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1. INTRODUCTION 

Many manmade islands have been built in Osaka Bay, such 

as Kansai International Airport, Port Island, and 

Yumeshima Island. In addition, the construction of new 

manmade islands is presently in the planning stage. 

Manmade islands are usually constructed for the long term 

because they are very large. During construction of 

manmade islands, they are usually divided into sections. 

The construction histories are different for each section, 

which means differential settlement of the manmade 

islands occurs. Therefore, the differential settlement must 

be predicted to manage the construction of manmade 

islands. 

Holocene clays more than 20 m in depth have accumulated 

in Osaka Bay under almost normally consolidated 

conditions. The differential settlement of manmade islands 

in Osaka Bay mainly depends on the consolidation behavior 

of the Holocene clay layer. The spatial distribution of 

consolidation properties such as the compression index and 

coefficient of permeability in the Holocene clay layer must 

be elucidated to accurately predict the differential 

settlement of manmade islands. However, it is difficult to 

estimate the spatial distribution of consolidation properties 

from a limited number of soil investigations. 

An artificial neural network is an information processing 

system that has been developed recently. This technique is 

applied to data mining. Data mining is the process of 

discovering new patterns from a large number of datasets. 

In other words, locations at which soil investigations were 

carried out and geotechnical information obtained from soil 

investigations can be chosen as datasets. The connection 

between the locations at soil investigations and 

geotechnical information can be given by applying an 

artificial neural network. The authors previously studied the 

spatial interpolation of soil properties by using an artificial 

neural network [1]-[3]. An artificial neural network was 

applied  to   estimate  the   soil   properties  at  an  arbitrary 

  

 
 

 

 

position in the ground. In other words, the spatial 

interpolation of soil properties was carried out by using an 

artificial neural network. 

In this study, the spatial distribution of consolidation 

properties, which are used to predict the differential 

settlement of manmade islands, was carried out by using an 

artificial neural network. In other words, an artificial neural 

network was applied to estimate the consolidation 

properties at arbitrary positions in the Holocene clay layer. 

The estimation accuracy of the consolidation properties 

was judged through various statistical indexes. The spatial 

distribution of consolidation properties in the Holocene 

clay layer was visualized. The availability of an artificial 

neural network for spatial interpolation of consolidation 

properties was examined based on the accuracy of the 

results. 

2. ARTIFICAIL NEURAL NETWORK 

An artificial neural network is an information processing 

system, in which the nerve cells (neurons) of the human 

brain are reproduced mathematically. Fig. 1 shows the 

architecture of the artificial neural network used in this 

study. This type of artificial neural network is called a back 

propagation neural network; it is the most popular neural 

network in use. The back propagation neural network 

consists of an input layer, one or more hidden layers, and 

the output layer. Each layer is connected by neurons. In this 

study, the consolidation properties at an arbitrary position 

in the ground were estimated. Then, the latitude, longitude, 

and altitude at a target position at which the consolidation 

properties were estimated were correlated to items of the 

input layer. The consolidation pressures obtained through 

oedometer tests were added to items of the input layer, if 

one-dimensional compression curves were estimated. 

Estimated soil properties were correlated to items of the 

output layer. 
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3. ANALYSIS 

3.1 Subject Area for Spatial Interpolation  

Large amounts of geotechnical information have been 

obtained from soil investigations of many construction 

projects in the Kansai area; this information has been 

collected into a geoinformatics database called GIbase [4]. 

Fig. 2(a) shows the locations of soil investigations included 

in GIbase. The red dots denote the locations at which soil 

investigations were carried out. Over 25,000 boring 

investigations in the Kansai area have been carried out, and 

the data are accumulated into GIbase. In this study, the 

spatial interpolation of consolidation properties in 

Holocene clay (Ma13) at Kobe Airport in Osaka Bay was 

carried out. Fig. 2(b) shows the locations of soil 

investigations in the subject area of this study. Ninety-nine 

boring investigations were applied to determine the 

optimum architecture of the artificial neural network. 

3.2 Analysis Procedure 

The architecture of an artificial neural network must be 

determined to optimally estimate the consolidation 

properties at an arbitrary position in the ground. The 

process of determining the architecture is called “training.” 

A large number of pairs of input and output items are 

required in the training process. An artificial neural 

network is trained as follows. First, the initial network has 

randomly assigned weights. When input data are given to 

the input layer of this network, they are propagated through 

the hidden layer to the output layer; after this, output data 

can be obtained. However, there are differences between 

the estimated output values and real values. The network 

and weights are updated automatically to minimize the 

errors. Training is repeated until the repetition reaches a 

preliminarily given number. The optimal network structure 

is determined in this manner. 

3.3 Indexes for Judging Optimum Architecture 

Four indexes were used to choose the optimum architecture 

of an artificial neural network: R
2
, G, MARE and SR. 

R
2
 (coefficient of correlation) is popularly used in statistics 

for obtaining a linear regression between the estimated 

value and a target value. It is defined as follows: 
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where N is the number of pairs of samples, 
i

x  is the value of 

each sample, and x  is the mean value of the samples. 

Superscripts o and p denote the estimated and target values, 

respectively. 

G (prediction accuracy) is defined as follows [5]: 
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where RMSE (root-mean-squared error) and RMS (root 

mean squared) are respectively defined as follows: 
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Soil property

North latitude (°)

Output items

1. Liquid limit(%) 2. Natural water content(%) 3. Plastic limit(%)

4. Compression index 5.Unconfined compressive strength(kgf/cm2)

6. Void ratio (at each load on standard consolidation test)

Input items

1. North latitude(°) 2. East longitude(°) 3. Depth(GL-m)

4. Consolidation pressure*(kgf/cm2) (*only use for output item”6”)

East longitude (°)

Depth  (GL-m)

Input layer Hidden layer Output layer

 
 

Fig. 1. Architecture of artificial neural network 

 
Fig. 2(a). Locations of soil investigations in GIbase.   Fig. 2(b) Locations of boring investigations in subject area 
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The higher the estimation accuracy is, the higher both R
2
 

and G is. MARE (mean absolute relative error) is defined as 

follows: 
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The higher the estimation accuracy is, the lower MARE is. 

In addition, both G and MARE are indexes to judge the 

estimation accuracy of a set of estimated values. SR 

(success rate) is used to judge the accuracy of each 

estimated value. It is based on the absolute error r at each 

estimated value. 
i

r  is defined as follows: 
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In this study, three different ranges of SR (%) were used to 

judge the estimation accuracy: 
i

r  < 10%, 
i

r  between 10% 

and 15%, and 
i

r  > 15% [6]. 

4. ESTIMATION ACCURACY 

4.1 Natural Water Content 

Table 1 shows the estimation accuracy of the natural water 

content. In each case, R
2
 was over 0.9, G was almost 80%, 

and MARE was less than 12%. Thus, the natural water 

content can be estimated by the artificial neural network. In 

particular, WN-1 had the highest G and lowest MARE. In 

addition, WN-1 had the highest SR when r < 10%. WN-1 

had the highest estimation accuracy among the four cases. 

The artificial neural network could reproduce the 

distribution of the natural water content. 

Fig. 3 shows the three-dimensional distribution of natural 

water content. The natural water content in Fig. 3 was 

estimated using WN-1. First, the subject area was divided 

into about 67,000 regions. Second, the latitude, longitude, 

and altitude of each region were calculated. Finally, the 

natural water content in each region was estimated by 

applying the latitude, longitude, and altitude to the WN-1 

artificial neural network. Fig. 3 clearly shows the 

distribution of natural water content. The natural water 

content decreased in the east-to-west direction. The natural 

water content was highest in the southeast corner of the 

seabed surface of the subject area at over 100%. The natural 

water content was about 90% at the northwest corner of the 

seabed surface in the subject area. The natural water content 

decreased with increasing depth. The natural water content 

in the bottom layer of Holocene clay was about 50%. The 

natural water content showed almost no change in the 

north-to-south direction. 

4.2 Void Ratio 

Table 2 shows the estimation accuracy of the void ratio. In 

each case, R
2
 was over 0.9, G was more than 93%, and 

MARE was only slightly over 5%; thus, the void ratio can 

be estimated by the artificial neural network. The VR-3 

artificial neural network produced the most accurate 

estimations among the four cases judging from SR. 

Fig. 4 shows the three-dimensional distribution of the void 

ratio. The void ratio in Fig. 4 was estimated by using the 

 
Fig. 3. Three-dimensional distribution of natural water 

content (WN-1) 

Table 2. Estimation accuracy of void ratio 

Case 
Repetition 

Number 
R

2 G 

(%) 

MARE 

(%) 

SR (%) 

r < 10 10 < r < 15 r > 15 

VR-1 5000 0.912  93.46  5.29  89.2  6.7  4.1  

VR-2 10000 0.911  93.36  5.21  90.2  5.7  4.1  

VR-3 15000 0.908  93.16  5.45  88.1  6.2  5.7  

VR-4 20000 0.911  93.49  5.20  88.7  7.2  4.1  

 

Table 1. Estimation accuracy of natural water content 

Case 
Repetition 

Number 
R

2 G 

(%) 

MARE 

(%) 

SR (%) 

r < 10 10 < r < 15 r > 15 

WN-1 5000  0.934  87.10  11.56  80.9  6.6  12.6  

WN-2 10000  0.935  87.13 11.63 79.9  6.8  13.3  

WN-3 15000  0.936  87.15 11.60 80.7  7.2  12.2  

WN-4 20000  0.936 87.16 11.58 79.3  8.9  11.8  
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VR-3 artificial neural network. The same method of 

estimating the natural water content was applied to obtain 

Fig. 4. The void ratio decreased in the east-to-west direction. 

The void ratio was highest at the southeast corner of the 

seabed surface in the subject area, at about 3.0. It was about 

2.5 at the northwest corner. The void ratio decreases with 

increasing depth. The void ratio in the bottom layer of 

Holocene clay was about 1.5. The void ratio hardly changed 

in the north-to-south direction. 

The distribution of the void ratio corresponded to that of the 

natural water content, as shown in Fig. 3. The Holocene 

clay layer on the east side of Kobe Airport was thicker than 

on the west side. Moreover, both the natural water content 

and void ratio on the east side of the airport were higher 

than on the west. The settlement during construction on the 

east side was predicted to be larger than that on the west 

side. The construction work on Kobe Airport was carried 

out in consideration of the differential settlement. 

4.3 Plastic Index 

Table 3 shows the estimation accuracy of the plastic index. 

In each case, R
2
 was almost 0.94, G was almost 90%, and 

MARE was about 8%; thus, the plastic index can be 

estimated with the artificial neural network. 

Fig. 5 shows the three-dimensional distribution of the 

plastic index. The plastic index was estimated by the IP-1 

artificial neural network. The same method of estimating 

the natural water content and void ratio was applied to 

make Fig. 5. The plastic index decreased in the east-to-west 

direction in the same manner as the natural water content 

and void ratio. The plastic index was highest at the 

southeast corner of the seabed surface in the subject area. 

The plastic index was lowest at the northwest corner. The 

plastic index decreased with increasing depth. The variation 

in the plastic index around both the surface and bottom was 

significant. The void ratio hardly varied in the 

north-to-south direction. 

4.4 Compression Index 

Table 4 shows the estimation accuracy of the compression 

index. In each case, R
2
 was over 0.8. This value was lower 

than the values for the natural water content, void ratio, and 

plastic index. G was almost 87%, and MARE was almost 

10%. The estimation accuracy for the compression index 

was slightly lower than the estimation accuracies for the 

natural water content, void ratio, and plastic index. The 

CC-3 artificial neural network had the most accurate 

estimates among the four cases, judging from all four 

indexes. 

 
Fig. 4. Three-dimensional distribution of void ratio (VR-3) 

Table 4. Estimation accuracy (compression index) 

Case 
Repetition 

Number 
R

2 G 

(%) 

MARE 

(%) 

SR (%) 

r < 10 10 < r < 15 r > 15 

CI-1 5000 0.832  87.10  10.48  60.3  20.6  19.1  

CI-2 10000 0.852  87.80  10.23  67.0  16.0  17.0  

CI-3 15000 0.848  87.55  10.44  62.9  17.5  19.6  

CI-4 20000 0.813  86.49  11.09  63.9  19.1  17.0  

 

 
Fig. 5. Three-dimensional distribution of plastic index (IP-1) 

Table 3. Estimation accuracy in plastic index 

Case 
Repetition 

Number 
R

2 G 

(%) 

MARE 

(%) 

SR (%) 

r < 10 10 < r < 15 r > 15 

IP-1 5000 0.934  90.31  7.67  72.3  12.3  15.4  

IP-2 10000 0.935  89.84  7.78  68.7  14.4  16.9  

IP-3 15000 0.936  89.61  8.09  71.3  12.3  16.4  

IP-4 20000 0.936  90.12  7.79  72.8  11.3  15.9  
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Fig. 6 shows the three-dimensional distribution of the 

compression index. The compression index in Fig. 6 was 

estimated by the CC-2 artificial neural network. The same 

method for estimating the other soil properties was applied 

to obtain Fig. 6. The compression index for the upper and 

middle parts of the Holocene clay layer was almost 0.9. It 

slightly decreased in the east-to-west direction. However, 

the variation was extremely small. The compression index 

of the lower part increased with depth. It decreases 

significantly in the bottom part of the Holocene clay layer. 

The maximum compression index was greater in the lower 

part of the east side of the subject area. This index 

decreased in the east-to-west direction.  

4.5 Pre-Consolidation Pressure 

Table 5 shows the estimation accuracy of the 

pre-consolidation pressure. In each case, R
2
 was over 0.95, 

G was more than 87%, and MARE was almost 12%. 

However, SR when r < 10% was about 53%–61%, and SR 

when r > 15% was about 24%–27%. This implies that the 

estimated values with errors of less than 10% made up 

about 53%–61% of the total, and that with errors greater 

than 15% made up about 24%–27% of the total. The PC-4 

artificial neural network had the most accurate estimates of 

the four cases judging from SR. 

Fig. 7 shows the three-dimensional distribution of the 

pre-consolidation pressure. The pre-consolidation pressure 

in Fig. 7 was estimated by the PC-4 artificial neural 

network. The same method for estimating the other soil 

properties was applied to obtain Fig. 7. The 

pre-consolidation pressure increased with depth. There was 

hardly any distinguishing spatial variation in the subject 

area. 

4.6 One-Dimensional Compression Curve 

One-dimensional compression curve is obtained from 

consolidation pressure and void ratio. The item of 

consolidation pressure must be added to input layer in Fig. 

1. Table 6 shows the estimation accuracy of 

one-dimensional compression curve. In each case, quite 

high accuracy could be obtained; R
2
 is over 0.95, G is over 

90%, and MARE is less than 5%. Also, SR in  r <10 in 

higher than almost 90%. 

Fig. 8 shows the examples of estimated one-dimensional 

consolidation curves. The agreement between the target 

value and estimated value is good. Especially, the estimated 

 
Fig. 6. Three-dimensional distribution of compression 

index (CC -2) 

Table 5. Estimation accuracy (pre-consolidation pressure) 

Case 
Repetition 

Number 
R

2 G 

(%) 

MARE 

(%) 

SR (%) 

r < 10 10 < r < 15 r > 15 

PC-1 5000 0.963  87.33  12.74  52.6  20.1  27.3  

PC-2 10000 0.964  87.67  12.35  53.6  20.1  26.3  

PC-3 15000 0.962  87.38  12.21  56.2  19.1  24.7  

PC-4 20000 0.964  87.66  12.06  60.8  14.9  24.2  

 

Table 6. Estimation accuracy (One-dimensional compression curve) 

Case 
Repetition 

Number 
R

2 G 

(%) 

MARE 

(%) 

SR (%) 

r < 10 10 < r < 15 r > 15 

OC-1 5000 0.961 93.81  4.84 88.54 7.45 4.02  

OC-2 10000 0.966  94.23  4.61 91.72 5.36 2.93 

OC-3 15000 0.965  94.11  4.72 89.37 7.03  3.60  

OC-4 20000 0.966  94.23  4.58 90.04 6.19  3.77  

 

 
Fig. 7. Three-dimensional distribution of pre-consolidation 

pressure (PC-1) 
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values in Sample B (green solid line) and Sample C (red 

solid line) are closely coincident with the target values in 

Sample B (green triangles) and Sample C (red circles). Also, 

the one-dimensional compression curve, relationship 

between the logarithmic of consolidation pressure and void 

ratio, in Fig. 8 almost match under normally consolidated, 

because these samples are taken from same boring 

investigation. 

4.7 Permeability 

Permeability is calculated from coefficient of consolidation 

and coefficient of volume compressibility, which are 

getting each loading step in oedometer test. Table 7 shows 

the estimation accuracy of relationship between 

permeability and void ratio. In each case, R
2
 was over 0.93, 

G was more than 86%, and MARE was almost 13%. 

However, SR when r < 10% was about 52%–57%, and SR 

when r > 15% was over 27%. This implies that the 

estimated values with errors of less than 10% made up 

about 52%–57% of the total, and that with errors greater 

than 15% made up about 27% of the total. It is necessary to 

improve the estimation method for permeability. 

5 CONCLUSION 

Spatial interpolation of consolidation properties in 

Holocene clay at Kobe Airport was carried out using an 

artificial neural network. The main conclusions are 

summarized as follows: 

 

1. An artificial neural network can be applied to estimate 

the consolidation properties at arbitrary positions in the 

Holocene clay layer of Osaka Bay. 

2. The artificial neural network estimated the consolidation 

properties with high accuracy. In particular, the 

estimation accuracy for the natural water content, void 

ratio, plastic index and one-dimensional compression 

curve was excellent. 

3. The spatial interpolation of consolidation properties 

could be carried out with an artificial neural network. 

4. Not only physical properties but also mechanical 

behavior of clays, such as one-dimensional compression 

curve can be estimated through artificial neural network. 

5. The consolidation properties interpolated spatially could 

be visualized three-dimensionally, so it was very easy to 

recognize the distribution of consolidation properties. 
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Table 7. Estimation accuracy (Permeability vs. void ratio) 

Case 
Repetition 

Number 
R

2 G 

(%) 

MARE 

(%) 

SR (%) 

r < 10 10 < r < 15 r > 15 

PV1 5000 0.934 86.26  12.88 52.38 19.33 28.28 

PV-2 10000 0.935  86.27  12.68 54.48 17.32 28.20 

PV-3 15000 0.936  86.41  12.44 56.57 15.98 27.45 

PV-4 20000 0.936  86.46  12.72 55.06 15.82 29.12 
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Fig. 8. Examples of estimated one-dimensional compression 

curves (OC-2) 
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