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ABSTRACT: This paper presents the application of an Artificial Neural Network (ANN) approach to predict 

the 28-day compression strength of Geopolymer concrete (GPC) from the input ingredients. A total of 190 test 

samples collected from previously published were employed for training and validating the ANN model. 

Additionally, a test project was also implemented to collect the experimental data for verifying the prediction 

ability of the ANN model. Different learning algorithms were investigated to obtain the optimal algorithm for 

the GPC data. Results from the study revealed that the ANN model using the “trainlm” learning algorithm 

provided the best prediction results. The average prediction error about 8 MPa was found for the unseen data 

set. Besides, the effects of changing input variables to the output of the model were also explored by conducting 

the sensitivity analysis. It was shown that the 28-day GPC compression strength was more sensitive to the 

change of coarse aggregate (CoAg) and sodium silicate (Na2SiO3) variables.   

 

Keywords: Geopolymer Concrete (GPC); Compression Strength; Artificial Neural Networks (ANN); 

Sensitivity Analysis. 

 

1. INTRODUCTION 

 

Conventional concrete using Ordinary Portland 

cement (OPC) as the primary binder is one of the 

widely employed materials all over the world. 

However, the production of OPC consumes a 

substantial amount of natural resources. It emits a 

significant volume of carbon dioxide to the air, 

leading to a severe impact on the global 

environment. According to a study of Malhotra [1], 

the entire cement industry annually releases about 

7% of the total human-made (around 2.8 billion 

tons) of the greenhouse gas to the atmosphere. A 

feasible solution to reduce the adverse effects for 

the environment in the production of the 

conventional concrete is to replace OPC with by-

product or geological origin materials. This leads to 

the development of a new type of concrete called 

Geopolymer concrete. 

Geopolymer concrete (GPC) is an 

environmentally friendly material that uses fly ash 

to replace cement as the primary binder. Fly ash is 

a by-product material from power plants containing 

aluminous and siliceous ingredients. Geopolymer 

concrete is a promising alternative candidate to 

replace OPC in providing sustainable material with 

excellent resistance for the chemical attack and fire 

performance [2,3]. According to Davidovits [4], 

geopolymer paste is formed by the chain and ring 

polymers with Si4+ and Al3+ in IV-fold coordination 

with oxygen (polysilanes). The empirical formula 

of polysilanes is presented as below 

Mn (-(SiO2)z - AlO2)n . wH2O    (1) 

where “z” is 1, 2, or 3 or higher up to 32; M is a 

monovalent cation such as potassium or sodium, 

and “n” is a degree of polycondensation [4].   

Geopolymer production is required for rich 

alumino-silicate materials and alkaline solutions. 

The material with rich in silicon (Si) and aluminum 

(Al) content may come from natural sources such as 

kaolinite, clays, and micas or the by-product 

material, including fly ash, silica fume, slag. The 

alkaline liquids can be obtained from solvable alkali 

metals that such as Sodium or Potassium based. 

Intensive research has been conducted to explore 

the effects of ingredients on the GPC compressive 

strength. For example, Xu and Van Deventer [5] 

stated in their study that the GPC using potassium 

hydroxide as the alkaline liquids produced a better 

compressive strength than that of sodium hydroxide.  

In another study, Palomo et al. [6] investigated 

various combinations of alkaline liquids. The 

conclusion from the study revealed that among 

different combinations, a mixture of sodium silicate 

and sodium hydroxide could result in the highest 

compressive strength of GPC. Related to the effects 

of calcium content in by-product materials to the 

compressive strength of GPC, Gourley [7] 

recommended in his study that the GPC using 

materials with low calcium (ASTM Class F) would 

provide a higher compression strength compared to 

that of the materials with high calcium (ASTM 

Class C). 

Traditionally, the experimental method is often 

used to determine the compression strength and 

other properties of different materials [8-11]. This 
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method provides the compression strength of 

concrete with a high level of accuracy. However, 

this technique is destructive and time-consuming. 

Recently, an alternative approach using Artificial 

Intelligence (AI) to predict the strength of materials 

has been broadly employed. This novel technique 

involves two steps. In the first step, the approach 

using the available experimental data to establish 

the relationship between the input variables and 

outputs. In the second step, the successfully 

established connections are then applied to predict 

the outputs of an unseen input dataset. 

In a recent study, Dao et al. [12] used two AI-

based approaches, namely Adaptive Neuro-Fuzzy 

Inference (ANFIS) and Artificial Neural Network 

(ANN) to predict the compression strength of GPC. 

Four parameters, namely Fly Ash, Na2SiO3, NaOH, 

and H2O, were utilized as the inputs of the model, 

and the 28-day compression strength of GPC was 

used as the output. A total of 210 data samples were 

employed for training, validation, and testing the 

proposed models. The results from the study 

revealed that the models showed strong potential for 

the prediction of the GPC compression strength. 

Besides the applications for estimating the 

compression strength of GPC, the AI-based 

approaches were also used to tackle various 

engineering topics. For instance, in the study of 

Nguyen and Dinh [13], and Nguyen et al. [14], the 

AI-based methods were applied to predict the 

compression strength of conventional and high-

performance concrete. Other researchers applied 

AI-based technique to identify structural damage 

[15], to estimate fire resistance ratings for wood 

structures [16], to predict the ultimate shear strength 

of steel fiber reinforced concrete [17], to predict the 

bridge desk rating [18], to predict the compression 

strength of the different types of concrete [19,20], 

or to optimize the performance in the wastewater 

treatment plant [21]. 

AI-based methods were also popular among 

researchers recently. As an example, Truong et al. 

[22] employed different AI-based approaches to 

evaluate the safety of steel trusses. The finding of 

the study revealed that the Gradient Tree Boosting 

algorithm provided the best performance. Elevado 

et al. [23] applied k-nearest neighbor model to 

predict the compression strength of the concrete 

made of fly ash and waste ceramics. Results from 

the study showed an acceptable prediction capacity 

of the model. 

In this study, a supervised learning model using 

the ANN technique was developed to predict the 

compression strength of GPC concrete at 28 days 

old. The structure of the ANN model was built 

in MATLAB R2020a Runtime Environment with 

six input variables and one output. Two steps 

involving different datasets were performed to 

create the ANN model. In the first step, the ANN 

model was trained and validated using available 

data collected from the previous publications. In the 

second step, experimental work was implemented 

in the lab to collect the experimental dataset for 

verifying the prediction capacity of the proposed 

ANN model. The 28-day GPC compression 

strength collected from the destructive tests of 

specimens were compared to the non-destructive 

compression strength data generated from the 

proposed ANN model. 

 

2. DATA PREPARATION  

 

2.1 Experimental Data 

 

A series of nine GPC specimens were fabricated 

and tested in the lab at the National of Civil 

Engineering University to collect the GPC 28-day 

compression strength. Three GPC mixtures with the 

ratio of alkaline activator over the paste varied from 

six to ten were used to cast specimens. All 

specimens were cured in the water in 28 days before 

conducting the compression tests. Details of 

material components, mixtures, specimen 

preparation, and data collection are presented in the 

subsequent sections.  

 

2.1.1 Materials 

Fly Ash (FA) was collected from the Pha Lai 

coal-fired power station in the Northern part of 

Vietnam was used in this study. The average 

particle diameter of FA is 15.5μm. Another by-

product material, Blast Furnace Slag (BFS), 

gathering from the Thai Nguyen Steel factory, was 

also utilized along with FA as the cement 

replacement material. The specific surface area by 

Blaine of BSF is 4520 cm2/g, with an average 

diameter of 7.63μm. The chemical composition of 

FA and BSF in terms of percentage by mass is listed 

in Table 1

 

Table 1 Chemical composition of FA and BFS

Oxides SiO2 Al2O3 Fe2O3 CaO MgO K2O Na2O SO3 TiO2 

FA (%) 57.3 25.2 6.06 1.09 1.68 5.29 0.16 0.09 0.83 

BFS (%) 43.7 12.9 1.47 28.7 6.29 1.22 0 1.35 0.84 
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The sodium silicate (Na2SiO3) was used as the 

alkaline activator for producing GPC in this study. 

The amount of alkaline activator was calculated to 

ensure the ratio of SiO2/Al2O3 in the input 

ingredients maintains between two to three. Natural 

crushed rock with a maximum size of 10 mm was 

selected for coarse aggregate. The natural sand with 

a particle size less than 5 mm was chosen for fine 

aggregate. Details of sieve analysis followed by 

TCVN 7572-2 [24] are presented in Table 2.  

 

Table 2 Sieve analysis results 

 

Type 

of agg. 

Sieve size 

(mm) 

Cumulative 

retained (%) 
Standards 

Coarse 
40 0 

TCVN 

7572-2 

 20 8.2  

 10 50.3  

 5 95.5  

 < 5 100  

Fine 5 0  

 2.5 8  

 1.25 27.6  

 0.63 52.3  

 0.315 78.4  

 

2.1.2 Mixture proportions and specimen 

preparation 

Table 3 presents the composition of three GPC 

mixtures. The ratio of alkaline activator over the 

paste (FA and BSF) in the mixture of MIX1, MIX2, 

and MIX3 was six, eight, and ten percent, 

respectively. For each mixture, a set of three 

specimens using a standard cube with the 

dimensions of 150×150×150 mm was cast. These 

specimens were then cured in water for 28 days 

until the compression tests were implemented.  

 

2.1.3 Experimental data collection 

The compression tests conformed to the 

requirements of TCVN 3118 [25] were conducted 

at LAS XD125 – National of Civil Engineering 

University using the AD200/EL Unit test machine. 

The maximum compression capacity of the testing 

equipment is 2000 kN. The compression tests were 

implemented with the constant loading speed of 

70kN/10s until the test specimen was failed. The 

maximum force for each specimen was documented. 

Table 3 shows the compression strength of the GPC 

specimens.  

 

2.2 Data from Previous Study  

 

Information of seven GPC properties, namely 

Furnace ash (FAsh), Coarse aggregate (CoAg), Fine 

aggregate (FiAg), Sodium hydroxide solution 

(NaOH), Sodium silicate (Na2SiO3), Water (H2O), 

and GPC 28-day compression strength (fc’28) was 

collected from the previously published research 

[26, 27]. Data of the 190 test samples were then 

employed to train and validate the proposed ANN 

model. The characteristics of the data are presented 

in Table 4. Detailed information is presented in 

Appendix A. Note that the difference in the range of 

the input data was found not quite large, Thus, the 

normalization step was not performed for the input.

 

Table 3 Mix proportions and compression strength of test samples 

 

No. Mixture Test 

Sample 

FAsh 

(kg) 

CoAg 

(kg) 

FiAg 

(kg) 

NaOH 

(kg) 

Na2SiO3 

(kg) 

H2O 

(kg) 

fc’28 

(MPa) 

1 MIX1 1 520 1050 760 25 31.2 240 38 

2  2 520 1050 760 25 31.2 240 41 

3  3 520 1050 760 25 31.2 240 38 

4 MIX2 1 520 1050 760 30 41.6 240 43 

5  2 520 1050 760 30 41.6 240 46 

6  3 520 1050 760 30 41.6 240 45 

7 MIX3 1 520 1050 760 45 52 240 54.2 

8  2 520 1050 760 45 52 240 56 

9  3 520 1050 760 45 52 240 52.1 

Table 4 Characteristics of data from previously published 

 

No. FAsh (kg) CoAg (kg) FiAg (kg) NaOH (kg) Na2SiO3 (kg) H2O (kg) fc’28 (MPa) 

1 350 1200 645 41 103 35 20 

2 428 1170 630 57 114 86 20 

3 400 950 850 57 143 80 22.6 
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- - - - - - - - 

- - - - - - - - 

188 408 1294 554 41 103 22.5 45 

189 408 1294 554 41 103 0 58 

190 408 1201 647 62 93 4 32 

Min. 254.5 723 535 22.77 48 0 20 

Max. 498.5 1772 850 120 144 113.6 89 

 

3. ARTIFICIAL NEURAL NETWORK 

APPROACH 

 

3.1 ANN Structures 

 

An ANN structure is a supervised learning 

system that mimics the operation of the human 

brain. The typical shallow ANN system often 

consists of an input layer, a hidden layer, and an 

output layer. Each layer includes one or several 

inter-layers connected processing units, also known 

as a neuron. Fig.1 depicts the structure of a typical 

ANN system. The neurons in the hidden layer are 

linked to the neurons of adjacent layers (input and 

output layer) through the adjustable weighting 

factor (wij). The value of the factor would be 

adjusted during the network training process to 

obtain the best relationship between input and 

output variables.  

 

 
 

Fig.1 Structure of a typical ANN system 

 

Of all the popular training algorithm, the 

backward propagation of errors, or backpropagation, 

is the most widely used for the supervised learning 

ANN system. This algorithm consists of two 

reverse stages, called forward and backward stage. 

In the first stage, an arbitrary weight value is 

assigned for each connection in the entire network 

to establish the initial connection between input and 

output. In the second phase or backward phase, the 

difference (error) between the actual and the desired 

output is calculated and propagated back into the 

network. The connection weight is adjusted during 

these iterative processes to minimize the input and 

output error. 

 

3.2 Model Assessment 

 

Performances of the ANN model was assessed 

based on three factors: coefficient of determination 

(R2), Mean Squared Error (MSE), and Root Mean 

Squared Error (RMSE). The coefficient of 

determination measures the correlation between 

input and output parameters using eq. (2) 

 

𝑅2 = 1 − 
∑ (𝑦𝑖−𝑦̂𝑖)2𝑛

𝑖=1

∑ (𝑦𝑖−𝑦̅)
2𝑛

𝑖=1

                                             (2) 

 

where yi is the ith actual output, 𝑦̅ is the mean of the 

actual outputs, 𝑦̂𝑖 is the ith predicted outputs, and n 

is the total number of data samples. MSE is the 

average squared difference between predicted 

outputs and actual outputs. MSE can be computed 

using eq. (3) 

 

𝑀𝑆𝐸 =
1

𝑛
∑(𝑦𝑖 − 𝑦̂𝑖)

2

𝑛

𝑖=1

                                        (3) 

 

Root Mean Squared Error is the square root of 

Mean Squared Error and can be calculated by eq. 

(4) 

 

𝑅𝑀𝑆𝐸 =  √
1

𝑛
∑(𝑦𝑖 − 𝑦̂𝑖)

2

𝑛

𝑖=1

                                  (4) 

 

3.3 Model Development 

 

Six parameters, including FAsh, CoAg, FiAg, 

NaOH, Na2SiO3, and H2O were selected as the input 

variables for the ANN model, and the GPC 28-day 

compression strength (fc’28) was designated as the 

output. The dataset from the previous studies was 

randomly divided into two subsets in which 85% 

(i.e., 160 data points) of the entire dataset was 

employed for training model, 15% (i.e., 30 data 

points) for validation. The experimental dataset 

with 9 data samples was utilized for testing the 

prediction accuracy of the ANN model. 

Multiple learning algorithms with variations of 

neuron numbers in the hidden layer were 

investigated in this study. The purpose of these 

tasks was to obtain the optimal ANN model for the 

GPC data. The performance of the ANN model was 
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evaluated based on the MSE value. For each model 

configuration, the potential model was run for 10 

trials to find the best performance result for both 

training and validation datasets. Figure 2a shows 

the performance of the ANN models with different 

learning algorithms. The performance of the ANN 

models with changing neuron numbers in the 

hidden layer from one to 20 is presented in Fig.2b. 

 
(a) Different learning algorithms 

 
(b) Variation of neuron numbers 

 

Fig 2 Performance of potential ANN models 

 

As can be seen clearly in Fig.2a, the ‘trainlm’ 

(Levenberg-Marquardt) algorithm generated the 

best performance result for the proposed ANN 

model. The outcome was in line with the previous 

study [15]. Additionally, the ANN model with 19 

neurons in the hidden layer was found to produce 

optimal performance results, as presented in Fig. 2b. 

Other information about the selected ANN model to 

employ in this study is listed in detail in Table 5. 

 

Table 5 Details of the selected ANN model 

 

Parameter Information 

# neurons in the input layer 6 

# neurons in hidden layer 19 

# neurons in the output layer 1 

Training method backpropagation 

Learning algorithm trainlm 

Activation function sigmoid 

4.   RESULTS AND DISCUSSIONS 

 

4.1 Model Performance 

 

As mentioned above, the proposed ANN model 

was trained and validated with the dataset collected 

from previously published research. Three 

indicators, namely, R2, MSE, and RMSE, were 

employed to assess the performance of the ANN 

model. Table 6 lists the values of these indicators 

for the training dataset, validation dataset, and 

overall. As can be observed from the table, the ANN 

model performed well with a coefficient of 

determination was 0.7209 and 0.6192 for the 

training and validation dataset, respectively. It is 

worth noting that the larger value of R2, the better 

the prediction capacity of the model. 

 

Table 6 Performance results of ANN model 

 

 Training Validation Overall 

R2 0.7209 0.6192 0.7047 

MSE 81.71 73.93 80.56 

RMSE 9.04 8.59 8.97 

Samples 160 30 190 

 

 
(a) Training 

 

 
(b) Validation 

 

Fig.3 Performance of selected ANN model 
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An alternative method to present the 

performance results of the ANN model is using 

regression plots. Fig.3 shows the performance 

results of the proposed ANN model for different 

datasets. In these figures, the horizontal axis 

represents the actual value, and the vertical axis 

represents the predicted values generated by the 

proposed ANN model. The samples located on the 

diagonal lines show an ideal prediction of the model. 

 

4.2 Error Evaluation 

 

The error histogram with 20 bins (columns) of 

the performance errors of the proposed ANN model 

is presented in Fig.4. The error was the difference 

between the predicted value produced by the ANN 

model and the actual value. In this figure, the 

vertical axis represents the number of samples from 

a dataset, while the horizontal axis presents the error 

corresponding to the bins. The zero-line is the zero 

error on the horizontal axis. As can be seen, most 

samples had errors between -7.56 MPa and 8.48 

MPa. The negative errors indicated that the 

predicted value from the ANN model was smaller 

than the experimental one. 

 

4.3 Application of Artificial Neural Network for 

Experimental Data 

 

The successful ANN model was then employed 

to predict the compression strength of GPC. The 

input data for the model was the ingredients for 

mixtures, as presented in Table 3. The output of the 

model was the predicted GPC 28-day compressive 

strength. The compressive strength produced by the 

ANN model was then compared to the experimental 

compression strength obtained from the destructive 

tests. Table 7 presents the performance results of the 

model for the experimental data set.  

 
Fig.4 Error assessment for the selected ANN model 

 

As can be seen from Table 7, the ANN model 

performed reasonably well for the experimental 

dataset with an average error of about 8 MPa. It is 

worth pointing out that the experimental dataset was 

unseen for the proposed ANN model. The ANN 

model could predict the compressive strength of 

GPC in a wide range from 38 MPa to 56 MPa with 

an approximate error of 20 percent. That means the 

ANN model could generalize the nonlinear 

relationship between the inputs and output. 

 

4.4 Sensitivity Analysis 

 

The sensitivity analysis was conducted for each 

input variable by changing its value from low to 

high while keeping the value of others at the mid- 

value. To do that, the input data were divided into 

five groups including the Low (the smallest value of 

each input parameter), the Mid Low (a halfway 

from Low to Mid), the Mid (a halfway from Low to 

High), the Mid High (a halfway from Mid to High), 

and the High (the largest value of each input 

parameter), as listed detail in Table 8. 

 

Table 7 Performance results for the proposed ANN model 

 

No. Experimental (MPa) Predicted (MPa) Error (MPa) Error (%) 

1 38.0 31.5 6.48 17.0 

2 41.0 31.5 9.48 23.1 

3 38.0 31.5 6.48 17.0 

4 43.0 36.6 6.40 14.9 

5 46.0 36.6 9.40 20.4 

6 45.0 36.6 8.40 18.7 

7 54.2 43.1 11.1 20.4 

8 56.0 43.1 12.9 23.0 

9 52.1 43.1 8.97 17.2 
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Table 8 Data for sensitivity analysis 

 

 FAsh (kg) CoAg (kg) FiAg (kg) NaOH (kg) Na2SiO3 (kg) H2O (kg) 

Low 254 723 535 22.8 48 0 

Mid Low 315 985 614 47.1 72 28.4 

Mid 376 1247 692 71.4 96 56.8 

Mid High 437 1509 771 95.7 120 85.2 

High 498 1772 850 120.0 144 114 

Fig.5 presents the sensitivity analysis results of 

all input variables in the form of a parallel 

coordinate diagram. This graph has five vertical 

axes arranged from left to right along with the 

horizontal axis; each of the axes corresponds to a 

different level of the input parameters. The vertical 

axis represents the GPC 28-day compression 

strength. As can be observed clearly, the 28-day 

compression strength of GPC was responsive to the 

change of coarse aggregate and sodium silicate 

parameters. 

 
 

Fig.5 Sensitivity analysis result 

 

4. CONCLUSIONS 

 

The ANN technique was employed in this study 

to predict the compression strength of GPC at 28 

days old. In the first stage, available data were 

utilized to develop the ANN model. In the second 

stage, experimental data was used to test the 

prediction capacity of the model. Performance 

results revealed that the ANN model could predict 

the wide range of output for the unseen 

experimental data with an error of around 20 

percent. In addition, the “trainlm” learning 

algorithm was found to generate the best results for 

the proposed ANN model.  

With respect to the sensitivity analysis, the 

outcomes indicated that the coarse aggregate 

(CoAg) and sodium silicate (Na2SiO3) were among 

the two input variables, which had a significant 

influence on the output parameter of the ANN 

model. Finally, it was concluded that the ANN 

model could be used as an alternative method to 

predict the compression strength of GPC with an 

acceptable level of accuracy. 
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Appendix A Experimental data from the previous study 

 

No. 
FAsh 

(kg) 

CoAg 

(kg) 

FiAg 

(kg) 

NaOH 

(kg) 

Na2SiO3 

(kg) 

H2O 

(kg) 

fc’28 

(MPa) 

1 350 1200 645 41 103 35 20 

2 428 1170 630 57 114 86 20 

3 400 950 850 57 143 80 22.5 

4 380 1050 800 40 110 0 24 

5 428 1170 630 57 114 64 24 

6 400 1222 658 40 100 0 25 

7 408 1243 554 41 103 20 25 

8 400 1209 651 45.7 114.3 0 26 

9 400 1222 658 56 84 0 27 

10 408 1232 616 48 103 0 28 

11 428 1170 630 49 122 43 28 

12 428 1177 623 68.5 102.8 28.5 28.6 

13 408 1246 554 41 103 20 29 

14 408 1080 554 41 103 20 29 

15 428 1170 630 49 122 43 29 

16 394 1201 647 52.5 105.1 21.4 29.7 

17 428 1170 630 49 122 43 30 

18 444 1170 630 44 111 43 30 

19 428 1170 630 49 122 43 30 

20 428 1170 630 57 114 43 30 

21 408 1294 554 41 103 21.3 32 

22 408 1232 616 41 103 21.3 32 

23 408 1201 647 62 93 4 32 

24 428 1170 630 49 122 43 32 

25 428 1170 630 49 122 43 32 

26 428 1170 630 57 114 43 32 

27 408 1243 554 41 103 20 33 

28 408 1232 616 55.4 103 0 33 

29 420.5 1032 555.7 37.6 80.1 113 33.7 

30 378 1294 554 50 124 0 34.5 

31 378 1772 554 50 124 0 34.6 

32 408 1294 554 41 103 10.7 35 

33 408 1232 616 41 103 10.6 35 

34 428 1170 630 57 114 43 35 

35 365.1 1118 602 34.3 73.0 103 35.2 

36 408.8 1177 623 57.2 85.8 24.4 35.7 

37 408 1294 554 51.5 103 16.5 36 

38 408 1294 554 41 103 22.5 36 

39 408 1201 647 62 93 0 36 

40 428 1170 630 49 122 43 36 

41 408 1294 554 41 103 22.5 36 

42 254.5 1290 694.6 22.7 48.5 68.7 36.7 

43 408 1201 647 41 103 20.7 37 

44 406 1194 643 41 102 26.8 37 

45 404 1190 640 41 102 25.5 37 

46 480 1153 599 56 112 23.7 37.1 

47 400 950 850 57 143 60 37.3 

48 408 1201 647 41 103 14.3 38 

49 428 1170 630 57 114 43 38 

Continues to next page 

https://doi.org/10.31814/stce.nuce2020-14(2)-04
https://doi.org/10.31814/stce.nuce2019-13(3)-11
https://doi.org/10.31814/stce.nuce2020-14(2)-03
https://doi.org/10.31814/stce.nuce2019-13(3)-02
https://doi.org/10.1016/j.jobe.2018.01.007
https://doi.org/10.1007/s40999-016-0096-0


International Journal of GEOMATE, Oct., 2020, Vol.19, Issue 74, pp.176–184 

184 

Appendix A continues 

50 444.4 1177 623 44.4 111.1 18.6 38.7 

51 498.4 1153 599 59.8 89.7 26.5 39.9 

52 408 1201 647 41 103 14.3 40 

53 408 1201 647 41 103 20.7 40 

54 408 1201 647 41 103 26.5 40 

55 408 1294 554 41 103 16.5 40 

56 428 1170 630 57 114 43 40 

57 408 1294 554 51.5 103 16.5 41 

58 408 1294 554 51.5 103 16.5 41 

59 408 1232 616 55.4 103 0 41.2 

60 408 1294 554 51.5 103 16.5 42 

61 408 1201 647 41 103 14.4 42 

62 309.8 1204 648.3 27.7 59.1 83.6 42 

63 408 1202 647 41 103 26 42 

64 461.5 1177 623 46.2 92.3 18.6 42.5 

65 408 1201 647 41 103 17.6 43 

66 428 1170 630 57 114 43 43 

67 408 1294 554 41 103 0 44 

68 408 1201 647 55.4 103 0 44 

69 400 1265 540 42.3 105.7 24.3 44 

70 400 950 850 57 143 48 44.8 

71 408 1201 647 41 103 7.5 45 

72 408 1232 616 41 103 20.7 45 

73 408 1232 616 41 103 0 45 

74 408 1294 554 41 103 22.5 45 

75 428 1170 630 49 122 43 45 

76 408 1294 554 41 103 22.5 45 

77 400 950 850 57 143 48 45.0 

78 405 1235 545 52.9 132.4 28 46 

79 404 1190 640 41 102 17 46 

80 428 1170 630 57 114 43 46 

81 428 1170 630 57 114 43 46 

82 408 1201 647 41 103 0 47 

83 400 950 850 57 143 48 47.9 

84 476 1294 554 120 48 0 48 

85 408 1232 616 41 103 26.5 48 

86 350 1200 645 41 103 35 48 

87 408 1201 647 68 103 0 48 

88 400 950 850 57 144 48 48.5 

89 400 950 850 57 143 48 48.5 

90 380 1233 540 56.5 141.3 14.6 49 

91 428 1170 630 57 114 43 49 

92 462.8 1153 599 52.9 132.2 21.2 49.6 

93 404 1195 640 41 102 20 50 

94 408 1232 616 41 103 14.4 51 

95 408 1232 616 41 103 0 51 

96 400 950 850 57 143 48 51.0 

97 400 950 850 57 143 48 51.4 

98 400 950 850 57 143 48 51.6 

99 408 1232 616 41 103 7.5 52 

100 400 1356 535 51.5 128.6 12.7 52 

101 400 950 850 57 143 40 53.4 

102 408 1201 647 63 138 0 54.2 

103 408 723 647 63 138 0 54.2 

104 368 1294 554 53 131 0 54.6 

105 424.6 1177 623 36.4 90.9 15.9 54.8 

106 408 1201 647 55.4 103 0 55 

107 408 1232 616 41 103 0 55 

108 408 1294 554 41 103 0 56 

109 408 1294 554 41 103 0 56 

111 476 1294 554 48 120 0 57 

112 408 1294 554 41 103 0 58 

113 408 1294 554 41 103 0 58 

114 408 1232 616 48 103 0 60 

115 408 1201 647 41 103 0 63 

116 404 1190 640 41 102 16.5 66 

117 408 1232 616 41 103 0 66.7 

118 476 1294 554 48 120 0 68 

119 408 1201 647 41 103 0 68 

120 420 1125 750 40 100 0 70.5 

121 368 1294 554 53 131 0 71.5 

122 404 1190 640 41 102 13.5 76 

        

        

123 368 1294 554 53 131 0 85.6 

124 408 1201 647 41 103 0 89 

125 400 950 850 57 143 80 22.6 

126 400 950 850 57 143 60 37.3 

127 400 950 850 57 143 48 44.8 

128 400 950 850 57 143 40 53.5 

129 400 1222 658 40 100 0 25 

130 400 1222 658 56 84 0 27 

131 408 1294 554 41 103 21.3 32 

132 408 1294 554 41 103 10.7 35 

133 408 1294 554 51.5 103 16.5 36 

134 408 1201 647 41 103 20.7 37 

135 408 1201 647 41 103 26.5 40 

136 408 1294 554 41 103 16.5 40 

137 408 1294 554 51.5 103 16.5 41 

138 408 1294 554 51.5 103 16.5 41 

139 408 1294 554 51.5 103 16.5 42 

140 408 1201 647 41 103 14.4 42 

141 408 1201 647 41 103 17.6 43 

142 408 1294 554 41 103 0 44 

143 408 1201 647 41 103 7.5 45 

144 408 1201 647 55.4 103 0 44 

145 476 1294 554 48 120 0 57 

146 408 1201 647 41 103 0 63 

147 476 1294 554 48 120 0 68 

148 408 1201 647 41 103 0 89 

149 408 1246 554 41 103 20 29 

150 408 1080 554 41 103 20 29 

151 408 1243 554 41 103 20 25 

152 408 1232 616 48 103 0 28 

153 408 1232 616 41 103 21.3 32 

154 408 1232 616 55.4 103 0 33 

155 408 1232 616 41 103 10.6 35 

156 408 1232 616 41 103 20.7 45 

157 408 1232 616 41 103 26.5 48 

158 408 1232 616 41 103 14.4 51 

159 408 1232 616 41 103 7.5 52 

160 408 1232 616 41 103 0 55 

161 408 1232 616 41 103 0 66.8 

162 420.6 1032 555.7 37.6 80.1 113 33.8 

163 350 1200 645 41 103 35 20 

164 365.2 1118 602 34.3 73 103 35.3 

165 254.5 1290 694.7 22.8 48.5 68.7 36.8 

166 309.9 1204 648.4 27.7 59 83.7 42 

167 400 1265 540 42.3 105.7 24.3 44 

168 405 1235 545 52.9 132.4 28 46 

169 380 1233 540 56.5 141.3 14.6 49 

170 400 1356 535 51.5 128.6 12.7 52 

171 420 1125 750 40 100 0 70.5 

172 350 1200 645 41 103 35 48 

173 408 1294 554 41 103 22.5 36 

174 408 1294 554 41 103 0 56 

175 400 950 850 57 144 48 48.5 

176 400 1209 651 45.7 114.3 0 26 

177 428.6 1177 623 68.6 102.9 28.5 28.6 

178 394.3 1201 647 52.6 105.1 21.5 29.7 

179 408.9 1177 623 57.2 85.9 24.5 35.7 

180 480 1153 599 56 112 23.7 37.1 

181 444.4 1177 623 44.4 111.1 18.6 38.7 

182 498.5 1153 599 59.8 89.7 26.5 39.9 

183 461.5 1177 623 46.2 92.3 18.6 42.5 

184 462.9 1153 599 52.9 132.2 21.2 49.6 

185 424.6 1177 623 36.4 91 16 54.9 

186 406 1194 643 41 102 26.8 37 

187 404 1195 640 41 102 20 50 

188 408 1294 554 41 103 22.5 45 

189 408 1294 554 41 103 0 58 

190 408 1201 647 62 93 4 32 
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