
 

1 

 

ANALYSIS OF AXIAL LOADED PILE IN MULTILAYERED SOIL 

USING NODAL EXACT FINITE ELEMENT MODEL 

 
*Chinnapat Buachart1, Chayanon Hansapinyo2 and Worsak Kanok-Nukulchai3 

1, 2 Center of Excellence for Natural Disaster Management, Department of Civil Engineering, Faculty of 

Engineering, Chiang Mai University, Thailand; 

3 Asian Institute of Technology, Thailand 

*Corresponding Author, Received: 19 June 2017,   Revised: 29 Nov. 2017, Accepted: 30 Dec. 2017 

 

ABSTRACT: The nodal exact displacement based finite element method for analyzing axially loaded pile 

embedded in multilayered of finite depth of elastic soil is presented. The condition of shape function by which 

exact value may be reproduced at the nodal points regarding a few number of elements is investigated. The 

examined shape functions which satisfy the homogeneous governing equations in each layer of elastic soil are 

introduced to obtain the so-called exact element stiffness matrix. Then the stiffness matrix of proposed shape 

function was constructed via total potential energy principle. The results obtained from proposed finite element 

were compared with analytical solutions from literature. Axial force and displacement solutions of the pile 

embedded in multilayered soil obtained from proposed finite element model show exact agreement with 

analytical solutions and data from the available literature. 
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1. INTRODUCTION 

 

In this study, the displacement of axially loaded 

pile embedded in multi-layer soil is solved via 

proposed finite element procedure. The nodal exact 

shape function concept suggested in [1]–[4] are 

used to construct the stiffness matrix and equivalent 

nodal force incorporate with fixed-point iteration 

algorithm to solve nonlinear algebraic equations. In 

each iteration step, the coefficients of differential 

equation describe pile settlement behavior were 

estimated easily via the component of stiffness 

matrix and nodal displacement obtained from 

previous iteration step. 

Examples of elastostatic pile embedded in 

multilayered soil subjected to quasi-static point load 

on topsoil level were analyzed [5]. The results from 

proposed element are compared with analytical 

solutions obtained from [6] to verify the accuracy of 

proposed pile element. 

 

2. MATHEMATICAL FORMULATION  

 

In this section, the governing equation of 

axisymmetric problem will be derived. Then the 

finite element formulation and solution scheme to 

obtain the nodal displacement will be described. 

 

2.1 Problem Definition 

 

The analysis considers a single circular cross-

section pile [5], with radius rp and total length Lp 

embedded in a total of N horizontal soil layer (Fig. 

1). The pile is subjected to an axial force Qt at the 

pile head which is flush with the ground surface. 

The pile itself crosses m layers (m < N). All soil 

layers are assumed to extend to infinity in the radial 

direction, and the bottom layer (Nth layer) also 

extends to infinity in downwards direction (half-

space) as shown in Fig. 1. The soil medium in any 

layer (ith layer, where i = 1,…, N) is assumed to be 

elastic and isotropic material, with elastic properties 

described by soil shear modulus Gsi and Poisson’s 

ratio si. The vertical depth from the ground surface 

to the bottom of any layer i is denoted by Hi. Hence, 

the thickness of each layer Li is computed by the 

difference of bottom depth Hi – Hi –1 with H0 = 0. 

The pile is assumed to behave as an elastic column 

with Young’s modulus Ep. The Poisson’s ratio of 

the pile material is neglected.  

 

2.2 Governing Differential Equations 

 

Since the cylindrical pile settlement problem in 

Fig. 1 is axisymmetric. Hence, we use the system of 

cylindrical coordinates (r-z coordinate) to indicate 

any position in pile and soil bodies. The origin of 

cylindrical coordinate coincides with the center of 

pile cross section at the pile head level. The vertical 

(positive in the downward direction) coordinate z-

axis coincides with pile axis. The non-slip 

conditions between pile surface and surrounding 

soil and between soil layers are assumed. The 

vertical displacement uz(r,z) at any point in the soil 

is represented as the product of two functions in r 

and z coordinates as follows: 
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Fig. 1 Axially loaded pile and multi-layer soil, 

modified from [5] 

 

     ,zu r z w z r                                           (1) 

 

where w(z) is the vertical displacement of the pile at 

any point along pile axis, and (r) is the soil 

displacement decay function in the radial direction. 

     To compute the strain and stress in the elastic 

soil medium, the displacement in the radial 

component is assumed to be small compared with 

vertical displacement in Eq. (1), i.e. ur = 0. Hence, 

the nonzero strain components in elastic soil 

medium can be expressed as: 
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and stress in soil medium can be computed 

following the Hooke’s Law: 
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where λs and Gs are the elastic constants of soil. 

      Then, the calculus of variations is used to obtain 

the governing differential equation in a pile and 

surrounding soil by defining the strains from 

displacement functions in Eq. (1), and prescribe the 

variation of total potential energy with respect to w 

and  equal to zeros [6]. The governing differential 

equation due to variation with respect to w for the 

pile and soil below the pile tip is as follow: 
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where Ei = Ep and Ai = Ap when 1  i ≤ m (along 

pile axis), and Ei = si + 2Gsi and Ai = rp
2 when (m 

+ 1)  i < N (soil below the pile tip). The elastic 

constant si + 2Gsi is a function of Poisson’s ratio si 

and shear modulus Gsi of soil: 
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Note that the coefficients ksi, and ti represent the 

shear and compressive resistances of soil mass 

against pile settlement. Both ksi, and ti are a function 

of decay function  and elastic properties of soil as 

follow: 
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The governing differential equation for the soil 

surrounding the pile can be obtained by taking the 

variation of total potential energy with respect to  

equals to zero: 
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and the solution of Eq. (8) with boundary conditions 

(r) = 0 at r extend to infinity, and (r) = 1 at r = rp 

is a zero order modified Bessel function of the 

second kind: 
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Substituting decay function (r) into Eqs. (6) and 

(7), obtain the explicit formula for coefficients ksi 

and ti in terms of modified Bessel function of the 

second kind, zero and first orders [6]: 
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where the coefficient  is the ratio between the 

modified Bessel function of the second kind of the 

first-order K1 and zero order K0, i.e.: 
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The general solution of Eq. (4) is given by: 
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where Bi and Ci are integration constant. The 

characteristic parameter i of pile and soil 

interaction is expressed as follow: 
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Note that the dimension of parameter i is an 

inversion of length. An axial force Qi(z) at a depth z 

in the ith layer is obtained defined as: 
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or explicitly in the form: 
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where ai = i (EiAi + 2ti), the integration constants 

Bi and Ci in Eqs. (16) and (19) can be determined 

analytically from the procedure proposed in [5]. 

 

2.3 Finite Element Formulation 

 

 
Fig. 2 Axially loaded pile element and element 

degrees of freedom, modified from [4] 
 

In the previous works [5, 6]; integration 

constants Bi and Ci for all layers were solved by 

applying directly the boundary conditions for the 

pile load head, bottom end, and layer interfaces to 

the algebraic system of equations. Then the authors 

simplified the calculation by the determinant of the 

matrix of the algebraic system.  

The equation at all soil interfaces can also be 

constructed automatically through the assembly of 

finite element stiffness. The boundary conditions at 

all soil interfaces need not be constructed separately. 

Hence, in this section, the formula of stiffness 

matrix via total potential energy and exact 

interpolation function will be described and will be 

used to test with analytical problems from literature. 

Consider one-dimensional element in Fig. 2, 

which represents the portion of pile embedded in 

any one layer of surrounding soil governed by Eq. 

(4). Assuming that soil surrounding pile element is 

in an elastic condition for the whole length. Shear 

resistance of soil is represented by equivalent soil 

spring coefficient ksi. Pile element in Fig. 2 

composes of two nodes at top and bottom, 

numbering with node 1 and 2, respectively. The 

total potential energy of this soil-pile element 

subjected to an equivalent nodal forces P1 and P2 is 

defined as the sum of internal potential energy 

(strain energy) and the external potential energy due 

to external load as follow [4]: 

 

L 
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where w(z) is the vertical pile displacement at depth 

z where 0  z  L. The first variation of Eq. (20) 

leads to: 
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Note that the origin of vertical coordinate along the 

pile axis in potential function, Eq. (20), is now 

moved to the top node of pile portion, instead of pile 

head on ground level. The nodal displacement at the 

top and bottom nodes are denoted by w1 and w2, 

respectively. Suppose that the pile portion at the ith 

layer is considered, the pile length can be computed 

from different of bottom depth between nearby soil 

layer, i.e.  L = Hi – Hi-1. 

    Applying the appropriate Gauss-Green theorem 

to Eq. (21) and setting δП = 0, gives the differential 

equation for equilibrium similar to Eq. (4), and a set 

of natural boundary conditions as follows 
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The natural boundary condition at first node, Eq. 

(22) is similar to axial load expression in Eq. (18). 

 

2.4 Exact Interpolation Function 

 

To construct the system of algebraic equations 

with respect to nodal displacement, the trial solution 

of w(z) in Fig. 2 is introduced in the form: 
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The shape functions in Eq. (24) are taken from a 

homogeneous solution of Eq. (4), i.e. 
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where the dimensionless parameter βi = iL. 

    In present work, the proposed finite element 

procedure to solve Eq. (4) for a given load Qt (Fig. 

1) will be explained in next section. Then, the 

results from proposed nodal exact element will be 

compared with an available analytical solution in 

[5, 6]. 

 

2.5 Iteration Scheme 

 

According to Eqs. (10) and (11), the shape 

parameter of decay function, namely r in Eqs. (8) 

and (9) depends on pile settlement w(z). Hence, the 

finite element discretization of Eq. (21) with trial 

displacement function in Eq. (24) leads to the steady 

steady-state set of non-linear algebraic equations as 

follow: 

 

  K w w f                                                      (27) 

 

In which stiffness matrix K is a non-linear function 

of nodal displacement w. The external nodal load f 

is presented in term of specified vector. To solve the 

nodal solution from Eq. (27), we employed the 

fixed point iteration technique as follows [7]: 

 
 1 ( )n n

K w f                                                  (28) 

 

where K(n-1) = K(w(n-1)), n = 1,2,…; is stiffness 

matrix evaluated from nodal solution w at previous 

iteration step. Usually, iteration process in Eq. (28) 

is repeated until the value of nodal solution w 

converged. In this work, we will use convergence 

criteria of the parameter r instead. Hence, the 

convergence criteria for all cases are: 
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n n
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Note that the convergence criteria used in Eq. (29) 

is similar to criteria used in [5, 6] and also results in 

the convergence of nodal solution w in Eq. (27). 

 

2.6 Derivation of Element Stiffness Matrix 

 

Refer to the first variation of strain energy terms 

in Eq. (21), the element stiffness matrix for pile and 

soil can be expressed as follows:  
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where the indices a and b represent element nodal 

number, ranged from 1 to 2. 

 

2.6.1 Element stiffness matrix 

Substituting shape functions from Eq. (25) and 

(26) into element stiffness formulation in Eq. (30) 

and (31), the component of element stiffness 

matrices can be explicitly expressed as 
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and 
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Hence, the total stiffness matrix of layer i, which 

is the summation of stiffness in Eqs. (32) and (33), 

can be defined as: 
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where parameter ai was already defined in Eq. (19). 

The element stiffness matrices in Eq. (34) are 

assembled to form global stiffness in Eq. (27). 

 

2.6.2 Stiffness of bottom-most layer 

At the bottom-most layer (layer N), the 

thickness is assumed to be infinity, and nodal 

displacement at the bottom most point is prescribed 

to zero. Hence, the element stiffness matrix in Eq. 

(34) has to be redefined. Convergence of hyperbolic 

function when L shows that the element 

stiffness matrix for Nth layer is similar to penalty 

spring coefficient [8] attached to Nth degree of 

freedom, wN, with the following form: 
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The convergence of hyperbolic function also shows 

that the displacement in the Nth layer can be 

interpolated via the form below: 
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The interpolation of w in Eqs. (24) and (36) are then 

used to compute axial force according to Eq. (18). 

Note that coordinate z in Eqs. (24)–(36) is local 

coordinate defined in ith-layer. 

2.6.3 Calculation of decay parameter 

The value of decay parameter r in any iteration 

step of Eq. (28) can be evaluated from nodal 

displacement solution w in each step. Substituting 

the displacement function, Eq. (24), into Eqs. (10) 

and (11) obtained: 
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where 2si si siE G  ; the values ms and ns are 

then substituted in Eq. (9) to compute the value of 

the parameter r. 

 

3. NUMERICAL EXAMPLES 

 

In this section, two numerical examples are 

presented to illustrate the effectiveness of nodal 

exact finite element proposed in the previous 

section. Results from proposed element are verified 

using analytical solutions available in [5, 6]. 

 

3.1 Pile with Ideal Rigid End Bearing 

 

In this example, we study the behavior of pile in 

homogeneous soil (one layer) subjected to pile head 

load as shown in Fig. 3. The ratio of pile elastic 

modulus and soil shear modulus is set to be Ep/Gs = 

3000, and Poisson’s ratio vs = 0.4999. The pile tip 

is assumed to rest on a rigid layer and pile diameter 

B = 2rp = 0.2 m. Note that this problem was already 

solved in [6], and repeat here to verify our proposed 

finite element model. Because the value of 

Poisson’s ratio is close to 0.5, the modulus λs is 

approach infinity, according to Eq. (5). Hence, this 

problem will set the value of modulus λs equals to 
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zero and replace the value of Gs by equivalent soil 

shear modulus [5]: 

 

 * 20.75 1 0.25s s sG G v                                    (39) 

 

     Figure 4 shows the relation between the 

normalized pile head stiffness KN versus normalized 

pile length Lp/B. The normalized pile head stiffness 

is defined as the ratio of load at pile head versus 

settlement at pile head normalized by EpB, i.e. KN = 

Qt/(w0EpB) where w0 = settlement at pile head. The 

plot in Fig. 4 was obtained with the finite element 

analysis proposed in this work and from the 

analytical method in the previous study [5]. The 

normalized pile head stiffness in Fig. 4 decreases 

with increasing of normalized pile length. The 

results of finite element analysis presented in this 

work are in good agreement with the previous study 

in [6]. 

 

 
 

Fig. 3 Pile rest on rigid layer, modified from [6] 

 

 
Fig. 4 Normalized pile head stiffness versus 

normalized pile length of rigid-end pile 

 

3.2 Micropile (Italy) 

 

This example presents the case of micro-pile, which 

was installed in a complex soil profile [6]. The soil 

profile and pile length are shown in Fig. 5. Pile 

diameter and length are equal to 0.2 m and 19 m, 

respectively. Modulus of elasticity of pile is 

approximately 27 GPa. In all soil layers, the 

Poisson’s ratio was assumed to be 0.3. The values 

of soil depth, shear modulus, and Poisson’s ratio of 

Fig. 5 are listed in Table 1. The numerical test was 

performed using four proposed nodal exact 

elements with four active degrees of freedom. The 

value of stiffness for bottom most soil was 

calculated according to Eq. (35). 

 

 
Fig. 5 Soil Profile of Italy case, modified from [5] 

 

Table 1 Input properties for the analysis of 

micropile tested in Italy (B = 0.2 m, Lp = 19 m, Ep = 

27 GPa) 

 

Layer Hi (m) Gsi (MPa) νsi 

1  12  19.2 0.3  

2  19  45.0 0.3  

3  21  45.0 0.3  

4    53.1 0.3  

 

Figure 6 shows the calculated pile head settlement 

versus input pile head load. Figure 7 shows 

measured and calculated load-transfer curves for 

applied load equal to 50, 250, and 500 kN. These 

figures show that there is very good agreement 

between the proposed finite element and analytical 

solution in the literature [5]. 

 

4. CONCLUSION 

 

     The finite element model for pile embedded in 

multilayered elastic soil subjected to axial load is 

proposed. The system of nonlinear algebraic 
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equations constructed from proposed finite element 

has been solved via fixed point iteration technique. 

The values of the nodal solution are recalculated 

until the shape parameter of decay function 

converged. 

 

 
 

Fig. 6 Load-settlement curve at pile head (Italy 

case) 

 

 
 

Fig. 7 Load-transfer curve for pile head load equal 

to 50, 250, and 500 kN (Italy case) 

 

       Numerical examples for static load pile 

embedded in multilayered elastic soil were tested by 

proposed finite element compare with available 

analytical solutions from literature.  

Two problems, composed of pile resting on the 

rigid base, and pile embedded in four layers soil 

with infinite bottom depth were solved to obtain 

pile settlement and load transfer curves. The 

numerical test indicates that the proposed finite 

element method are very good agreement with the 

available analytical solution proposed in the 

literature. 
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