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ABSTRACT: Piecewise constant models have been used in signal processing. The signal contains noise so that 

noise needs to be eliminated. Several research results have used the assumption that noise has a normal, gamma, 

or laplace distribution. However, the signal may have noise with other distributions. This study aims to propose a 

piecewise constant model in which noise is assumed to have a Rayleigh distribution. This study also proposes a 

method for estimating the parameters of a piecewise constant model that contains Rayleigh noise. The 

parameters of the piecewise constant model were estimated in the Bayesian framework by adopting the 

reversible jump Markov Chain Monte Carlo (MCMC) method. This research shows that the dimension of the 

parameter space is a combination of several spaces with different dimensions. Bayes estimators for the 

parameters of the piecewise constant model cannot be stated explicitly. The reversible jump MCMC method is 

used to calculate the Bayes estimator. The results of this study have a significant contribution in providing 

Rayleigh noise as an alternative noise in signal processing. This research has a novelty, namely: the use of 

Rayleigh noise in the piecewise constant model and the hierarchical Bayesian procedure to estimate the 

parameters of the piecewise constant model. Further research can be extended to the estimation procedure of the 

piecewise constant with Weibull noise.   
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1. INTRODUCTION 

 

Piecewise is a stochastic mathematical model. 

The piecewise models are widely used in change-

point analysis, for example [1-3]. One of the 

piecewise models used in signal processing is the 

piecewise constant model. The piecewise constant 

model contains a noise. Several authors use 

additive noise, for example [2,4]. Several other 

authors use multiplicative noise, for example [5-7]. 

Noise is usually assumed to follow a distribution. 

Some researchers use the piecewise constant model 

with Gamma noise, for example [5-7]. In  [5], the 

value of the Gamma distribution parameter is fixed. 

In applications, the value of this parameter is 

generally unknown. In [6,7], the value of one 

parameter is fixed and the value of the other 

parameter is assumed to be unknown. This 

parameter is estimated based on the data. However, 

in various applications of the piecewise constant 

model, the noise of the mathematical model is not 

Gamma distributed. There is little literature on 

piecewise constant models with multiplicative noise 

that is not a gamma distribution. This article 

provides a solution by proposing a piecewise 

constant model with Rayleigh noise. In this article, 

noise is assumed to have a Rayleigh distribution. 

The use of Rayleigh noise in piecewise constant is 

an innovation because the piecewise constant 

model with Rayleigh noise has not been studied by 

previous researchers. However, the piecewise 

constant model has a complex structure because the 

number of constant models is also a parameter. This 

article provides a solution by proposing a reversible 

jump Markov Chain Monte Carlo (MCMC) 

algorithm to estimate the parameters of the 

piecewise constant model. 

This article aims to find the procedure for 

estimating the piecewise constant model with 

Rayleigh noise based on reversible jump MCMC 

algorithm. 

 

2. RESEARCH SIGNIFICANCE 

 

The significance of the study is the use of 

Rayleigh noise in the piecewise constant model and 

the hierarchical Bayesian procedure to estimate the 

parameters of the piecewise constant model. 

 

3. LITERATUR REVIEW  

 

3.1 Rayleigh Distribution 
 

Suppose that 𝑧  is a random variable. The 

random variable 𝑧  is said to have a Rayleigh 

distribution with parameter 𝜎 , if the probability 
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density function of 𝑧 is [8]  

 

𝑔(𝑧|𝜎) =
𝑧

𝜎2 𝑒𝑥𝑝 −
𝑧2

2𝜎2. 

 

3.2 Piecewise Constant Model with 

Multiplicative Noise 

 

Let 𝑦 = (y1, ⋯ , yn) be a data set where n is the 

number of observations. The data is said to have a 

piecewise constant model with multiplicative noise 

if this data satisfies the stochastic equation  

 

𝑦𝑡 = 𝜇𝑡𝑧𝑡 
 

where 𝜇𝑡 is a constant function [9]: 

 

𝜇𝑡 = {

ℎ1, 𝜏1 < 𝑡 ≤ 𝜏2

ℎ2,
…

𝜏2 < 𝑡 ≤ 𝜏3

…
ℎ𝑘+1, 𝜏𝑘+1 < 𝑡 ≤ 𝜏𝑘+2

 

 

where 𝜏1 = 0  and 𝜏𝑘+2 = 𝑛 . Here, 𝑧, … , 𝑧𝑛  are 

noise and 𝑘  is the number of change-point. The 

quantity 𝜏 = (𝜏, … , 𝜏𝑘)  is the location of the 

change-point. The quantity ℎ = (ℎ, … , ℎ𝑘+1) is the 

height of the constant function. The piecewise 

constant model with multiplicative noise is used in 

modeling the Synthetic Aperture Radar (SAR) 

signal  [10].  Research related to SAR signal can 

also be found in [5-7,11]. In [5-7], the noise is 

assumed to have a Gamma distribution. In this 

article, the noise 𝑧𝑡 is assumed to have a Rayleigh 

distribution with the parameter 𝜎.  

 

3.3 Bayesian Approach 

 

Let 𝜃 = (𝑘, 𝜏, ℎ, 𝜎)  be the parameter of the 

piecewise constant model. As in [12], the parameter 

𝜃  was estimated using the Bayesian approach. In 

the Bayesian approach, the parameter 𝜃  is 

considered as a random variable that has a prior 

distribution. The prior distribution of parameter 𝜃 is 

combined with the likelihood function of 𝑦𝑡  
(𝑡 = 1, 2, ⋯ , 𝑛)  to produce the posterior 

distribution of parameter 𝜃 . Since the number of 

change-point 𝑘  is also a parameter, the parameter 

space of 𝜃 is a combination of k parameter spaces 

with different dimensions. Therefore, the posterior 

distribution of the parameter 𝜃  has a complex 

structure. So the Bayes estimator of the parameter 𝜃 

cannot be calculated explicitly. To solve this 

problem, the Bayesian estimator is calculated using 

the reversible jump MCMC algorithm. 

 

3.4 Reversible Jump MCMC 

 

The reversible jump MCMC method proposed 

by Green [13]. The reversible jump MCMC method 

is an extension of the standard MCMC method. In 

the standard MCMC, the simulation of the posterior 

distribution is only in spaces with the same 

dimensions. In the reversible jump MCMC, 

Markov chains can move from one space to another 

space with different dimensions. In this article, the 

reversible jump MCMC is used to calculated the 

Bayes estimator of the parameter 𝜃.  

The basic idea of the reversible jump MCMC is 

to create a Markov chain that has a limit 

distribution close to the posterior distribution. This 

Markov chain is used to determine the estimator of 

the parameter 𝜃. For example, this Markov chain is 

used to determine the Posterior Marginal Maximum 

estimator [14]. 

 

4. METHODOLOGY 

 

The data used in this article is the data that will be 

modeled with the piecewise constant model. 

Procedures for change-point detection include data 

collection, data modeling, and estimation of model 

parameters. The steps in estimating the model 

parameters consist of selecting the prior distribution, 

determining the likelihood function, determining 

the posterior distribution, and calculating the Bayes 

estimator. The Bayes estimator was determined 

using the reversible jump MCMC algorithm.  

 

5. RESULTS AND DISCUSSION 

 

5.1 Likelihood Function 

 

Let 𝑦 = (𝑦1, … , 𝑦𝑛)  be data. This data is 

assumed to have a piecewise constant model with 

multiplicative noise. In this article, the noise 𝑧𝑡  is 

assumed to have a Rayleigh distribution with the 

parameter 𝛽  where 𝛽 =
1

𝜎2.  Therefore the 

probability function of 𝑧𝑡 can be written as 

 

𝑔(𝑧𝑡|𝛽) = 𝛽𝑧𝑡  𝑒𝑥𝑝 −
1

2
𝛽𝑧𝑡

2. 

 

So the likelihood function of data 𝑦 becomes 

 

𝑓(𝑦|𝑘, 𝜏, ℎ, 𝛽) 

= 𝛽𝑛 ∏ (∏ 𝑦𝑡

𝜏𝑖+1

𝑡=𝜏_𝑖+1
)

𝑘+1

𝑖=1

1

ℎ𝑖

2𝑛𝑖
𝑒𝑥𝑝 − 𝛽

𝑠𝑖

ℎ𝑖
2 

 

where 𝑠𝑖 =
1

2
∑ 𝑦𝑡

2𝜏𝑖+1
𝑡=𝜏𝑖+1   and  𝑛𝑖 = 𝜏𝑖+1 − 𝜏𝑖  for 

𝑖 = 1, … , 𝑘 + 1.  

 

5.2 Prior Distribution 

 

As in  [6-7], the prior distribution of the number 

of change-points 𝑘  is Binomial distribution with 

parameters 𝑘𝑚𝑎𝑥  and  𝜆 . Here, 𝑘𝑚𝑎𝑥  is the 
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maximum value of 𝑘.  While the prior distribution 

of 𝜆  is a uniform distribution on the interval (0,1). 

As in [13], the prior distribution of change-point 

locations  𝜏1, … , 𝜏𝑘 is an ordered statistic. Here, the 

prior distribution of height ℎ = (ℎ1, … . , ℎ𝑘+1)  is 

chosen so that the prior distribution of ℎ1
2, … , ℎ𝑘+1

2  

is an inverse exponential distribution with 

parameter 𝜈 > 0 . Therefore, the probability 

function of  ℎ1
2, … , ℎ𝑘+1

2  can be written as 

 

𝜋(ℎ|𝑘, 𝜈) 

= 𝜐(𝑘+1)  ∏ (ℎ𝑖
2)−2

𝑘+1

𝑖=1
𝑒𝑥𝑝 − 𝜐 ∑

1

ℎ𝑖
2 .

𝑘+1

𝑖=1
 

 

While the prior distribution of 𝜈  is the Jeffreys 

distribution. The prior distribution of 𝛽 is also the 

Jeffreys distribution.  Finally, the joint prior 

distribution of 𝜃 = (𝑘, 𝜏, ℎ, 𝜆, 𝜈, 𝛽)  becomes 

 

𝜋(𝑘, 𝜏, ℎ, 𝜆, 𝜈, 𝛽) 

      = 𝐶𝑘
𝑘𝑚𝑎𝑥𝜆𝑘(1 − 𝜆)𝑘𝑚𝑎𝑥−𝑘

1

𝐶𝑛−2
2𝑘+1    

           ∏ (𝑛𝑖 − 1)
𝑘+1

𝑖=1
𝜐(𝑘+1) ∏ (ℎ𝑖

2)−2
𝑘+1

𝑖=1
 

           𝑒𝑥𝑝 − 𝜐 ∑
1

ℎ𝑖
2  

1

𝛽

𝑘+1
𝑖=1  

1

𝜈
. 

 

5.3 Posterior Distribution 

 

Let 𝜃 = (𝜃1, 𝜃2)  be a parameter. Here, 𝜃1 =
(𝑘, 𝜏, ℎ)  and 𝜃2 = ( 𝜆, 𝑣, 𝛽).   According to Bayes 

Theorem, the posterior distribution of the parameter   

𝜃 = (𝜃1, 𝜃2) is 

 

𝜋(𝜃1, 𝜃2|𝑦)     

     ∝
𝛽𝛼𝑛−1

(Γ(𝛼))𝑛
∏ 𝑦𝑡

𝑛𝑖
𝑘+1

𝑖=1

1

ℎ𝑖

2𝑛𝑖
    exp −𝛽

𝑠𝑖

ℎ𝑖
2 𝐶𝑘

𝑘𝑚𝑎𝑥 

          𝜆𝑘  (1 − 𝜆)𝑘𝑚𝑎𝑥−𝑘 ∏ (𝑛𝑖 − 1)   
𝑘+1

𝑖=1
 

         𝜐𝑘 ∏ (ℎ𝑖
2)−2

𝑘+1

𝑖=1
 𝑒𝑥𝑝 − 𝜐 ∑

1

ℎ𝑖
2 .

𝑘+1

𝑖=1
 

 

 

5.4 Reversible Jump MCMC 

 

As in  [6-7], the algorithm for estimating the 

parameter (𝜃1, 𝜃2) is as follows. First, simulate the 

distribution 𝜋(𝜃2|𝜃1, 𝑦). This simulation consists of 

three steps, namely: 

 

 𝛽 ∼  𝐺 (2𝑛, ∑
𝑠𝑖

ℎ𝑖

𝑘+1
𝑖=1 ), 

 𝜆 ∼ 𝐵(𝑘 + 1, 𝑘𝑚𝑎𝑥 − 𝑘 + 1), and 

 𝜐 ∼ 𝐺 (𝑘 + 1, ∑
1

ℎ𝑖
2

𝑘+1
𝑖=1 ). 

 

Second, simulate the distribution  𝜋(𝜃1|𝜃2, 𝑦). 

The distribution 𝜋(𝜃1|𝜃2, 𝑦) is simulated using the 

reversible jump MCMC algorithm. As in [7], the 

reversible jump MCMC algorithm uses 3 

transformations, namely: change-point location 

shift, change-point birth, and change-point death. 

These transformations have been used in [7] so that 

more detailed calculations in [7] can be used but 

Gamma noise is replaced by Rayleigh noise. 

Although the calculations in [7] and the 

calculations in this article are similar, they are 

conceptually different. 

 

5.5 Validation 

 

In this article, the performance of the reversible 

jump MCMC algorithm is validated using synthetic 

data. First, the model parameter values are selected. 

Then, the data synthesis is made based on this 

model. After that, the MCMC reversible jump 

algorithm is run where the input of the algorithm is 

this synthesis data. The output of the algorithm is a 

parameter estimator of the model. Finally, the 

parameter estimators of the model are compared 

with the parameter values of the previously selected 

model. The reversible jump MCMC algorithm is 

categorized as valid if the parameter estimator 

value of the model generated by the algorithm is 

close to the parameter value of the previously 

determined model. 

The first synthesis data, the synthesis data is 

created using the parameter values in Table 1 

(second row). Meanwhile, the parameter values for 

the second and third synthesis data are given in the 

third and fourth rows of Table 1. These synthesis 

data are presented in Fig. 1, Fig. 4, and Fig. 7. 

 

Table 1 The parameter values of the synthesis data 

 

𝑘 𝜏 ℎ 

4  (1, 80, 120, 170, 200, 250) (1.0, 1.6, 0.8, 0.2, 0.7) 

5  (1, 40, 80, 120, 170, 200, 250)  (1.5, 1.1, 1.6, 0.8, 0.4 ,0.7) 

6  (1, 30, 80, 120, 170, 200, 250, 350)  (1.0, 0.8, 1.5, 0.7, 1.5, 0.4, 1.0) 
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Fig. 1 Synthesis data with 4 change points 

 

 

With this synthesis data as input, the reversible 

jump MCMC algorithm is run for 100000 iterations 

and a burn-in period of 25000. The output of the 

algorithm is an estimator of model parameters. The 

histogram of the number of change-points is 

presented in Fig. 2. Meanwhile, estimators of other 

model parameters are presented in Table 2 (second 

row). The superposition between the first synthesis 

data and the parameter estimator is presented in Fig. 

3. This method was repeated for the second 

synthesis data and the third synthesis data. The 

model parameter estimates for the second and third 

synthesis data are presented in Figs. 4-9. 

 

 

 
 

Fig. 2 Histogram of the number of change-points (first synthesis data) 
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Fig. 3 Superposition between first synthesis data and parameter estimator 

 

 
Fig. 4 Synthesis data with 5 change points 

 

 
 

Fig. 5 Histogram of the number of change-points (second synthesis data) 
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Fig. 6 Superposition between second synthesis data and parameter estimator 

 

 
Fig. 7 Synthesis data with 6 change points 

 

 
Fig. 8 Histogram of the number of change-points (third synthesis data) 



International Journal of GEOMATE, Jan., 2022, Vol.22, Issue 89, pp.24-31 

28 

 

 
Fig. 9 Superposition between third synthesis data and parameter estimator 

 

Table 2 The parameter estimator generated by the reversible jump MCMC algorithm 

 

𝑘̂ 𝜏̂ ℎ̂ 

4  (1, 78, 121, 170, 200, 250) (1.1, 1.7, 0.9, 0.2, 0.9) 

5  (1, 43, 81, 118, 169, 205, 250)  (1.8, 1.3, 2.3, 1.0, 0.5, 1.0) 

6  (1, 37, 78, 119, 167, 201, 255, 350)  (1.4, 0.9, 1.8, 0.9, 1.8, 0.6, 1.3) 

 

 

5.6 Discussion 

 

This study has provided data modeling using 

piecewise constant model with Rayleigh noise. In 

addition, this study has also produced an algorithm 

to estimate the parameters of the piecewise constant 

model with Rayleigh noise. The first synthesis data 

(Fig. 1) was created using the parameter values in 

Table 1 (second row). In this study, 𝑘𝑚𝑎𝑥 = 20 and 

𝛼 = 0.20. The synthesis data in Fig.1 is modeled as 

a piecewise constant model with Rayleigh noise. 

Furthermore, this synthesis data has been used to 

rediscover the value of the model parameters. The 

model parameters have been estimated using the 

reversible jump MCMC algorithm. The parameter 

estimators that have been generated by this 

algorithm are presented in Table 2 (second row). 

When comparing the parameter estimators and 

parameter values, the parameter estimators in Table 

2 (second row) are close to the parameter values in 

Table 1 (second row). The same results were also 

found for the second synthesis data (Fig. 4) and the 

third synthesis data (Fig. 7). This simulation study 

shows that the reversible jump MCMC algorithm 

can be used to estimate the model parameters. 

If the results of this study are compared with 

previous studies. In  [6-7], previous researchers used 

gamma noise. But in this study, the author uses noise 

with Rayleigh distribution. Thus, this article 

complements the results of previous studies. This 

article provides an alternative for modeling data that 

has Rayleigh noise. In terms of noise, the Rayleigh 

distribution is a special case of the Weibull 

distribution, so in general the research can be 

extended to the piecewise constant model with 

Weibull noise.  

 

6. CONCLUSIONS 

 

This research has studied the parameter 

estimation procedure of the piecewise constant 

model with Rayleigh noise based on the reversible 

jump MCMC algorithm. The results have shown that 

the reversible jump MCMC algorithm can 

simultaneously estimate the parameters of the 

piecewise constant model with Rayleigh noise. In 

addition, the research results can add to the literature 

related to signal modeling using piecewise constant 

models with Rayleigh noise. Further research can be 

extended to the estimation procedure of the 
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piecewise constant with Weibull noise.  
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