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ABSTRACT: Hydraulic Water Retaining Structures (HWRS), such as dams, weirs and regulators are important 
projects and necessary for water management. Seepage analysis results under HWRS substantially influences the 
design of HWRS. One of the biggest challenges in design of HWRS is to determine the accurate seepage 
characteristics with complex flow conditions, and simultaneously to find the optimum design considering safety 
and cost. Therefore, this study concentrates on developing a linked simulation-optimization (S-O) model for 
complex flow conditions. This is achieved via linking the numerical seepage simulation (Geo-Studio/SEEPW) 
with the Genetic Algorithm (GA) evolutionary optimization solver. Since, a direct linking of numerical model 
with optimization model is computationally expensive and time consuming, well-trained Support vector machine 
(SVM) surrogate models are linked to the optimization model instead of a numerical model within the S-O model. 
The seepage characteristics of optimum design obtained by S-O are evaluated for accuracy by comparing these 
with the numerical seepage modelling (SEEPW) solutions. The comparison, in general, shows good agreements. 
Accordingly, the S-O methodology is potentially applicable for providing safe, efficient and economical design 
of HWRS constructed on a complex seepage flow domain. 
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1. INTRODUCTION 
 

Construction of Hydraulic Water Retaining 
Structures (HWRS) is the strategic aim for most 
communities around the world in order to build a strong 
water management system. Seepage analysis related to 
HWRS is a critical step   of HWRS design [1]. In 
addition to the direct impacts of hydrostatic water 
pressures on   the structural system of the HWRS, the 
seepage design parameters such as uplift pressures, and 
exit gradient are the other fundamental factors needed 
to be incorporated in HWRS design. 

The earliest theories and methods, such as Bligh’s 
creep theory, Lane’s weighted creep theory, Flow-net 
method, fragment method and Khosla’s theory  [1] 
utilized to analyse seepage related to HWRS involve 
many simplifications and are based on many empirical 
assumptions. These methods  are applicable only for 
simple, symmetrical cases and quite general soil 
conditions (homogeneous and isotropic), which are 
rarely found in the real field [2]. Moreover, the 
solutions of theses method are approximation solutions, 
and these generally display noticeable error compared 
with experimental observations and the numerical 
solutions [3]. 

In contrast, the numerical seepage analysis methods 
such as the finite element method (FEM) provides 
accurate solutions for a wide range of the seepage 
problems encountered in the real field [4, 5].  However, 
these solutions might not be useful, as the resulting 
designs may not satisfy the safety requirements and also 
would not optimize the construction costs. Therefore, 
utilizing an optimization technique could provide a 

reliable and optimum solution, especially when 
accurate numerical seepage simulation responses are 
integrated in the optimization model. Accordingly, 
based on linked simulation-optimization S-O 
methodology [6-8], an ideal HWRS design could be 
achieved. This methodology involves developing a 
constrained optimization model using Genetic 
Algorithm (GA) integrating all design safety factors 
regarding the wide range of applied forces, i. e., 
hydrostatic pressure, uplift pressure, exit gradient, and 
considering, the minimum cost as the objective function 
of the optimization model. 

The developed optimization model must be linked 
with the numerical seepage analysis model to 
concurrently evaluate the candidate designs (solutions) 
of the HWRS. However, the direct linking of 
optimization model with the numerical seepage model 
is a computationally demanding and time consuming 
task. This is because the GA calls the simulation model 
numerous times to evaluate the objective function and 
the constraints, which might need long computation 
time even with high speed processors.  Alternatively, 
machine learning technique is used to build a well-
trained model (surrogate model), which could be 
efficiently used instead of the numerical model. A well 
trained surrogate model can expeditiously and 
accurately predict the responses of the numerical model 
for complex problems within the linked S-O model. 

Many machine learning techniques could be used in 
building the surrogate models, such as artificial neural 
network (ANN), fuzzy logic (FL), multivariate adaptive 
regression splines (MARS), genetic programming (GP) 
and support vector machine (SVM).  The SVM is 
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selected for this study, because SVM is considered a 
powerful deep-learning tool. SVM is utilized in the 
classification, function approximation and prediction 
by which a nonlinear and complex engineering 
problems can be efficiently modeled. Moreover, in 
addition to the efficiency and predictive accuracy, SVM 
has a generalization ability to accurately predict the 
responses even for data out of the training range. 
Additionally, SVM can overcome the noisy data in the 
training phase by integrating the most governing 
support vectors (training data). Hence, SVM has the  
ability to overcome the over-training phenomena  [9] . 

Recently, SVM has been utilized to model complex 
civil engineering problems to provide an extensive 
understanding  of the variables  involved in  the model 
[9-16].In the majority of the conducted researches, 
SVM is utilized to predict specific responses depending 
on the input variables or to simulate performance of a 
particular engineering system with special conditions. 
For example, in hydraulic structure design, SVM has 
been used to predict the forecasting of the tangential  
shift  of a concrete dam[14], and  to predict future dam 
responses with environmental variables [17].  
Nonetheless, SVM has been rarely utilized as a 
surrogate model within the optimization model in the 
hydraulic structure design problems. Application of 
other machine learning techniques for solving 
optimization problems related to hydraulic structures 
design incorporating complex soil properties has been 
very limited as well. 

This paper concentrates on developing a linked S-O 
model which is based on two different models. The first 
model is the constraint optimization model using GA. 
The objective function is the minimum construction 
cost of HWRS and the constraints reflect the HWRS 
design requirements. The second model is the surrogate 
model based on the SVM. The surrogate model is 
extensively trained using numerically simulated data 
generated by a numerical seepage modeling code 

(Geo_Studio2012/ SEEPW) [18]. Additionally, the 
seepage design parameters obtained as the solution of 
the optimal design by the S-O model are evaluated 
using numerical modelling to investigate the prediction 
accuracy of the SVM within an S-O model. 

 

2. NUMERICAL MODEL SOLUTION AND 

TRAINING DATA GENERATION 
 

In contrast to an experimental study, the numerical 
model could provide accurate and quick solutions even 
for complex problems, especially when high speed 
processors are used. The optimization model 
incorporates the numerical responses, either obtained 
directly using the numerical model code or 
approximately by the surrogate models. As it is difficult 
and computationally expensive to directly link the 
optimization model with the numerical model, 
surrogate models linked to the optimization model need 
to be developed. 

The first step in designing the surrogate model is to 
propose a conceptual model, as shown in Fig. (1). Based 
on the conceptual model, numerous sets of input data 
could be generated, then the numerical model is solved 
for each set to find the output data. The SVM models 
could be trained based on these data sets. The 
conceptual model comprises forty two input design 
variables, which are randomly varied within assumed 
ranges shown in Table (1). In this study, the proposed 
design variables are the dimensions and the inclination 
of the ten sheet piles (S1-S10) in addition to the spacing 
between them. The symbols   for   the sheet pile depths 
are (d1, d2 … d10), for the angles are (β1, β2… β 10) and 
for the width between the sheet piles (b1, b2…. b10). The 
subsoil foundation consists of three layers (DL1, DL2, 
DL3) and their hydraulic conductivities are (kx1, kx2, 
kx2) with the anisotropy ratio (Ky/Kx)1, (Ky/Kx)2, 
(Ky/Kx)3 respectively. The total upstream water head 
(H) is also included in the input design variable. 

 

Fig. 1. Conceptual numerical model 
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Table 1 Input data description 
Input 

variable 

Unite Min Max Avg. Std. 

b1, b2,… b11 m 1 120 60.37 34.26 

d1, d2, … d10 m 0 60 29.98 17.37 

β1, β 2,… β 10 deg. 30 150 90.4 34.11 

LD1, 

LD2,LD3 

m 5 100 53.67 27.01 

kx1, kx2, kx2 /day3 m 0.01 20 10.04 5.78 

Anisotropy 

ratio(Ky/Kx) 

- 0.1 1.5 0.80 0.40 

 
Each input data set is used to solve the numerical model 
to obtain the output data sets. Some of the input design 
variables can be considered as the decision variables in 
the optimization model to find the best variable values, 
and the ideal combinations of these variables which 
provide the optimum solution for the HWRS. 

 
All the input sets (1700 sets) are randomly generated 

using Latin hypercube sampling method (LHS). LHS 
provides a uniform periodic random data by which 
robust training  could be achieved in the  machine 
learning process [19]. Each set of input data represents 
one scenario of the HWRS design. The numerical 
modeling code is utilized to find the resulting seepage 
characteristics for each scenario. The seepage 
characteristics include the uplift pressure in front (PEi) 
and behind (PCi) each single sheet pile in addition to the 
exit gradient at the end of the floor of hydraulic 
structure (toe). The seepage characteristics resulting 
from the numerical seepage modeling represent the 
output data, which could be utilized with the input data 
to train the SVM models. 

 

3. SUPPORT VECTOR MACHINE 
 

Support vector machine is a deep learning technique 
used for classification and regression problems. 
Recently, SVM has been implemented in wide 
academic applications and engineering problems 
because the SVM has a good generalization ability, and 
is less impacted by overfitting phenomena. Generally, 
the SVM algorithm selects from the training data   the 
best hyperplane (vector) which provides an efficient 
classification. The SVM algorithm maximizes the 
distance between the center of the hyperplane and its 
boundary (margin) to attain the best SVM model. 
Therefore, the ideal SVM must have wider margins, 
then the SVM model could provide accurate prediction 
and high generalization ability [20, 21]. 

The SVM technique is applied to build the models 
that could accurately predict the numerical responses. 
Matlab programing language is utilized to develop the 
SVM models, because Matlab is a versatile tool and 
provides many options that can be modified to build 
perfect SVM models. 1700 sets of the simulated data 
obtained by solving  the numerical code are used to train 
and build the SVM models. Twenty one models are 
built to determine the uplift pressure in front and behind 
each sheet pile, and the exit gradient value near the end 

of the HWRS. The SVM is trained on the simulated data 
where 90% of the data is utilized for training and 10% 
are used for testing. The coefficient of determination 
(RSQ) and mean square error (MSE) for the training 
and testing phases are listed in the Table (2).   

The parameter for each SVM model are carefully 
selected after several iterations of trial and errors until 
best RSQ and smaller MSE are achieved. It could be 
concluded that the most influencing parameter on SVM 
performance is the kernel function type, and the 
constraint box. The kernel function used in this study is 
the polynomial kernel with varied order, which provide 
precise prediction compared to the other kernels. 

 

Table 2   Developed SVM models attributes 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

4. OPTIMIZATION MODEL 
 

The constrained optimization model within the S-O 
model is formulated to find the best design of HWRS at 
a minimum cost. Because of the complexity of the 
optimization task, the GA is used in this study. GA 
evaluates the fitness value and the constraints based on 
the surrogate model responses. Additionally, GA is 
likely to provide a global optimum solution and has the 
ability to deal with a complex problem as it does not 
rely on differentiating the performance equations to find 
the optimum solution.  Instead GA is based on a natural 
selection principle [22, 23]. The GA is efficient in 
finding the global solution in such a problem, where the 
performance function is based on the surrogate model 
responses. In the S-O model, GA calls the surrogate 
models (SVM) huge number of times to evaluate the 
fitness value and the constraints for each candidate 
solution (individual) presented by GA until the 
optimum design is achieved. Matlab programing 
language is used to implement the optimization model. 
The GA parameters specified in this study are: 
Population Size 2000, Elite Count 10, Crossover 
Fraction 0.8, Function Tolerance 1e-6, Constraint 

Model 
RSQ 

TRAIN 

MSE 

TRAIN 

RSQ 

TEST 

MSE 

TEST 

Exit 

gradient 
0.95 0.1 0.91 0.17 

PC10 0.97 1.22 0.97 1.08 

PE10 0.96 4.57 0.97 3.64 

PC9 0.95 7.66 0.95 6.35 
PE9 0.99 1.32 0.99 0.96 

PC8 0.98 3.74 0.98 2.93 

PE8 0.99 0.82 0.99 0.97 
PC7 0.99 2.12 0.99 1.59 

PE7 0.98 5.25 0.99 0.77 

PC6 0.99 1.74 0.99 1.46 
PE6 0.99 1.08 0.99 0.65 

PC5 0.99 0.99 0.99 1.13 
PE5 0.99 0.63 0.99 0.54 

PC4 0.99 1.21 0.99 1.2 

PE4 0.99 0.77 0.99 0.74 
PC3 0.99 0.95 0.99 0.94 

PE3 0.99 0.94 0.99 0.93 

PC2 0.99 1.92 0.99 1.94 
PE2 0.99 1.11 0.99 1.13 

PC1 0.99 2.75 0.99 3.2 

PE1 0.99 3.2 0.99 2.8 
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Tolerance1e-3, and the rest of GA options are left to 
default Matlab options. 

The decision vector (X) involved in the optimization 
model represents the most important design variables of 
the proposed HWRS model (conceptual model). The X 
is modified many times by GA to find the minimum 
construction cost of the design, and simultaneously to 
provide safe design that satisfies all design 
requirements (constraints). 

The decision vector is listed , as shown below, where 
the design variables from x1 to x11 represent the width 
between sheet piles (b1, b2…b11), variables form x12 to 
x22 represent the depth of the sheet piles (d1, d1,…d10) 
the variables from x23 to x32 represent the inclination 
angle for the sheet piles ( β1, β2,… β 10). The 
optimization problem is formulated, as shown below: 

 

Find   𝑋 =  

{
 
 
 
 

 
 
 
 
𝑥1 
𝑥2
.
.
.
.
.
.
𝑥32}

 
 
 
 

 
 
 
 

=

{
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
b1
b2
.
.
.
b11
d1
d2
.
.
.

 d10
β1
β2
.
.
.
β10}

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

 

 
Which minimizes the objective function shown in  
Eq.(1) 

 

Minimize: 

𝑓(𝑋) = 𝑐𝑓∑ 𝑇𝑖  𝑥𝑖

11

𝑥=1

+ 𝑐𝑐 𝑡𝑐 ∑   𝑥𝑖

21

𝑥=12

 

 
(1) 
 

 
 
 

Where: Ti represents the average thickness  of the 

floor between two sheet piles,  𝑐 𝑓 = The cost of 

constructing the body of the HWRS per cubic meter 

($500/m3), 𝑐𝑐 = The construction cost of the sheet pile 

per cubic meter ($1000/m3),  𝑡𝑐 =the thickness of the 
sheet pile, which is constant = 0.5m . 

The decision vector is subjected to the following 
constraints: 

Flotation constrains: The uplift pressure influence 
on the HWRS  at the specific location must be less than 
the counterbalanced weight of the HWRS cross section 
at that location [24, 25]. Therefore, the value PC and PE 
for each sheet pile must be sufficiently counterbalanced 
by the floor thickness at these points. The safety factor 
assumed is 1.3, as shown in Eq. (2). 

 

𝑡𝑖 ≥ 1.3 (
PEi or PCi 

Gc−1
)  , i = 1,2,3...20 (2) 

  
Where Gc is the specific gravity of the concrete 

(construction material). 

The exit gradient constrain: If the exit gradient is 
equal or more than the critical gradient, piping failure is 
likely. Therefore, it is  recommended that the exit 
gradient value must be at least 3 to 5 times less than 
critical gradient [26, 27] 

Usually, the shortest stream line or the closest point 
of HWRS toe is the most critical point at which the 
largest value of exit gradient could be seen. Therefore, 
this point selected at the toe of HWRS and near the soil 
surface. The safety factor of exit gradient is determined 
by Eq. (3) 

F. S =  
ic
ie

 (3) 

Where ic is critical exit gradient and given by Eq. (4) 
 

  ic =
γsub 

γw
 (4) 

Where γsubis the submerged soil density, γw  is the 
weight density of water. The soil properties are 
considered mixed grained sand, which has γsat =21.2 
kN/m3 and that results in icr=1.15 [28]. 

 

Other constraints: Many other constraints are also 
considered in the optimization model, such as sliding 
constraint and overturning constraint with safety factor 
more than 1.5. The preventing eccentric loading state 
constraints is incorporated also to ensure uniform 
distribution of the loads on the foundation surface. 
Hence, the resultant force, which is obtained by   
dividing the total momentum at the toe of HWRS  by 
the total vertical load, must be located within the second 
third of the total width of HWRS [1]. Furthermore, 
many logical constraints and bounds are specified in the 
optimization model to prevent illogical solutions or 
negative values of the decision variables. 

Additionally, it is interesting to note that the value PC 
and PE for each sheet pile, and ie values involved in the 
S-O model are determined based on the surrogate 
models responses. The surrogate models within the 
optimization model also represent the binding 
constraints, where the decision vector must satisfy the 
simulation constraints in addition to the design 
constraints. 

 

5. RESULTS AND DISCUSSION 
 

The developed methodology was applied to find the 
optimum design of HWRS by optimizing the design 
variables of the conceptual model based on the 
surrogate models responses. Ten different cases having 
different H values starting from 10 m to 100 m were 
solved by S-O model. The other parameters are left 
constant, such as the hydraulic conductivity of each 
layer is 5 m/day, the anisotropy ratio is 1 and the depth 
of each subsoil layer is 50 m for all cases.  For all 
implemented cases, the solution obtained by S-O model 
satisfy the design requirement and the safety factors, as 
shown in the Table (3). 
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Table 3 Optimum solutions safety factors for the 

implemented cases 
 

Total 

head(m) 

Exit 

gradient 

Eccentric 

distance 

Sliding  Overturning 

100 0.23 58.6 1.76 2.40 
90 0.21 55.88 1.77 2.56 
80 0.21 56.7 1.827 2.945 
70 0.23 42.82 1.805 2.448 
60 0.23 35.11 1.791 2.354 
50 0.23 28.89 1.781 2.40 
40 0.23 22.1 1.767 2.051 
30 0.23 24.67 1.902 3.434 
20 0.23 8.914 1.671 1.844 
10 0.23 10.13 1.99 3.585 

 
The optimum cost versus corresponding head value is 

shown in Fig. (2). The total construction cost logically 
increases with the augmentation of the upstream water 
head. However, the slope of the curve for head value 
less than 40 m is smaller than when the head value is 40 
m and more. For instance, the average construction cost 
for HWRS under  head values ranging between 40 m to 
10 m is 11065 $/m, for head values ranging between 50 
m to 70 m is 26749 $/m, and for head values ranging 
between 80 m to 100 m is 42418 $/m. That means, for 
example, the construction cost for a three HWRS 
having an upstream water head of 30 m is significantly 
cheaper than the construction cost of a single HWRS 
with an upstream water head of 90 m. This difference 
could be attributed to the dramatic increasing of the 
depth of the last sheet pile and the width of HWRS with 
large upstream water head value (see Fig. (3) & Fig. 
(4)). 

 

 
Note: The construction cost is per meter length of HWRS  
 

Fig.2. Optimum construction cost for different head 

value (H) 

 
Generally, the contribution of the variables b1 to b8 

and d1 to d8 on the safety of the HWRS is neglected, 
where the optimum values for these variables is almost 
zero, as shown in Fig. (3) and Fig. (4). Consequently, as 
the length of d1 to d8 reach their minimum value, their 
inclination angles become meaningless. Nonetheless, 
the inclination angle has a noticeable effect on reduction 
of uplift pressure, especially when β value is less than 
90 degrees. However, when β value is more than 90 
degree it has a significant effect in reduction of the exit 
gradient value especially for S10. 

 

 
Fig. 3. Optimum construction cost for different head 

values (H) 
 

 
Fig. 4. Optimum construction cost for different head 

values (H) 
 

However, the optimum solution obtained for each 
case is based more on increasing the HWRS width to 
reduce the uplift pressure, and less on the sheet pile 
lengths. This could be attributed to two reasons. First, 
the construction cost of the sheet piles is more 
expensive than the construction cost of the HWRS 
floor. Secondly, the uplift pressure value must be 
counterbalanced by the sufficient weight of the 
construction material of HWRS cross section. 
Accordingly, even if it is costly solution, it is necessary 
to provide a safe thickness against the uplift pressure.  
Furthermore, some design requirements significantly 
influence the design features. For example, to ensure the 
stability of HWRS against overturning condition, the 
GA increases the total width of HWRS to provide more 
stability against the overturning forces and the huge 
amount of the developed moments. Besides, preventing 
eccentric load state on the foundation of HWRS is 
another critical design requirement. Therefore, GA 
restricts the reaction loads resultant to be located within 
the second third of the total width. As a result, as shown 
in Fig. (5), the resultant distance (e) is located at the 
edge of the second third of the total width of HWRS 
(minimum allowable limit) to provide safe load 
distribution on the foundation of HWRS, and 
simultaneously to attain the minimum cost. Hence, the 
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optimum solutions satisfy all constraints and achieve 
cheapest HWRS construction cost. 

 
Fig.5.    Location of the resultant force for the 

optimum solutions versus different head values (H)  

 
On the other hand, because of the crucial impact of 

the exit gradient on the design of HWRS and only d10  
has a significant control in reduction of the exit gradient 
value, in all optimum solutions, the d10 values have a 
considerable length, as shown in Fig. (4). Additionally, 
the optimum sheet pile inclination angle of β10 is 150 
degrees toward downstream.   The increase of β10 value 
effectively decreases the exit gradient value, as the 
streamline length of seeping water significantly 
increases and in consequences the exit gradient value 
decreases. Moreover, another factor which might affect 

the exit gradient is b10 because increasing b10 reduces 
the uplift pressure and consequently decreases the exit 
gradient value. 

Mainly, the exit gradient value for all cases shown in 
Table (3) reaches the maximum allowable value to 
satisfy a minimum safety factor and efficient cost. 
Accordingly, the exit gradient safety factor plays a 
critical role in the selection of optimal decision variable 
values in the optimization process. 

Finally, an extensive evaluation was conducted for 
validating the S-O solutions. The seepage design 
variables (PEi, PCi, exit gradient) were evaluated by 
solving the optimum solutions using numerical 
modelling, then compared the seepage characteristic 
obtained by numerical solution with the same values 
obtained from the S-O model.  In general, the evaluation 
results showed that the maximum percentage of error 
between the S-O model and numerical solutions is not 
more than 10 (± 5) %, as shown in Fig (6) to Fig. (11). 
This figure demonstrates that the SVM generalization 
ability with unseen and extreme data is highly accepted. 
However, the error percentages for the predicted exit 
gradient values are larger than the predicted uplift 
pressure values. This could be attributed to the large 
number of the input variables integrated in the exit 
gradient surrogate model. Additionally, the relationship 
between input data and the predicted exit gradient value 
is more complex. Nonetheless, the exit gradient safety 
factors for the optimum solutions are still within the 
standard and safe limit (3-5). 

 

 
 

Fig. 6.  Evaluation the optimum design  uplift pressure in 

different locations H=100 
 

 
Fig. 7.  Evaluation the optimum design  uplift pressure in 

different locations H=80 
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Fig. 8.  Evaluation the optimum design  uplift pressure in 

different locations H=60 

 
 

Fig. 9.  Evaluation the optimum design  uplift pressure in 

different locations H=40 

 
Fig. 10.  Evaluation the optimum design  uplift pressure 

in different locations H=20 
 

 
Fig. 11.  Evaluation the optimum design  exit gradient 

value for different head values    
 

 
 

6. CONCLUSION 
 

The optimization based searching process is an 
expensive and computationally demanding task, 
especially when the optimization model is linked to 
a numerical simulation model to evaluate the 
fitness value and the constraints. Therefore, the 
linked S-O model based on SVM surrogate models 
was successfully and efficiently implemented to 
find the optimum design of HWRs. Many well 
trained SVM surrogate models imitating numerical 
seepage modelling responses were built to predict 
the seepage characteristics under HWRS. Based on 
the accurate responses of the surrogate models, GA 
evaluated the fitness value and the constraints. 
Therefore, a reliable and optimum design of HWRS 
was achieved. 

The seepage design variable values (PEi, PCi, 
exit gradient) obtained as optimum solutions were 
validated using numerical solutions. The validation 
process showed that the surrogate model 
predictions accurately matched the numerical 
solutions, even for unseen or extreme scenarios 
representing the optimum solutions. 

In general, the construction cost of HWRS 
dramatically increases with the upstream water 
head augmentation from 11065$/m for head values 
less than 40 m to 42418 $/m for head values around 
100 m.  The optimum and safe hydraulic design of 
HWRS must include a sufficient floor width (more 
than H value) and a sufficient length for the last 
sheet pile (not less than 0.5H), with inclination 
angle attaining up to 150 degrees. All the HWRS 
design requirements and safety factors are satisfied 
for all implemented cases. 

 
 Finally the methodology is potentially 

applicable to find the optimum design of HWRS at 
minimum cost for different scenarios, within the 
specified training data range. Future studies could 
be dedicated to explore the effect the soil properties 
on the optimum design of HWRS utilizing different 
machine learning techniques and optimization 
solvers which can attain more accurate and reliable 
design. 
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