1 and 

𝑤𝑒 = 1, and a pair of 𝑤𝑔 = 1 and 𝑤𝑒 = 2.  

The optimum solutions from all models are 

shown in Table 4.  The calculation details, including 

the widths and offsets of all models, are shown in 

Table 5.  

 

4. FINDINGS AND DISCUSSION 

 

4.1 Comparison of Optimum Solutions from All 

Models 

 

From Table 4, the optimal solution of MINP is 

the same as those in preemptive goal step 1 that tries 

to achieve goal 1 in minimizing gabion weight. By 

setting another goal in balancing vertical stress at 

the heel and vertical stress at the toe in goal 2, the 

preemptive goal model (Goal in Table 4) achieves 

less eccentricity at 0.002 meters, compared with 

0.233 meters when using MINP. Weighted goal 

programming gives the same optimum solution as 

those in preemptive goal programming (Goal in 

Table 4). Table 4 is exactly the same as Table 3, 

except for the changes in the column description.  

 

4.2 Model Validation and Optimization Issues 

 

The solutions of the three optimization models 

(MINP, preemptive goal programming, and 

weighted goal programming) are obtained using 

GAMS (General Algebraic Modeling Software). 

GAMS can integrate many third-party optimization 

solvers. The solver chosen in GAMS for these three 

models is MINLP solver. This MINLP (Mixed 

Integer Nonlinear Program) can solve the model 

that is mixed with both nonlinear terms and discrete 

variables [20]. 

Mixed integer nonlinear programming model 

may lead to local optimal solutions or convergence 

problems [21].  Hence, GAMS coding practices are 

utilized to guarantee an adequate model. Those 

practices recommended [20] are specifying sensible 

initial values, setting variable bounds, scaling 

variables and equations, avoiding expressions in 

nonlinear functions, reformulating and 

approximating for discontinuous.  

The practices utilized for this proposed model 

are setting variable bounds in (C13.1) – (C13.6), 

avoiding expressions in nonlinear functions such as 

in (C11.1) and (C12.1), and reformulating for 

discontinuous function such as absolute value 

function in (C11.2). Specifying sensible initial 

values simply uses GAMS default values setting at 

zeros. There is no need to scale variables and 

equations since all variable values are in the same 

scale of measurement units. Global optimal 

solutions cannot be guaranteed due to the 

nonconvex constraints involved. However, the 

proposed models are adequate because varying 

parameters successfully solve the models without 

convergence difficulties showing as infeasible 

solutions. However, due to space limitations, the 

trial results and GAMS coding are not shown.  

 

Table 5 Calculation details of the designs from all 

models 

 

Model 27 39 MINP Goal 

H, m 3.1 3 3 3 

 degrees 10 6 10 10 

bw, m 1.7 2.0 1.5 1.5 

b2, m 1.4 1.5 1.5 1 

b3, m 1.0 1.0 1 1 

b4, m 0.7 - 1 1 

b5, m - - 0.5 1 

b6, m - - 0.5 0.5 

x2F, m 0 0 0 0.5 

x2B, m 0.3 0.5 0 0 

x3F, m 0.4 - 0.145 0 

x3B, m 0 0.5 0.355 0 

x4F, m 0.3 - 0 0 

x4B, m - - 0 0 

x5F, m - - 0.048 0 

x5B, m - - 0.452 0 

x6F, m - - 0 0.5 

x6B, m - - 0 0 

Wg, kN/m 61.92 72 48 48 

e, m 0.086 0.172 0.233 0.002 

Mr, kN-m 96.4 101.9 67.0 82.0 

MO, kN-m 35.5 35.5 33.5 33.5 

FSO 2.72 2.87 2.00 2.45 

Fr, kN 49.4 53.3 40.7 40.7 

Fd, kN 26.4 29.1 26.7 26.7 

FSS 1.87 1.83 1.52 1.52 

Qa, kPa 437.1 481.7 407.3 407.3 

t, kPa 61.2 78.0 83.3 43.5 

FSB 7.14 6.18 4.89 9.37 

Note: 27 is Enviromesh 27 system design. 39 is 

Enviromesh 39 system design. MINP is mixed 

integer nonlinear programming. Goal is both 

preemptive goal programming model and weighted 

goal programming model. 

 

4.3 Optimization Values and Computational 

Cost 

 

Both MINP, preemptive/weighted goal 

programming model can save the weights of this 3-
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meter gabion wall down, compared with 1.29 from 

the 27 system and 1.5 from the 39 system.  However, 

using MINP gives more eccentricity than the 27 

system and the 39 system. Preemptive goal 

programming model (GP in Table 6) Both 

preemptive goal programming or weighted goal 

programming gain the same minimum weight as 

MINP at 48 kN/m but lower eccentricity at 0.002 

meters. Hence, either preemptive goal 

programming or weighted goal programming may 

be considered an aiding tool used to design a gabion 

wall if the saving in gabion weights and lower 

eccentricity is worth its computation cost.  

 

Table 6 Comparison of the weights and 

eccentricities from all models 

 

Model 27 29 MINP Goal 

H, m 3.1 3.0 3.0 3.0 

Wg,, kN/m 61.92 72 48 48 

Ratio 1.29 1.5 1 1 

e, m  0.086 0.172 0.233 0.002 

Note: 27 is Enviromesh 27 system design. 39 is 

Enviromesh 39 system design. MINP is mixed 

integer nonlinear programming. Goal is both 

preemptive goal programming model and weighted 

goal programming model. 

 

When comparing the computational cost of 

MINP, preemptive goal programming, and 

weighted goal programming, MINP needs only a 

one-step model. Preemptive goal programming 

needs a two-step model, but the second preemptive 

goal programming for the second goal 

programming needs to add only one constraint to 

satisfying the first goal. Weighted goal 

programming is also a one-step model but may need 

experimenting to change the weights assigned to the 

goal objective function to avoid local optimality 

problems. 

 

5. CONCLUSION AND FUTURE WORKS 

 

Optimization techniques such as mixed integer 

nonlinear programming (MINP) is a tool to make a 

gabion wall design by choosing a combination of 

many decision variables that is difficult to do with 

a manually calculated spreadsheet. However, using 

MINP needs to deal with the addressed local 

optimality and convergence problems.  

Using MINP gains a lesser weight than the 

original Enviromesh 27 system and 39 system, but 

MINP model gives a greater eccentricity than the 27 

system and 39 system, as shown in Table 1. Using 

goal programming models, either preemptive goal 

programming or weighted goal programming can 

achieve minimum weight and minimum 

eccentricity.  

Goal programming approach can be applied to 

design a gabion wall with any height or added 

design criteria. This goal programming approach 

can also be extended to other retaining wall 

structures that need to achieve many objectives in 

the design criteria. 
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