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ABSTRACT: The bias correction is the main tool for improving the rainfall simulation from the model to 
improve performance and increasing accuracy with observation. Since, if the good estimate and more accuracy 
of rainfall simulation are crucial to helping the risk assessment policies for increasing demands from 
agricultural, industrial and domestic sectors for many countries. So, the aim of this study, to improving 
decaying average bias correction by using the Lyapunov theorem for simulating rainfall over Indochina 
Peninsular. The time period for exampling the results were in Mar, April, and May 2015. The results were 
shown a comparison between standalone model simulation results and bias correction results (Theorem 2 and 
Theorem 3) as shown in time series and statistical method value. The times series results were shown the results 
from bias correction improving by Lyapunov (Theorem 2 and Theorem 3) that show good estimates than the 
standalone model simulation. In statistical analysis, the bias correction improving by the Lyapunov theorem 
(Theorem 2 and Theorem 3) were shown the highest accuracy (MAE and RMSE) than standalone model 
simulation. However, the results from the time sires and statistical analysis were guaranteed the bias correction 
improving by the Lyapunov theorem that can improve the results of the model and increase more accuracy 
when compared with reanalysis grid observation data. 
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1. INTRODUCTION 
 

Science has evolved from an attempt to 
understand and predict the behavior of the universe 
and the systems within it. Much of this owes to the 
development of suitable models, which agree with 
the observations. These models are either in a 
symbolic form which the humans use or in the 
mathematical form that is found from physical laws. 
Most systems are causal, which can be categorized 
as either static, where the output depends on the 
current inputs, or dynamic, where the output 
depends on not only the current inputs but also past 
inputs and outputs. Many systems also possess 
unobservable inputs, which cannot be measured, 
but affect the output of the system, that is time series 
systems. These inputs are known as disturbances 
and aggravate the modeling process [1-2]. 

Lyapunov’s second (or direct) method provides 
tools for studying (asymptotic) stability properties 
of an equilibrium point of a dynamical system (or 
systems of differential equations). The intuitive 
picture is that of a scalar output-function, often 
thought of as generalized energy that is bounded 
below, and decreasing along with solutions. If this 
function has only a single local minimum, and it is 
strictly decreasing along with all non-equilibrium 
solutions, then one expects that all solutions tend to 
that equilibrium where the output function has a 
minimum. This is indeed correct. In the sequel, we 
state and prove theorems, including some that relax 

the requirement of strictly or globally decreasing, 
and also discuss converse theorems that guarantee 
the existence of such functions. Much of the power 
of the method comes from its simplicity – one does 
not need to know any solutions: Knowing only the 
differential (or difference) equation one can easily 
establish whether such an output function is 
decreasing along with solutions. However, while it 
is easy to see that for every asymptotically stable 
system there exists many, even smooth, such 
Lyapunov functions, in many cases it is almost 
impossible to get one’s hands onto one such 
Lyapunov function. They are easy to construct for 
e.g. linear systems, and many strategies are 
available for special classes – in general, it is a true 
art to come up with explicit formulas for good 
candidate Lyapunov functions [1-2]. 

One of the most challenging problems of 
increasing the accuracy of rainfall over Indochina 
Peninsular [3-5]. If increase accuracy of estimating 
rainfall is crucial to helping the risk assessment 
policies for increasing demands from agricultural, 
industrial and domestic sectors for the country over 
Indochina Peninsular. Therefore, the aim of this 
study, to improving decaying average bias 
correction by using the Lyapunov theorem for 
simulating rainfall over Indochina Peninsular. The 
time period for exampling the results were in Mar, 
April, and May 2015. The results from model 
simulation compared by time series and statistical 
method with the reanalysis rainfall (Global 
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Precipitation Climatology Project Version 2.3) [6-
8]. 
 
2. PRELIMINARIES 
 
2.1 Definition and Theorem of Lyapunov 
function  
 
Definition 1. A solution 𝒙𝒙(𝒕𝒕)  is asymptotically 
stable if it is stable and there is a  𝝆𝝆 > 𝟎𝟎 such that if 
‖𝒙𝒙𝟎𝟎 − 𝒙𝒙𝟎𝟎‖ < 𝝆𝝆 then 𝐥𝐥𝐥𝐥𝐥𝐥

𝒕𝒕→𝟎𝟎
‖𝒙𝒙𝟎𝟎 − 𝒙𝒙𝟎𝟎‖=0. 

 
Theorem 1. If a Lyapunov function 𝑽𝑽(𝒕𝒕,𝒙𝒙) exists 
satisfying: 
 
1 𝑽𝑽(𝒕𝒕,𝒙𝒙) is positive definite, 
2 𝑽𝑽(𝒕𝒕,𝒙𝒙) admits an infinitesimal upper bound, 
3 𝑽𝑽(𝒕𝒕,𝒙𝒙) is negative definite 
 
Then the solution 𝒙𝒙(𝒕𝒕) is asymptotically stable. 
 
2.2 Decaying average bias correction method 
 
The operational environment requires that the 
ensemble postprocessing algorithms be relatively 
applicable and flexible for implementation. The 
decaying averaging method applies an adaptive 
algorithm, and its application includes two steps. 
The first step is to estimate the first-moment bias 
with respect to the analysis filed, which is called the 
decaying averaging mean error. The second step is 
to remove the error from the ensemble forecasts. 
Both the bias assessment step and the bias-
correction step are carried out separately at each 
forecast lead time, on each individual grid point and 
for each initial cycle [9]. 
 
2.2.1 Bias estimate 
 
The bias estimation is used as a formula form by [9]. 
It may be written as  
 
 𝒃𝒃(𝒕𝒕) = 𝒇𝒇(𝒕𝒕) − 𝒐𝒐(𝒕𝒕),……...……………………(1) 
 
where 𝒃𝒃(𝒕𝒕) is a bias for each lead-time 𝒕𝒕. 𝒇𝒇(𝒕𝒕) is 
defined as the rainfall forecast data from the model. 
𝒐𝒐(𝒕𝒕)  is defined as the observation data from 
reanalysis data. 
 
2.2.2 Decaying average 
 
The Decaying average is used as a formula form by 
[9]. It may be written as 
 
𝑩𝑩(𝒕𝒕) = (𝟏𝟏 − 𝒘𝒘)∑ 𝑩𝑩(𝒕𝒕 − 𝒏𝒏) +𝒏𝒏

𝒊𝒊=𝟏𝟏
𝒘𝒘𝒃𝒃(𝒕𝒕),…...…(2) 
 
where 𝑩𝑩(𝒕𝒕) will be updated by considering the prior 
period bias 𝑩𝑩(𝒕𝒕 − 𝒏𝒏)  and current bias 𝒃𝒃(𝒕𝒕)  by 

using the decaying average with weight coefficient 
𝒘𝒘, 𝒏𝒏 is defined as the number of years of 𝒊𝒊 pairs of 
observation and forecast values. 
 
2.2.3 Bias Correction 

 
Bias correction is used as a formula form by [9]. It 
may be written as  
 
𝑭𝑭(𝒕𝒕) = 𝒇𝒇(𝒕𝒕) −𝑩𝑩(𝒕𝒕)……………………………(3) 
 
where 𝑭𝑭(𝒕𝒕)  is defined as new bias correction 
simulation, 𝒇𝒇(𝒕𝒕)  is defined as current simulation, 
𝑩𝑩(𝒕𝒕) is defined as the decaying average from eq. 2 
 

3. DEVELOP DECAYING AVERAGE BIAS 
CORRECTION METHOD BY LYAPUNOV 
FUNCTION 

 
Theorem 2. Give weight coefficient 𝟎𝟎 < 𝒂𝒂 < 𝟏𝟏 
and 𝟎𝟎 < 𝒘𝒘 < 𝟏𝟏 . Then, the decaying average 
equation (2) is asymptotically stable for any time 
delay 𝑩𝑩(𝒕𝒕 − 𝟏𝟏)  satisfying 𝑩𝑩(𝒕𝒕 − 𝟏𝟏) ∈ 𝑹𝑹  and 
𝒃𝒃(𝒕𝒕) ∈ 𝑹𝑹, if the following conditions 
 

𝟐𝟐𝒂𝒂[𝟏𝟏 − 𝒘𝒘]𝑩𝑩(𝒕𝒕 − 𝟏𝟏)𝒘𝒘𝒃𝒃(𝒕𝒕) − 𝒂𝒂𝑩𝑩(𝒕𝒕 − 𝟏𝟏) ≤
𝟎𝟎…..(4) 

 
Proof. Consider the Lyapunov function 
 
   𝑽𝑽�𝑩𝑩(𝒕𝒕 − 𝟏𝟏)� = 𝒂𝒂𝑩𝑩𝟐𝟐(𝒕𝒕 − 𝟏𝟏), 
∆ 𝑽𝑽�𝑩𝑩(𝒕𝒕 − 𝟏𝟏)�   = 𝑽𝑽𝑩𝑩(𝒕𝒕) − 𝑽𝑽𝑩𝑩(𝒕𝒕 − 𝟏𝟏), 
 
        = 𝒂𝒂[𝑩𝑩(𝒕𝒕 − 𝟏𝟏) −𝒘𝒘𝑩𝑩(𝒕𝒕 − 𝟏𝟏) +
                                   𝒘𝒘𝒃𝒃(𝒕𝒕)]𝟐𝟐 − 𝒂𝒂𝑩𝑩𝟐𝟐(𝒕𝒕 − 𝟏𝟏), 
 
  = 𝒂𝒂[(𝟏𝟏 − 𝒘𝒘)𝟐𝟐𝑩𝑩𝟐𝟐(𝒕𝒕 − 𝟏𝟏) +
                                   𝟐𝟐(𝟏𝟏 − 𝒘𝒘)𝑩𝑩(𝒕𝒕 − 𝟏𝟏)𝒘𝒘𝒃𝒃(𝒕𝒕) +
                                   𝒘𝒘𝟐𝟐𝒃𝒃𝟐𝟐] − 𝒂𝒂𝑩𝑩𝟐𝟐(𝒕𝒕 − 𝟏𝟏), 
 
  = 𝒂𝒂(𝟏𝟏 − 𝒘𝒘)𝟐𝟐𝑩𝑩𝟐𝟐(𝒕𝒕 − 𝟏𝟏) +
                                     𝟐𝟐(𝟏𝟏 − 𝒘𝒘)𝑩𝑩(𝒕𝒕 − 𝟏𝟏)𝒘𝒘𝒃𝒃(𝒕𝒕) +
                                     𝒂𝒂𝒘𝒘𝟐𝟐𝒃𝒃𝟐𝟐 − 𝒂𝒂𝑩𝑩𝟐𝟐(𝒕𝒕 −
𝟏𝟏) ……..(5) 
 
In this study, we neglect term > 𝟎𝟎 in equation 3 that 
include term 𝒂𝒂(𝟏𝟏 − 𝒘𝒘)𝟐𝟐𝑩𝑩𝟐𝟐(𝒕𝒕 − 𝟏𝟏) > 𝟎𝟎  and 
𝒂𝒂𝒘𝒘𝟐𝟐𝒃𝒃𝟐𝟐 > 𝟎𝟎. So, From Definition 1 and Theorem 1 
can conclude 𝟐𝟐(𝟏𝟏 − 𝒘𝒘)𝑩𝑩(𝒕𝒕 − 𝟏𝟏)𝒘𝒘𝒃𝒃(𝒕𝒕) −
𝒂𝒂𝑩𝑩𝟐𝟐(𝒕𝒕 − 𝟏𝟏) ≤ 𝟎𝟎  condition of asymptotically 
stable. Then we have a new 𝒘𝒘𝒃𝒃(𝒕𝒕)  that may be 
written as 
 
𝒘𝒘𝒃𝒃(𝒕𝒕) = 𝑩𝑩(𝒕𝒕 − 𝟏𝟏) 𝟐𝟐⁄ +
𝒘𝒘𝟐𝟐𝒃𝒃(𝒕𝒕),………....…….(6) 
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Substituting eq 6 into eq 2. So, the new decaying 
average has used a formula from Theorem 2.  It may 
be written 
 

𝑩𝑩(𝒕𝒕) = (𝟎𝟎.𝟓𝟓 −𝒘𝒘)∑ 𝑩𝑩(𝒕𝒕 − 𝒏𝒏) +𝒏𝒏
𝒊𝒊=𝟏𝟏

𝒘𝒘𝟐𝟐𝒃𝒃(𝒕𝒕).......(7)  
 
where 𝑩𝑩(𝒕𝒕) will be updated by considering the prior 
period bias  𝑩𝑩(𝒕𝒕 − 𝒏𝒏)  and current bias 𝒃𝒃(𝒕𝒕)  by 
using the decaying average with weight coefficient 
𝒘𝒘 and 𝒂𝒂, 𝒏𝒏 is defined as the number of years of 𝒊𝒊 
pairs of observation and forecast values. 
 
Theorem 3. Give weight coefficient 𝟎𝟎 < 𝒂𝒂 <
𝟏𝟏, 𝟎𝟎 < 𝒄𝒄 < 𝟏𝟏 and 𝟎𝟎 < 𝒘𝒘 < 𝟏𝟏. Then, the decaying 
average equation (2) is asymptotically stable for any 
time delay 𝑩𝑩(𝒕𝒕 − 𝟏𝟏)  satisfying 𝑩𝑩(𝒕𝒕 − 𝟏𝟏) ∈ 𝑹𝑹  and 
𝒃𝒃(𝒕𝒕) ∈ 𝑹𝑹, if the following conditions 
 
𝟐𝟐𝒂𝒂[𝟏𝟏 − 𝒘𝒘]𝑩𝑩(𝒕𝒕 − 𝟏𝟏)𝒘𝒘𝒃𝒃(𝒕𝒕) − (𝒂𝒂 + 𝒄𝒄)𝑩𝑩(𝒕𝒕 − 𝟏𝟏)

≤ 𝟎𝟎 
………………………………………….………(8) 
 
Proof. Consider the Lyapunov function 

  
    𝑽𝑽�𝑩𝑩(𝒕𝒕 − 𝟏𝟏)� = 𝒂𝒂𝑩𝑩𝟐𝟐(𝒕𝒕 − 𝟏𝟏), 
∆ 𝑽𝑽�𝑩𝑩(𝒕𝒕 − 𝟏𝟏)� = 𝑽𝑽𝑩𝑩(𝒕𝒕) − 𝑽𝑽𝑩𝑩(𝒕𝒕 − 𝟏𝟏),  
 
  = 𝒂𝒂[𝑩𝑩(𝒕𝒕 − 𝟏𝟏) −𝒘𝒘𝑩𝑩(𝒕𝒕 − 𝟏𝟏) +
                                      𝒘𝒘𝒃𝒃(𝒕𝒕)]𝟐𝟐 − 𝒂𝒂𝑩𝑩𝟐𝟐(𝒕𝒕 − 𝟏𝟏), 
   
  = 𝒂𝒂[(𝟏𝟏 − 𝒘𝒘)𝟐𝟐𝑩𝑩𝟐𝟐(𝒕𝒕 − 𝟏𝟏)  +
                                     𝟐𝟐(𝟏𝟏 − 𝒘𝒘)𝑩𝑩(𝒕𝒕 − 𝟏𝟏)𝒘𝒘𝒃𝒃(𝒕𝒕) +
                                     𝒘𝒘𝟐𝟐𝒃𝒃𝟐𝟐] − 𝒂𝒂𝑩𝑩𝟐𝟐(𝒕𝒕 − 𝟏𝟏) −
                                     𝒄𝒄𝑩𝑩(𝒕𝒕 − 𝟏𝟏), 

 
  = 𝒂𝒂(𝟏𝟏 − 𝒘𝒘)𝟐𝟐𝑩𝑩𝟐𝟐(𝒕𝒕 − 𝟏𝟏) +
                                     𝟐𝟐(𝟏𝟏 − 𝒘𝒘)𝑩𝑩(𝒕𝒕 − 𝟏𝟏)𝒘𝒘𝒃𝒃(𝒕𝒕) +
                                     𝒂𝒂𝒘𝒘𝟐𝟐𝒃𝒃𝟐𝟐 − 𝒂𝒂𝑩𝑩𝟐𝟐(𝒕𝒕 − 𝟏𝟏)  −
                                     𝒄𝒄𝑩𝑩(𝒕𝒕 − 𝟏𝟏) …………………(9) 
 
In this study, we neglect term > 𝟎𝟎 in equation 3 that 
include term 𝒂𝒂(𝟏𝟏 − 𝒘𝒘)𝟐𝟐𝑩𝑩𝟐𝟐(𝒕𝒕 − 𝟏𝟏) > 𝟎𝟎  and 
𝒂𝒂𝒘𝒘𝟐𝟐𝒃𝒃𝟐𝟐 > 𝟎𝟎. From Definition 1 and Theorem 1 can 
conclud 𝟐𝟐(𝟏𝟏 −𝒘𝒘)𝑩𝑩(𝒕𝒕 − 𝟏𝟏)𝒘𝒘𝒃𝒃(𝒕𝒕) − 𝒂𝒂𝑩𝑩𝟐𝟐(𝒕𝒕 −
𝟏𝟏) − 𝒄𝒄𝑩𝑩(𝒕𝒕 − 𝟏𝟏) ≤ 𝟎𝟎 condition of asymptotically 
stable. Then we have a new 𝒘𝒘𝒃𝒃(𝒕𝒕)  that may be 
written as 
 
𝒘𝒘𝒃𝒃(𝒕𝒕) = 𝟏𝟏

𝟐𝟐
(𝑩𝑩(𝒕𝒕 − 𝟏𝟏) + 𝒄𝒄

𝒂𝒂
) +

𝒘𝒘𝟐𝟐𝒃𝒃(𝒕𝒕) …………(10) 
 
Substituting eq 10 into eq 2. So, the new decaying 
average is used as a formula from Theorem 3. It 
may be written 
where 𝑩𝑩(𝒕𝒕) will be updated by considering the prior 
period bias 𝑩𝑩(𝒕𝒕 − 𝒏𝒏) and current bias 𝒃𝒃(𝒕𝒕) by 

𝑩𝑩(𝒕𝒕) = (𝟎𝟎.𝟓𝟓 −𝒘𝒘)�𝑩𝑩(𝒕𝒕 − 𝒏𝒏) −
𝒄𝒄
𝟐𝟐𝒂𝒂

+ 𝒘𝒘𝟐𝟐𝒃𝒃(𝒕𝒕).
𝒏𝒏

𝒊𝒊=𝟏𝟏

 

………………………………………………...(11) 
 
using the decaying average with weight coefficient 
𝒘𝒘, 𝒂𝒂, and 𝒄𝒄, 𝒏𝒏 is defined as the number of years of 
𝒊𝒊 pairs of observation and forecast values. 
 
4. NUMERICAL RESULTS 
 

In this study, we used the Lyapunov function 
to develop decaying average bias correction. The 
results from the model were used in the bias 
correction method with Theorem 2 and Theorem 3 
from the Institute of Atmospheric Physics 
Atmospheric General Circulation (IAP-AGCM) 
model. The IAP-AGCM model was developed from 
the Institute of Atmospheric Physics Chinese 
Academy of Science [10] to forecast rainfall over 
Thailand. In observation data, the global rainfall 
data was used in this study that was Global 
Precipitation Climatology Project Version 2.3 
(GPCP) data [6-8]. The observation data was 
developed from the Japan Aerospace Exploration 
Agency (JAXA) from Japan and the National 
Aeronautics and Space Administration (NASA) 
from the United States. The prediction period was 
estimated in March, April, and May from 2000-
2015. This study, for example, simulating was used 
120 grids covering Indochina Peninsular area in 
March, April and May 2015. 

The result from Fig. 1, the comparison rainfall 
value in March 2015 between results from average 
members model simulation (orange line) and GPCP 
observation data (black line). The result from the 
standalone model was overestimated more than 
observation data. The bias correction from Theorem 
2 (Fig. 2) and Theorem 3 (Fig. 3) are shown a good 
trend rainfall simulation more than standalone 
model simulation. The bias correction decreased 
rainfall to close the observation data. For example, 
over grid number 15, grid number 25 and grid 
number 33, the rainfall value of bias correction 
(Theorem 2 (Fig. 2) and Theorem 3 (Fig. 3)) 
decrease from around 6 mm/day to around 4 
mm/day. Furthermore, over grid number 46 to grid 
number 54. The rainfall of bias correction 
(Theorem2 and Theorem3) approached observation 
data than standalone model simulation. 

In Fig. 4, the comparison rainfall value in 
April 2015 between results from average members 
model simulation (orange line) and GPCP 
observation data (black line). The result from 
standalone model was overestimated more than 
observation data, especially at grid number 43 
(around 9 mm/day), grid number 55 (around 8 
mm/day), grid number 65 (around 9 mm/day), grid 
number 75 (around 11 mm/day), grid number 100 
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(around 10 mm/day). The bias correction (Theorem 
2 (Fig. 5) and Theorem 3 (Figure 6)) decreased 
rainfall to close the observation data over grid 
number 43 (around 7 mm/day), grid number 
55(around 6 mm/day), grid number 65 (around 7 
mm/day), grid number 75 (around 7 mm/day), grid 
number 100 (around 7 mm/day) that result from 
bias correction approached observation data than 
standalone model simulation. 

In case May 2015, Figure 7, The result from 
model was overestimated more than observation 
data, especially at grid number 43 (around 14 
mm/day), grid number 55 (around 12 mm/day), grid 
number 65 (around 13 mm/day), grid number 75 
(around 14 mm/day), grid number 84 (around 16 
mm/day), grid number 95 (around 16 mm/day), grid 
number 108 (around 13 mm/day) and grid number 
117 (around 13 mm/day). The bias correction 

(Theorem 2 (Fig. 8) and Theorem 3 (Fig. 9)) were 
shown good performance than standalone model 
simulation. Obviously, at grid number 43 (around 
10 mm/day), grid number 55 (around 11 mm/day), 
grid number 65 (around 11 mm/day), grid number 
75 (around 12 mm/day), grid number 84 (around 13 
mm/day), grid number 95 (around 13 mm/day), grid 
number 112 (around 10 mm/day) and grid number 
117 (around 9 mm/day). From the results, we can 
conclude the results from bias correction (Theorem 
2 and Theorem 3) that improved the results from the 
model and can approve the results closely than 
model simulation. However, that was confirm the 
bias correction to show better results than model 
simulation. So, in the next step, the statistical 
analysis confirm the results from bias correction 
that shown good results than model simulation.
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Fig. 1 The comparison rainfall value on March 2015 between results from average members model 

simulation (orange line) and GPCP observation data (black line) 
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Fig. 2 The comparison rainfall value on March 2015 between results from average members bias correction 

Theorem 2 simulation (orange line) and GPCP observation data (black line) 
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Fig. 3 The comparison rainfall value on March 2015 between results from average members bias correction 

Theorem 3 simulation (orange line) and GPCP observation data (black line) 
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Fig. 4 The comparison rainfall value on April 2015 between results from average members model simulation 

(orange line) and GPCP observation data (black line) 
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Fig. 5 The comparison rainfall value on April 2015 between results from average members bias correction 

Theorem 2 simulation (orange line) and GPCP observation data (black line) 
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Fig. 6 The comparison rainfall value on April 2015 between results from average members bias correction 

Theorem 3 simulation (orange line) and GPCP observation data (black line) 
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Fig. 7 The comparison rainfall value on May 2015 between results from average members model simulation 

(orange line) and GPCP observation data (black line) 
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Fig. 8 The comparison rainfall value on May 2015 between results from average members bias correction 

Theorem 2 simulation (orange line) and GPCP observation data (black line) 
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Fig. 9 The comparison rainfall value on May 2015 between results from average members bias correction 

Theorem 3 simulation (orange line) and GPCP observation data (black line) 

In a statistical analysis, as shown in Table 1, the 
average rainfall from bias correction (Theorem 2 
and Theorem 3) was shown value close to model 
simulation. For example, in March 2015, the 
observation data recorded rainfall at 3.28 mm/day. 
The bias correction of Theorem 2 and Theorem 3 
were recorded at 2.73 mm/day and 2.72 mm/day, 
respectively. On the other hand, the standalone 
model simulation recorded at 3.28 mm/day. For 
MAE and RMSE cases, the results from bias 
correction were shown more accuracy than model 
simulation. For example, in May 2015 case, the bias 

correction decreased MAE of the model from 3.79 
to 2.71 (decreased 1.08) by Theorem 2 and from 
3.79 to 2.58 (decreased 1.21). In the case of RMSE, 
the bias correction decreases RMSE of the model 
from 4.23 to 2.87 (decrease 1.36) by Theorem 2 and 
from 4.23 to 2.84 (decrease 1.39) by Theorem 3. 
The results from the time sires and statistical 
analysis were guaranteed the bias correction that 
can improve the results of the model and increase 
more accuracy than the results from the model when 
compared with reanalysis observation data.

 
Table 1. Statistical analysis between observation, model, Theorem 2, and Theorem 3. 
 

  Average Rainfall 
(Obs. = 1.07 mm/day) 

Bias 
(Obs.-Model) MAE RMSE 

March 
2015 

Model 3.28 mm/day -2.21 2.33 2.23 
Theorem 2 2.73 mm/day -1.66 1.76 1.24 
Theorem 3 2.72 mm/day -1.65 1.75 1.24 

  Average Rainfall 
(Obs. = 2.84 mm/day) 

Bias 
(Obs.-Model) MAE RMSE 

April 
2015 

Model 4.94 mm/day -2.10 2.90 3.20 
Theorem 2 4.11 mm/day -1.27 1.99 2.20 
Theorem 3 4.08 mm/day -1.25 1.97 2.17 

  Average Rainfall 
(Obs. = 4.79 mm/day) 

Bias 
(Obs.-Model) MAE RMSE 

May 
2015 

Model 7.43 mm/day -2.64 3.79 4.23 
Theorem 2 6.59 mm/day  -1.80 2.71 2.87 
Theorem 3 6.35 mm/day -1.56 2.58 2.84 

5. CONCLUSION 
 

In conclusion, this study developed the 
Lyapunov theorem to improve decaying average 
bias correction. The results from the standalone 
model were used in the bias correction method with 
Theorem 2 and Theorem 3 from IAP-AGCM. The 
observation data were used to compare with model 
and bias correction results from GPCP data. From 
the results, the times series results were shown the 
results from bias correction (Theorem 2 and 

Theorem 3) that improved the results from the 
model and can approve the results closely than 
standalone model simulation. Such as on March 
2015, over grid number 15, grid number 25 and grid 
number 33, the rainfall value of bias correction 
(Theorem 2 (Fig. 2) and Theorem 3 (Fig. 3)) 
decrease from around 6 mm/day to around 4 
mm/day. In statistical analysis, the bias correction 
(Theorem 2 and Theorem 3) were shown the highest 
accuracy (MAE and RMSE) than only model 
simulation. For example, in May 2015 case, the bias 
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correction decreased MAE of the model from 3.79 
to 2.71 (decreased 1.08) by Theorem 2 and from 
3.79 to 2.58 (decreased1.21) by Theorem 3. In the 
case of RMSE, the bias correction decreases RMSE 
of the model from 4.23 to 2.87 (decrease 1.36) by 
Theorem 2 and from 4.23 to 2.84 (decrease 1.39) by 
Theorem 3. However, the results from the time sires 
and statistical analysis were guaranteed the bias 
correction Lyapunov theorem that can improve the 
results of the model and increase more accuracy 
than the results from the standalone model when 
compared with reanalysis observation data. 
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