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ABSTRACT: Immiscible two-phase flows in porous media is of concern for various problems such as 
underground water pollution by non-aqueous phase liquid and enhanced oil recovery. It is understood that the 
drainage process in porous media exhibits patterns of either stable displacement, viscous fingering flow or 
capillary fingering flow depending on the conditions. However, the physical mechanism of the invasion and 
critical conditions for different invasion patterns have not been universally identified. This study employed a 
numerical two-phase flow simulation using the Color Gradient Lattice Boltzmann Method (CG-LBM) in a 
simplified pore network model with different capillary numbers and viscosity ratios between the two fluids. 
Simulation results confirm that flows for a low capillary number produce the preferential flow for pores with 
the least threshold pressure, which corresponds to capillary fingering flow. In addition, the retreat of the 
invading fluid caused by the Haines jump was observed. When the capillary number is higher, these two 
phenomena were not observed. Flows with a higher capillary number lead the invading fluid to simultaneously 
displace different pores when its viscosity is higher than that of the invaded fluid (stable displacement), and 
the viscous fingering flow happens otherwise. These findings suggest that capillary number and viscosity ratio, 
and occurrence of the preferential flow and Haines jump are key factors that determine invasion patterns.    
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1. INTRODUCTION 
 

Immiscible two-phase flows in porous media is 
of concern for various problems such as 
underground water pollution by non-aqueous phase 
liquid, enhanced oil recovery, and carbon capture 
and storage. The drainage process in porous media 
exhibits various patterns depending on conditions 
namely from the stable displacement, viscous 
fingering flow to capillary fingering flow. Although 
the critical conditions determining these invasion 
patterns have been widely researched both 
physically [1–3] and numerically [4–6], there is no 
universally accepted criteria regarding the transition 
among the different invasion patterns. In addition, 
the detailed physical mechanism during fluid 
displacement in porous media has not been 
explicitly identified. 

One of the most influential works about the 
drainage process in porous media was conducted by 
Lenormand et al. [7]. They numerically simulated 
displacement behavior by a capillary network 
model and classified the invasion patterns based on 
the saturation when breakthrough occurs. In their 
study, the results were presented as a phase diagram 
which has the viscosity ratio ( )M  on the x-axis and 
the capillary number ( )Ca  on the y-axis, and the 
type of invasion patterns are plotted accordingly. 
Although their work successfully reproduced 

different invasion patterns and classified them, it is 
reported that the threshold of the diagram is not 
universally fixed [1, 3, 5]. Also, it lacks analyses of 
the detailed process during displacement because it 
assumes simple capillary network fluid dynamics. 

This paper numerically simulates the drainage 
process within a simplified pore network model 
using the Color Gradient Lattice Boltzmann 
Method (CG-LBM) with different conditions of 
Ca  and M . The numerical results confirmed the 
three invasion patterns depending on the conditions, 
and the two notable fluid dynamic phenomena, the 
preferential flow and Haines jump, were observed, 
which were considered as key factors for different 
invasion patterns. 

 
2. MATERIALS AND METHODS   
 
2.1 Numerical Scheme 
 

The Lattice Boltzmann Method (LBM) is a 
mesoscopic-based computational fluid method and 
treats a fluid as a collection of particles which have 
discretized lattice velocities. The probability of 
particles heading to a certain direction at a node is 
described by the particle distribution function. Fluid 
properties such as density, pressure and velocity are 
derived by the zeroth and first moment of the 
particle distribution function. The computational 
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procedure of the standard LBM consists of two 
steps: the collision and streaming steps. The simple 
iteration of these two steps develops the particle 
distribution functions. Further, the computation of 
the moments of the particle distribution functions 
yields macroscopic variables at each node so that it 
recovers the incompressible Navier-Stokes 
equation within the limit of low Mach number [8]. 

The CG-LBM is a multiphase LBM model that 
is effective at explicit specification of fluid 
properties such as the viscosity ratio and interfacial 
tension. We implemented a computational method 
mainly based on [9], where multiphase features of 
interfacial tension and immiscibility were 
incorporated by adding a perturbation step and 
recoloring step to the standard LBM procedure, 
respectively. Fluid wettability was modelled by 
directly assigning the contact angle without 
considering the contact angle hysteresis [10]. 

Regarding boundary conditions, the standard 
bounce-back condition was applied at the walls of 
the porous model as the no-slip boundary condition, 
and the non-equilibrium bounce back method [11] 
was utilized at the inlet and outlet boundary as the 
Dirichlet boundary condition. 

The computer code we used was verified 
beforehand by simulating basic multiphase flow 
problems of the droplet formation and contact angle 
test (not shown), and satisfactory results were 
obtained. Throughout the simulations in this 
research, the contact angle of the wetting fluid 
against the nonwetting fluid was set at 60 degrees. 

 
2.2 Simulation Outline 

 
Considering the high computational cost of the 

CG-LBM, a simplified pore network model was 
chosen as the simulated medium. The simulated 
porous model shown in Fig. 1 is composed of four 
circular pore bodies with the same size, four 
rectangular throats connecting them with different 
widths, and inlet and outlet throats. The widths w
of the pore throats and diameter d  of the pore 
bodies are presented in Table 1 as a dimensionless 
lattice unit (lu). Note that all the values are non-
dimensionalized using lattice unit (lu), mass unit 
(mu), and time step (ts) for length, mass, and time 
unit, respectively, in the rest of the paper. Constant 
velocity was imposed at the inlet, and constant 
pressure was imposed at the outlet. The inlet 
boundary nodes are assumed to be nonwetting 
nodes, and the outlet boundary nodes were assumed 
to be wetting nodes. The inlet velocity drives the red 
nonwetting fluid to invade the pores and the blue 
wetting fluid is drained from the outlet. 

The key parameters of the simulation were 
capillary number n nCa uµ σ= and viscosity ratio 

n wM µ µ= . Note that nµ  is the dynamic viscosity 

of the nonwetting fluid, nu  is the inlet velocity of 
the nonwetting fluid, σ  is the interfacial tension, 
and  wµ  is the dynamic viscosity of the wetting 
fluid. Several works about the drainage process in 
porous media [1, 3, 5, 7] showed that the stable 
displacement occurs when both Ca  and M  are 
higher, the viscous fingering flow occurs when  Ca  
is higher and M  is lower, and capillary fingering 
flow occurs when Ca  is lower. However, the 
thresholds of the transition among those invasion 
patterns are different among different studies, and 
hence a universal criterion has not been established. 
In addition, the physical mechanism of the different 
invasion patterns has not been adequately 
researched because of the complexity of porous 
media. 

We changed the two parameters of Ca and M by 
appropriately choosing the kinematic viscosity, 
fluid density, interfacial tension, and inlet velocity 
from simulation to simulation while keeping the 
LBM specific error due to large velocity and 
kinematic viscosity small. Indeed, the maximum 
inlet velocity allowed was set as 0.009 and that of 
the kinematic viscosity to be 0.6. We realized the 
capillary number ranged from 55.0 10Ca −= ×  to 

27.2 10−×  and the viscosity ratio 9.000M =  and 
0.111 . The simulation was stopped when the 
invading fluid reached the outlet of the medium, i.e., 
when breakthrough occurs. The simulation results 
exhibit different invasion patterns each of which 
corresponds to the stable displacement, viscous 
fingering flow and capillary fingering flow. The 
physical mechanisms of the various displacement 
processes and their transitions are analyzed in the 
next section. 

 

 
 

Fig. 1 The simulated porous model. The red region 
is occupied by an invading fluid and the blue region 
is occupied by an invaded fluid. 
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Table 1 Widths w of the pore throats and radius d
of the pore bodies in the simulated porous model 
 

wBL wTL wBR wTR dB wI wO 

84 96 36 60 150 120 72 
Note: BL: Bottom-Left, TL: Top-Left, BR: Bottom-Right, 

TR: Top-Right, B: Body, I: Inlet, O: Outlet. The unit is lattice 
unit (lu). 
 
3. RESULTS AND DISCUSSION 
 
3.1 Capillary Fingering Flow  

 
The representative flow development for the 

capillary fingering pattern is shown in Fig. 2. This 
regime assumes a lower capillary number, and 
therefore the flow is dominated by capillary force 
while the viscosity effect is negligible. 

The first notable characteristic is the preferential 
flow to the larger pore throats. As Fig. 2a shows, the 
invading fluid preferentially invades the top left 
throat without entering the bottom left throat. This 
phenomenon is caused by variant threshold 
pressures of the pore throats. The threshold pressure 
of a throat is defined as the pressure difference 
between the two fluids needed for the invading fluid 
to invade the throat. In the drainage process, 
according to the Laplace law, the threshold pressure 

thP  is written as 

 2 costhP
w

σ θ
= , (1) 

where θ  is the contact angle measured in the 
invaded wetting fluid. Since the contact angle and 
interfacial tension are constants, wider throats 
always hold smaller threshold pressure, leading the 
invading fluid to invade wider throats preferentially. 
While the fluid invades the pore throat with the 
largest throat width, the pressure difference 
between the invading and invaded fluid is fixed to 

the threshold pressure of that throat which is 
inevitably lower than the threshold pressure of the 
other pore throat. Hence, the invading fluid is not 
able to invade the other throat, and waits at the 
entrance of the throat (Fig. 2a). 

In addition, another preferential pattern between 
a pore body and throat is noticeable. From Fig. 2a 
to Fig. 2b, the invading fluid prefers the bottom left 
throat rather than the top body. The threshold 
pressure into pore bodies can be computed by the 
Laplace law and geometrical calculation following 
a similar method to Xu et al. [10]. The schematic 
figure for the derivation of the threshold pressure 
into round pore bodies is shown in Fig. 3. The 
symbols R , α  , and appθ  in Fig. 3 denote the 
radius of curvature of the fluid interface, angle 
between the pore throat and pore body wall, and 
apparent contact angle, respectively. The angle α  
is determined only by the geometry of the porous 
model, and cos /w dα = −  and 90 180α° < < °  
hold. Although the apparent contact angle is equal 
to the fluid contact angle θ  while invading the pore 
throat, it undergoes an abrupt increase when 
reaching the pore body. When reaching the pore 
body, the meniscus swells while sticking to the 
critical points of the throat-body, and the apparent 
contact angle declines until it becomes equal to the 
fluid contact angle θ  [10]. When it becomes equal 
to the fluid contact angle θ , the invasion of the pore 
body starts and the meniscus moves into the pore 
body. Considering the relationship of the angles in 
Fig. 3, the radius of curvature R  is calculated by 

 ,
2cos( )app

wR
α θ

= −
+

  (2) 

and hence the pressure difference is 

 2 cos( ) .appP
w

σ α θ+
∆ = −   (3) 

 
Fig. 2 The representative flow development in capillary fingering regime ( 43.6 10 , 9.000Ca M−= × = ). 
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When 180α θ+ ≤ ° , the maximum pressure 
difference is encountered when 180appα θ+ = °  . 
When 180α θ+ ≥ ° , the invasion starts before 

appα θ+  becomes 180° , and thus the maximum 
pressure difference occurs when appα θ α θ+ = + . 
Therefore the threshold pressure into a pore body 
with diameter d from a throat with width w  is: 

 2 cos[max( , 180 )] .thP
w

σ α θ+
= −



 (4) 

The threshold pressure into the top body from the 
top left throat is thus

2 cos( ) / 96 0.021thP σ α θ σ= − + ≈  , which is 
higher than the threshold pressure into the bottom 
left throat 2 cos 60 / 84 0.012thP σ σ= ° ≈  . Hence, 
the invading fluid invades the bottom left throat 
rather than the top body (Fig. 2b). Then, the 
invading fluid enters the top body rather than the 
bottom body, following Eq. (4) (Fig. 2c). 

During the invasion of the top body, the second 
characteristic, or the retreat of the invading fluid 
from the throat due to the Haines jump [12] occurs. 

Haines jump is an abrupt increase and decrease in 
fluid interface and pressure, respectively [12]. 
When the invading fluid invades the top body from 
the top left throat, the invading fluid undergoes the 
sudden change in geometry and an accompanying 
sudden drop in capillary pressure. This makes the 
pressure of the invading fluid less than the pressure 
needed to stay in the bottom left throat. Hence, the 
invading fluid in the bottom left throat retreats, and 
the redistribution of the fluid occurs. 

The difference between the average pressure of 
the invading and invaded fluids, and the average x-
velocity before and during the invasion of the top 
pore body are plotted in Fig. 4 for the same 
condition as Fig. 2. During period (A), the invading 
fluid invades the bottom left throat, keeping a 
constant pressure. Then, during period (B), the 
pressure starts to increase by growing the menisci 
while the interfaces stick to the critical points 
between the top left throat and top body, and the 
bottom left throat and bottom body. Finally it 
releases the pressure during the period (C) while 
invading the top body. Accompanying to the sharp 
pressure decline, the invading fluid retreats from the 
bottom left throat from (D) to (E). 

Also, the average x-velocity experiences an 
abrupt increase and decrease during the retreat. This 
jump and retreat event happened in a short period 
(~660,000 time steps) compared to the initial 
invasion of the bottom left throat (~120,000 time 
steps). The average x-velocity presented in Fig. 4 
also illustrates the rapidness of the jump and retreat. 
This process is typical of the Haines jump 
phenomenon: accumulation of pressure, abrupt 
exchange of pressure into velocity, and fluid 
redistribution. 

After refilling the bottom left throat in 
accordance with Eq. (1), the invading fluid invades 
the top right throat as a result of comparison 

Fig. 3 Schematic figure of invasion from pore throat 
to pore body 

α

R
θapp

w
d/2

critical point

Fig. 4 Pressure difference and average x-velocity about invasion of top body. (A) Invade bottom left throat. 
(B) Accumulate pressure by growing menisci while sticking to critical points. (C) Invade top body while 
releasing pressure. (D) Start to retreat from bottom left throat. (E) Retreat completely to reach left body 

-2

-1

0

1

2

3

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1700 1800 1900 2000 2100

A
ve

ra
ge

 x
-v

el
oc

ity
 (×

10
-4

)

Pr
es

su
re

 d
iff

er
en

ce
 (×

10
-3

)

time step (×2000)

Pressure difference
(left axis)
Average of x-velocity
(right axis)

(A) (B) (C)

(D)

(E)



International Journal of GEOMATE, June., 2021, Vol.20, Issue 82, pp.132-139 

136 
 

between Eq. (1) for the top right throat and Eq. (4) 
for the bottom body (Fig. 2d). Then, the bottom 
body is invaded while the Haines jump occurs (Fig. 
2e) after which the top right throat is refilled. The 
threshold pressure into the right body 

2 cos(180 ) / 60 / 30thP σ σ= − ° =   is higher than 
that into the bottom right throat

2 cos(60 ) / 36 / 36thP σ σ= ° = . Hence, the bottom 
right throat is invaded rather than the right body 
(Fig. 2f). Interestingly, the meniscus between the 
top right throat and right body (Fig. 2f) swells more 
than those between the left body and bottom left 
throat (Fig. 2a) and between the bottom left throat 
and bottom body (Fig. 2d). Since the threshold 
pressure into the bottom right throat is relatively 
higher and close to that into the right body, the 
pressure difference had to be increased by growing 
the meniscus and decreasing the apparent contact 
angle to enter the bottom right throat before Fig. 2f 
(see Eq. (3) and Fig. 3). After the displacement in 
the bottom right throat, the Haines jump occurs 
while invading the right body (Fig. 2g), and the 
breakthrough occurs (Fig. 2h). 
 
3.2 Stable Displacement 
 

The representative flow development for the 
stable displacement pattern is shown in Fig. 5. In 
this regime, the capillary number is higher, and the 
viscosity ratio is larger. Hence, the viscosity of the 
invading fluid is dominant. In this regime the 
preferential flow and Haines jump mentioned in the 
capillary fingering pattern were not observed. On 
the contrary, the invading fluid simultaneously 
invades the bottom left throat and the top left throat 
(Fig. 5a). In this case, the dominant viscous force of 
the invading fluid diminishes the local capillary 
effect due to the interfacial tension, i.e., the 
threshold pressure does not affect the propagation 
of the meniscus lying in the other throat.  The retreat 
of the invading fluid due to the Haines jump does 
not take place for the same reason: during the 
displacement of a large pore body, the invading 
fluid is still able to displace the invaded fluid, 
propelled by the bulk pressure difference (Fig. 5b, 
c, d, e). 
 

3.3 Viscous Fingering Flow 
 

The representative flow development for the 
viscous fingering pattern is shown in Fig. 6. This 
regime had a higher capillary number and smaller 

 
Fig. 5 The representative flow development in stable displacement regime ( 27.2 10 , 9.000Ca M−= × = ). 

 

 
Fig. 6 The representative flow development in viscous fingering regime ( 27.2 10 , 0.111Ca M−= × = ). 
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viscosity ratio. Hence, the flow is dominated by the 
viscosity of the invaded fluid. In this flow type, the 
finger-like interface is confirmed. As with the stable 
displacement pattern, the flow is driven by the bulk 
pressure difference between the inlet and outlet, and 
therefore the capillarity of the pores does not affect 
the fluid dynamics. Observing the state at 
breakthrough (Fig. 6d), the seemingly preferential 
path to the upper pores is evident, which is not by 
the capillarity but rather by the channeling effect 
[13, 14]. In the viscous fingering pattern, since bulk 
pressure difference is much larger than the local 
capillary pressure difference, the pore selection of 
invasion does not occur pore by pore unlike the 
capillary fingering pattern. Instead, the overall 
viscous resistance through the series of pores from 
the inlet to the outlet determines the flow path. In 
this manner, the upper series of pores is preferable 
for the invading fluid compared to the lower one. In 
other words, the upper channel is more permeable 
than the lower channel. 
 
3.4 Transition Among Different Flow Patterns 
 

The critical values for the transition among the 
three invasion patterns are of interest from an 
engineering viewpoint because the different 
invasion patterns significantly alter the efficiency of 
the operation. Tables 2 and 3 show the presence and 
absence of the noted phenomena in the capillary 
fingering regime, the preferential flow and retreat of 
the invading fluid due to Haines jump, for different 
viscosity ratios. From Table 2, the capillary 
fingering flow would transition to the stable 
displacement in capillary number on the order of 

210− , which roughly corresponds to [3] and [7]. 

Table 3 suggests that the transition from the 
capillary fingering to the viscous fingering would 
occur in capillary number on the order of 310− , 
which is considerably higher than that reported in 
some of the literature [1, 3]. Since the domain size 
significantly influences the invasion patterns, 
simulation on larger realistic porous media is 
needed for further analysis. 

To further understand the mechanisms of the 
invasion patterns the transitional capillary numbers 
should be investigated as the interplay between 
viscosity and capillarity occurs in those conditions. 
In reality, the drainage process in natural porous 
media cannot be easily distinguished among the 
three invasion patterns, and the several patterns 
coexist simultaneously [6]: both the viscosity and 
capillarity take effect in realistic conditions. 

Figure 7 shows the flow development for 
21.0 10Ca −= ×  and 9.000M = , equivalent to the 

transitional pattern from the capillary fingering 
flow to the stable displacement. In this condition, 
the preferential flow and retreat due to the Haines 
jump was weak. The invading fluid invaded 
multiple pores simultaneously, but primarily 
selected the pore with the smaller threshold pressure 
(Fig. 7a). Further, the invading fluid retreated from 
the pore throats due to the Haines jump, but the 
retreat was incomplete. The moderate retreat from 
the bottom left throat was evident between Fig. 7b 
and c. As shown in Fig. 7d to e, the top right pore 
throat and bottom pore body were simultaneously 
displaced, which was not observed in the capillary 
fingering flow (Fig. 2). Nevertheless, a retreat from 
the top right throat occurred, as seen in Fig. 7f, 
likely due to the Haines jump. This indicates that 
the characteristic phenomenon of the capillary 

Ca 5.0 
×10-5 

1.0 
×10-4 

3.6 
×10-4 

3.6 
×10-3 

7.2 
×10-3 

1.0 
×10-2 

2.0 
×10-2 

3.6 
×10-2 

7.2 
×10-2 

logCa -4.30 -4.00 -3.44 -2.44 -2.14 -2.00 -1.70 -1.44 -1.14 
Preferen-
tial flow Present Present Present Present Inter-

mediate 
Inter-

mediate Absent Absent Absent 

Retreat by 
Haines 
jump 

Present Present Present Present Present Present Inter-
mediate Absent Absent 

 

 
Table 2 Presence and absence of preferential flow and retreat by Haines jump when 9.000M =  

Ca 5.0 
×10-5 

1.0 
×10-4 

3.6 
×10-4 

7.2 
×10-4 

3.6 
×10-3 

7.2 
×10-3 

1.0 
×10-2 

3.6 
×10-2 

7.2× 
10-2 

logCa -4.30 -4.00 -3.44 -3.14 -2.44 -2.14 -2.00 -1.44 -1.14 
Preferen-
tial flow Present Present Inter-

mediate Absent Absent Absent Absent Absent Absent 

Retreat by 
Haines 
jump 

Present Present Present Present Inter-
mediate Absent Absent Absent Absent 

 

 
Table 3 Presence and absence of preferential flow and retreat by Haines jump when 0.111M =  
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fingering flow did still exist. Overall, this pattern 
highlights the interplay between the viscosity and 
capillarity. 

Figure 8 shows the flow development for  
47.2 10Ca −= ×  and 0.111M = , corresponding to 

the transitional pattern from the capillary fingering 
flow to the viscous fingering flow. As presented in 
Fig. 8a, the top left and bottom left throats were 
simultaneously displaced although more 
dominantly for the top left throat. This pattern is 
same as 21.0 10Ca −= ×  and 9.000M =  (Fig. 7a). 
In addition, as shown in Fig. 8a to Fig. 8b, the top 
pore body and bottom left pore throat were 
simultaneously displaced. In Fig. 8c, it can be 
observed that the invading fluid chose to invade the 
top right throat rather than the bottom pore body, 
which is the same selection as the capillary 

fingering flow pattern and in accordance with the 
comparison of the threshold pressures. However, an 
alternative interpretation is possible: the invading 
fluid evades the bottom channel composing of the 
narrow bottom right throat. This theory is based on 
the discussion of the viscous fingering flow pattern, 
in which we proposed that the invading fluid selects 
the series of the pores with smaller viscous 
resistance. After filling the top right throat, the 
bottom and right body were simultaneously 
displaced (Fig. 8d), after which the invading fluid 
retreated from the bottom body as the right body 
continued to be invaded (Fig. 8e). At the 
breakthrough (Fig. 8f), the retreated fluid even 
reached the inside of the bottom left throat. The 
pattern in Fig. 8 again demonstrates the interplay 
between viscosity and capillarity. Further 
substantial work is required to explore the 

 
Fig. 8 Flow development for 47.2 10 , 0.111Ca M−= × = . 

 

 
Fig. 7 Flow development for 21.0 10 , 9.000Ca M−= × = . 
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theoretical argument about transitional flow 
patterns. 

 
4. CONCLUSIONS 

 
In this paper, the drainage process in a 

simplified pore network model was numerically 
simulated using the CG-LBM, and the three 
different invasion patterns were obtained. These 
patterns correspond to the capillary fingering flow, 
stable displacement, and viscous fingering flow. 
Two phenomena were observed for low capillary 
number flows (i) the preferential flow to the pores 
with the least threshold pressure and (ii) the retreat 
of the invading fluid due to the Haines jump. 
During the Haines jump, a sudden release of 
pressure and an abrupt change in mean velocity 
were observed. Whereas, the preferential flow and 
Haines jump were not observed for higher capillary 
number flows. When Ca  is larger than the order of 

210−  and / 9.000n wµ µ = , the pore throats were 
simultaneously displaced, which corresponds to 
stable displacement. When Ca  is larger than the 
order of 310− and / 0.111n wµ µ = , the viscous 
fingering flow developed, where the finger-like 
interface was observed. These findings suggest that 
the conditions of capillary number and viscosity 
ratio, and occurrence of the preferential flow and 
Haines jump are key factors that determine different 
invasion patterns.  

 
5. ACKNOWLEDGMENTS 
 

This work was supported by JSPS KAKENHI 
Grant Number JP 20H03100. 

 
6. REFERENCES 

 
[1] Chen Y. F., Wu D. S., Fang S., and Hu R., 

Experimental study on two-phase flow in rough 
fracture: Phase diagram and localized flow 
channel. International Journal of Heat and Mass 
Transfer, Vol. 122, 2018, pp.1298-1307. 

[2] Ferer M., Ji C., Bromhal G. S., Cook J., Ahmadi 
G., and Smith D. H., Crossover from capillary 
fingering to viscous fingering for immiscible 
unstable flow: Experiment and modeling. 
Physical Review E, Vol. 70, Issue 1, 2004, 
016303. 

[3] Zhang C., Oostrom M., Wietsma, T. W., Grate 
J. W., and Warner, M. G., Influence of viscous 
and capillary forces on immiscible fluid 
displacement: Pore-scale experimental study in 
a water-wet micromodel demonstrating viscous 
and capillary fingering. Energy & Fuels, Vol. 25, 
Issue 8, 2011, pp.3493-3505. 

[4] Chen Y., Li Y., Valocchi A. J., and Christensen 
K. T., Lattice Boltzmann simulations of liquid 
CO2 displacing water in a 2D heterogeneous 
micromodel at reservoir pressure conditions. 
Journal of Contaminant Hydrology, Vol. 212, 
2018, pp.14-27. 

[5] Liu H., Zhang Y., and Valocchi A. J., Lattice 
Boltzmann simulation of immiscible fluid 
displacement in porous media: Homogeneous 
versus heterogeneous pore network. Physics of 
Fluids, Vol. 27, Issue 5, 2015, 052103. 

[6] Tsuji T., Jiang F., and Christensen K. T., 
Characterization of immiscible fluid 
displacement processes with various capillary 
numbers and viscosity ratios in 3D natural 
sandstone. Advances in Water Resources, Vol. 
95, 2016, pp.3-15. 

[7] Lenormand R., Touboul E., and Zarcone C., 
Numerical models and experiments on 
immiscible displacements in porous media. 
Journal of Fluid Mechanics, Vol. 189, 1988, 
pp.165-187. 

[8] Krüger T., Kusumaatmaja H., Kuzmin A., 
Shardt O., Silva G., and Viggen E. M.. The 
lattice Boltzmann method. Springer 
International Publishing, 2017. 

[9] Leclaire S., Pellerin N., Reggio M., and 
Trépanier J. Y., Enhanced equilibrium 
distribution functions for simulating immiscible 
multiphase flows with variable density ratios in 
a class of lattice Boltzmann models. 
International Journal of Multiphase Flow, Vol. 
57, 2013, pp.159-168. 

[10] Xu Z., Liu H., and Valocchi A. J., Lattice 
Boltzmann simulation of immiscible two-phase 
flow with capillary valve effect in porous 
media. Water Resources Research, Vol. 53, 
Issue 5, 2017, pp.3770-3790. 

[11] Zou Q., and He X., On pressure and velocity 
boundary conditions for the lattice Boltzmann 
BGK model. Physics of Fluids, Vol. 9, Issue 6, 
1997, pp.1591-1598. 

[12] Sun Z., and Santamarina J. C., Haines jumps: 
Pore scale mechanisms. Physical Review E, 
Vol. 100, Issue 2, 2019, 023115. 

[13] Tsang C. F., and Neretnieks I., Flow 
channeling in heterogeneous fractured rocks. 
Reviews of Geophysics, Vol. 36, Issue 2, 1998, 
pp.275-298. 

[14] Tang Y. B., Li M., Bernabé Y., and Zhao J. Z., 
Viscous Fingering and Preferential Flow Paths 
in Heterogeneous Porous Media. Journal of 
Geophysical Research: Solid Earth, Vol. 125, 
Issue 3, 2020, e2019JB019 

 

Copyright © Int. J. of GEOMATE. All rights reserved, 
including the making of copies unless permission is 
obtained from the copyright proprietors.  


	NUMERICAL ANALYSIS OF INVASION PATTERNS DURING DRAINAGE PROCESS IN A SIMPLIFIED PORE NETWORK MODEL
	*Corresponding Author, Received: 25 Nov. 2020, Revised: 27 Feb. 2021, Accepted: 08 Mar. 2021
	1. INTRODUCTION
	2. MATERIALS AND METHODS
	2.1 Numerical Scheme
	2.2 Simulation Outline

	3. RESULTS AND DISCUSSION
	3.1 Capillary Fingering Flow
	3.2 Stable Displacement

	3.3 Viscous Fingering Flow
	3.4 Transition Among Different Flow Patterns

	5. Acknowledgments
	6. referenceS


