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ABSTRACT: Transport of contaminant species undergoing chemical reactions in groundwater aquifers is a 
complex physical and biochemical process. Simulating this transport process involves solving complex nonlinear 
equations and requires huge computational time for a given aquifer study area. Development of optimal 
remediation strategies in aquifers may require repeated solution of such complex numerical simulation models. 
To overcome this computational limitation and improve the computational feasibility of large number of 
repeated simulations, Genetic Programming based trained surrogate models are developed to approximately 
simulate such complex transport processes. Transport process of acid mine drainage, a hazardous pollutant is 
first simulated using a numerical simulated model: HYDROGEOCHEM 5.0 for a study area resembling a mine 
site. Simulation model solution results for an illustrative contaminated aquifer site is then approximated by 
training and testing a Genetic Programming (GP) based surrogate model. To decrease the total number of GP 
formulations, the coordinates of observation locations are implemented as input data in the surrogate models. 
Comparison of the surrogate models and numerical simulation results show that the surrogate models can 
provide acceptable approximations of this complex transport process in contaminated groundwater aquifers. 
 
Keywords: Biochemical transport simulation, Genetic programming, Acid mine drainage, contaminated aquifers, 
surrogate models. 
 
1. INTRODUCTION 

 
Simulation of flow and transport processes for 

chemically reactive species in contaminated 
groundwater aquifers generally require extensive 
computational time. When repeated simulations are 
necessary to implement and solve optimization 
based decision model, e.g., to develop optimal 
aquifer management strategies, the computational 
burden may determine the feasibility of any 
methodology. To address this, trained surrogate 
models approximating the simulation model can be 
developed. These surrogate models are generally 
computer programs describing the relationship 
between output values (e. g., pollutant concentration 
at different locations and times) and input values 
(e.g., pollutant flux at potential pollutant source 
locations). Simulation of reactive species transport 
process (i.e. Acid mine drainage (AMD)) in 
contaminated groundwater aquifers is complex and 
computationally intensive. Therefore it is useful to 
develop trained and tested surrogate models to 
approximately simulate the transport processes. In 
this study, the flow and biochemical transport 
simulation model is replaced by trained genetic 
programming (GP) as surrogate models which can 
reduce consumption time. 

An accurate description of the contaminant 
transport in aquifers is obtained if both chemical and 

physical behaviors of contaminant species are 
incorporated. Solution of the transport process with 
chemical reactive species in groundwater was 
addressed by [1] and developed by [2-4]. One 
approach couples the non-reactive transport model 
MT3DMS [5] with various chemical reactive 
transport simulators [6-10]. HYDROGEOCHEM  
[11] was the first comprehensive three dimensional 
simulator of hydrogeologic transport and 
geochemical reaction in saturated-unsaturated media 
[11]. This code was developed to solve 
comprehensive heat, reactive geochemical and 
biochemical transport [12]. The proposed 
methodology uses HYDROGEOCHEM 5.0 (HGCH) 
as the simulation model for AMD transport process 
with chemically reactive pollutants for an illustrative 
study area with synthetic hydro-geochemical data. 
These simulation results are then utilized to train and 
test a GP based surrogate model.  

AMD, which is the result of wastewater from 
metal mines or coal mines containing sulphur 
compounds [13], is hazardous contaminant sources 
for groundwater. Various sulphide minerals 
constitute AMD based on their chemical weathering 
reactions such as pyrite (FeS2), pyrrhotite (Fe1-xS), 
chalcopyrite (CuFeS2), arsenopyrite (FeAsS), etc. 
[14]. Beside mining activities, rocks’ surface 
weathering in presence of water, oxygen and 
microorganisms produces AMD. These 
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contaminants are considerable threats for water 
resources. In this study, the transport process of 
copper and sulphate, hazardous AMD’s compounds, 
along with their chemical reactions through the 
aquifer is considered.  

A response matrix approach as an initial linear 
surrogate model was earlier used to simulate the 
aquifer responses [15], [16]. More recently 
proposed non-linear surrogate models include 
Artificial Neural Network (ANN)[17] and Genetic 
Programming (GP) based surrogate models [18]. 
References [19-21] developed groundwater 
simulation methodology by replacing numerical 
simulation model with ANN-base surrogate models. 
Using trained ANN-based surrogate modelling 
approach obtains the optimal model formulation by 
trial and error [19]. Reference [20] predict the 
complex flow and transport processes using ANN 
as an approximate simulation for replaces the three 
dimensional numerical simulation model in a 
coastal aquifer. Reference [21] replaced the three 
dimensional numerical simulation model with 
trained ANN-based surrogate models for 
approximating density depended saltwater intrusion 
process in coastal aquifer. 

 Reference [22] implemented ANN as a  
surrogate model to replace the flow and transport 
simulation in the non-dominated front search 
process as well as to save a huge amount of 
computational time. References [23] and [24] used 
GP as meta-model for simulation of pumping 
saltwater patterns in an optimization framework. 
Reference [24] demonstrated GP model have 
several advantages compared with conventional 
surrogate models and ANN surrogate models. 
These advantages are: simpler surrogate models, 
optimizing the model structure more efficiently, 
and parsimony of parameters. Replacing simulation 
groundwater model by GP-based ensemble 
surrogate models in linked simulation-optimization 
developed methodology was addressed by [24, 25] 
which improve the computational efficiency and 
obtains reasonably accurate results under aquifer 
hydrogeologic uncertainties. Use of GP surrogate 
model for groundwater contamination management, 
and development of a monitoring network design 
feedback methodology to identify unknown source 
characteristics was addressed by [26]. 

In this study our main objective is to develop  
genetic programming based surrogate models to 
approximately simulate the complex transport 
process in a complex hydrogeologic system with 
reactive chemical species, and to illustrate its 
efficiency and reliability in a contaminated aquifer 
resembling an abandoned mine site.   

 
2. METHODOLOGY 

 
The current study proposes and evaluates a 

methodology, which includes two steps. In the 1st 
step, a numerical simulation model with specified 
boundary conditions, specified existing initial 
hydraulic and geochemical conditions, and with 
estimated hydrogeologic and geochemical 
parameter values is used to simulate flow and 
biochemical transport processes for hazardous 
compounds of AMD such as sulfate and copper, in 
a given contaminated aquifer. The specified 
illustrative aquifer resembles an abandoned (no 
longer in operation) mine site in Queensland, 
Australia, where similar contaminants are present 
and similar topologic and hydrogeologic conditions 
exist. In the second step, trained GP models are 
implemented to obtain pollution concentration at 
specified locations of the contaminated aquifer. 
These concentrations obtained using the surrogate 
model and those obtained by solving the 
implemented numerical three dimensional transient 
reactive contaminant transport simulation model 
(HGCH) are compared to evaluate the potential 
applicability of the GP based surrogate models.  

 
2.1 Simulation Model for Groundwater Flow 

and Biogeochemical Transport  
 
The HGCH flow and transport simulation model 

consisting of the flow simulation model and physio-
chemical transport model to obtain numerical 
solutions. It is a computer program that numerically 
solves the three-dimensional groundwater flow and 
contaminant transport equations for a porous 
medium. The finite-element method is used in this 
simulation model. The general equations for flow 
through saturated-unsaturated media are obtained 
based on following equations [11]:  

 
𝛒𝛒
𝛒𝛒𝟎𝟎
𝐅𝐅 𝛛𝛛𝛛𝛛
𝛛𝛛𝛛𝛛

= 𝛁𝛁. �𝐊𝐊. �𝛁𝛁𝛁𝛁 + 𝛒𝛒
𝛒𝛒𝟎𝟎
𝛁𝛁𝛁𝛁�� + 𝛒𝛒∗

𝛒𝛒𝟎𝟎
𝐪𝐪                    

(1) 
 

K is the Hydraulic conductivity tensor (L/T) 
and F is the generalized storage coefficient (1/L) 
defined as: 

 
𝐅𝐅 = 𝛂𝛂′ 𝛉𝛉

𝐧𝐧𝐞𝐞
+ 𝛃𝛃′𝛉𝛉 + 𝐧𝐧𝐞𝐞

𝐝𝐝𝐝𝐝
𝐝𝐝𝐝𝐝

                                       (2) 

𝐊𝐊 = 𝛒𝛒𝛒𝛒
𝛍𝛍
𝐤𝐤 = (𝛒𝛒/𝛒𝛒𝟎𝟎)

(𝛍𝛍/𝛍𝛍𝟎𝟎)
𝛒𝛒𝟎𝟎𝐠𝐠
𝛍𝛍𝟎𝟎
𝐤𝐤𝐬𝐬 𝐤𝐤𝐫𝐫 = (𝛒𝛒/𝛒𝛒𝟎𝟎)

(𝛍𝛍/𝛍𝛍𝟎𝟎)
𝐊𝐊𝐬𝐬𝐬𝐬 𝐤𝐤𝐫𝐫           

(3) 
 

Where: 
𝛉𝛉: effective moisture content (L3/ L3); 
h: pressure head (L); 
t: time (T); 
z: potential head (L); 
q: source or sink of fluid [(L3/ L3)/T]; 
𝛒𝛒𝟎𝟎 : fluid density without biochemical 

concentration (M/ L3); 
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𝛒𝛒 : fluid density with dissolved biochemical 
concentration (M/ L3);  

ρ*: fluid density of either injection (= ρ*) or 
withdraw (= ρ) (M/ L3); 

𝛍𝛍𝟎𝟎 : fluid dynamic viscosity at zero 
biogeochemical concentration [(M/L)/T]; 

µ: the fluid dynamic viscosity with dissolved 
biogeochemical concentrations [(M/L)/T]; 

 α’: modified compressibility of the soil matrix 
(1/L); 

 ß: modified compressibility of the liquid (1/L); 
ne: effective porosity (L3/L3); 
S: degree of effective saturation of water; 
G: is the gravity (L/T2); 
k: permeability tensor (L2); 
ks: saturated permeability tensor (L2); 
Kso: referenced saturated hydraulic conductivity 

tensor (L/T); 
kr: relative permeability or relative hydraulic 

conductivity (dimensionless); 
The general transport equation using advection, 

dispersion/diffusion, source/sink, and 
biogeochemical reaction as the major transport 
processes can be written as follows: 

 
𝐃𝐃
𝐃𝐃𝐃𝐃 ∫ 𝛉𝛉𝐂𝐂𝐢𝐢𝐝𝐝𝐝𝐝 = −∫ 𝐧𝐧. (𝛉𝛉𝐂𝐂𝐢𝐢)𝐕𝐕𝐢𝐢𝐝𝐝𝐝𝐝 − ∫ 𝐧𝐧. 𝐉𝐉𝐢𝐢𝐝𝐝𝐝𝐝 +𝚪𝚪𝚪𝚪𝐯𝐯

∫ 𝛉𝛉𝐫𝐫𝐢𝐢𝐝𝐝𝐝𝐝 + ∫ 𝐌𝐌𝐢𝐢𝐝𝐝𝐝𝐝, 𝐢𝐢 ∈ 𝐌𝐌𝐯𝐯𝐯𝐯                                     
(4) 

 
𝐂𝐂𝐢𝐢: the concentration of the i-th species in mole 

per unit fluid volume (M/L3); 
ν: the material volume containing constant 

amount of media (L3); 
𝚪𝚪: the surface enclosing the material volume ν 

(L2); 
n:the outward unit vector normal to the surface; 
Ji: the surface flux of the i-th species due to 

dispersion and diffusion with respect to relative fluid 
velocity [(M/T)/L2]; 

θr i: the production rate of the i-th  species per 
unit medium volume  due to all biogeochemical 
reactions [(M/L3)/T]; 

Mi: the external source/sink rate of the i-th 
species per unit medium volume [(M/L3)/T]; 

M: the number of biogeochemical species; 
Vi: the transporting velocity relative to the solid 

of the i-th biogeochemical species (L/T). 
 
2.2 Surrogate Model 

 
Genetic Programming (GP) models are used in 

this study to develop surrogate models to 
approximately simulate flow and transport 
processes. Trained GP models are developed using 
the simulated response of the aquifer to randomly 
generated source fluxes. The selected GP models 
can replace the numerical simulation model to obtain 
concentration of contaminants in observation wells. 

GP, a branch of genetic algorithms, is an 
evolutionary algorithm-based methodology inspired 
by biological evolution to find computer programs 
that perform a user-defined task. Essentially, GP is a 
set of instructions and a fitness function to measure 
how well a computer model has performed a task.  

GP utilizes a set of input-output data which are 
generated randomly by simulation model. The 
numerical Simulation model creates M number of 
out-put sets from M number of input sets, which is 
generated by using random Latin hypercube 
sampling in a defined range. The performance of 
each GP program is evaluated in terms of training, 
testing, and validation using the set of input-output 
patterns. The testing data evaluates the model 
performance for new data without developing a new 
fitness function. To compare the GP and HGCH 
results at the same location, the normalized error is 
used as defined by the following equation: 

 

𝒇𝒇 = ∑ ∑ 𝑨𝑨𝑨𝑨𝑨𝑨(𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝒊𝒊𝒊𝒊𝒊𝒊
𝒌𝒌 −𝑪𝑪𝑪𝑪𝑪𝑪𝒊𝒊𝒊𝒊𝒊𝒊

𝒌𝒌 )
𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝒊𝒊𝒊𝒊𝒊𝒊

𝒌𝒌
𝒏𝒏𝒏𝒏𝒏𝒏
𝒊𝒊𝒊𝒊𝒊𝒊=𝟏𝟏

𝒏𝒏𝒏𝒏
𝒌𝒌=𝟏𝟏                      (5) 

 
ABS: the absolute value of 
𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐢𝐢𝐢𝐢𝐢𝐢𝐤𝐤 : the concentration simulated by the 

HGCCH model at observation monitoring location 
iob and at the end of time period k (ML-3). 

𝐂𝐂𝐂𝐂𝐂𝐂𝐢𝐢𝐢𝐢𝐢𝐢𝐤𝐤 : the concentration estimated by the GP 
models at observation monitoring location iob and at 
the end of time period k (ML-3). 

nt: the total number of monitoring time steps. 
nob: the total number of observation wells. 
 

2.3 Performance Evaluation of Developed 
Methodology 
 
To evaluate the performance of the proposed 

surrogate models and compare it with actual 
simulation model solution results, a hypothetical 
homogeneous and isotropic aquifer is utilized as an 
illustrative example as shown in Fig. 1. The grey 
area represent the contaminant sources S(i) which 
include distributed and point source. The 
monitoring networks are shown in Fig 2. Cells 
marked with green circle, wells set 1, are the grid 
locations containing a monitoring well which their 
data are used to train, test and validate GP models’ 
formulations. Moreover, Cells marked with yellow 
and blue circle are the grid locations containing a 
monitoring well with their coordinates within, and 
beyond range of location coordinates implemented 
in GP formulations, respectively. Groundwater flow 
and solute transport process is simulated with 
hydro-geological parameters as given in Table 1. 
The synthetic concentration measurement data used 
for the specified polluted aquifer facilitates 
evaluation of the developed methodology. 
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Fig.1 Example definition and flow boundary 
conditions (Total Head: A= 37 m, B= 40 m, C= 
33m, D = 30 m; Level (F)= 37m) 

 

 
 
Fig. 2       Location of concentration measurements 
In the incorporated scenario, copper (Cu++) and 
sulfate (SO4

--) are introduced as initial pollutants in 
sources, which are involved chemical reactions, 
which are showed in table 2. 
 
Table 1 Aquifer’s properties 
 
Aquifer Parameter Unit Value 
Length of study area m 100 
Width of study area m 100 
Thickness of study area m 50 
Node numbers  387 
Element numbers  1432 
Hydraulic conductivity, K m/d 10 
Effective porosity, Ɵ  0.3 
Longitudinal dispersivity, αL m/d 6 
Transverse dispersivity, αT m/d 3 
Horizontal anisotropy  1 
Initial contaminant concentration g/lit 0-100 
Diffusion coefficient  0 
 
Table 2 Chemical reactions during the 
contaminants’ transport 
 

Chemical Reaction Equations Constant Rate 
(Log k) 

Cu++ + H2O ↔ Cu(OH)+ + H+ -9.19 
Cu++ + 2H2O ↔ Cu(OH)2 + 2H+ -16.19 
Cu++ + 3H2O ↔ Cu(OH)3

- + 3H+ -26.9 
Cu++ + SO42- ↔ CuSO4 2.36 
 

The source activities are specified for eight 
similar time intervals of 100 days each. The actual 
pollutant concentration from each of the sources is 
presumed to be constant over a stress period. The 
pollutant concentration of copper as well as sulfate 
in the pit is represented as Cpit(i) and Spit(i) 
respectively, where i represents the stress period 
number, and also C(i) and S(i) represent copper and 
sulfate concentrations in the point sources,  
respectively at different time steps. An overall of 
sixteen concentration values for each contaminant 
are considered as explicit variables in the simulation 
model. The concentration measurements are 
simulated for 800 days since the start of the 
simulation. The pollutant concentration 
measurement at the observation wells starts at time 
t=100 days and are measured after every 100 days at 
all the observation locations till t=800 days. Figure 3 
shows the pollutant concentration profile in the 
study area. 
 
Genetic Programming formulation 
 

Copper and sulfate concentration in sources are 
the two main input data sets which consist of sets of 
concentration values for each of the 32 values, 
Cpit(i) and C(i) as well as Spit (i) and S(i) (i=1 to 8), 
representing two sources, two kind of contaminants,  
and eight active stress periods. Although 128 GP 
formulations need to be generate in this scenario, the 
well coordinates are used as input data for GP 
models to decrease the number of GP models 
required. Therefore the numbers of models are 
reduced to 8 models for copper, as well as eight 
models for sulfate which are generated based on 
pollution concentration in sources and locations of 
data measurement. The corresponding output data 
consists of the resulting pollutant concentration 
measurements due to these source fluxes at all the 10 
monitoring well at time t1 =100, t2 =200, t3 =300, 
t4 =400, t5 =500, t6 =600, t7 =700 and t =800 days. 
1,000 data patterns comprising of inputs and the 
corresponding outputs are used in the GP models. 
Out of total data patterns, 40 % is used for training, 
30 % for validation, and the remaining 20 % for 
testing. A Latin Hypercube distribution (MATLAB 
R2020b) was used for generating the random 
pollution values ranging between 0 g/lit and 100 
g/lit, as the input. The corresponding output data 
was simulated using HGCH code. DiscipulusTM 
(RMLTechnologies, Inc.) is used for training, 
validation and testing of the GP models.  
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3. RESULTS AND DISCUSSION 

 
The output data from HGCH are compared with 

GP model results at three arbitrary monitoring 
networks. The coordinates of first set of wells in the 
first network are implemented for GP models 
creation, and the coordinates of second and third 
monitoring networks are within and beyond the 
range of first well’s location, respectively. These 
comparison results are shown in Figs 3, 4 and 5. 
Each time step is marked on the x-axis. Each of the 
bars corresponds to contaminant concentration in 
each well, obtained by HGCH and GP models. Fig 3 
shows the HGCH and GP results in different time 
steps for wells set 1.  Fig 4 and Fig 5 demonstrate 
these results for wells set 2 and set 3, respectively.  

Figures 3, 4 and 5 show that the results obtained 
from GP models are very close to the simulated 
results obtained using a numerical simulation model. 
Although few wells’ coordinates are used as input 
data for GP models, these models can estimate the 
concentration for all locations in the aquifer such as 
wells set 3, which shows acceptable results (Fig 5).  

Figure 6 shows the summation of normalized 
error for each monitoring network in each period of 
time. As expected, generally GP models provide 
relatively accurate results for well set 1. However, 
errors for data set 2 and 3 are also small even though 
complex contaminant transport process with 
chemical reaction of species is involved in the 
evaluated scenario.  

 
 
Fig. 3 Comparison data in wells set 1 
 

 
 
Fig. 4 Comparison data in wells set 2 
 
4. CONCLUSION 
 

The developed methodology based on GP 
models for approximate simulation of the chemically 
reactive multiple species transport process appears 
to result is acceptable approximate representation of 
the transport process in a contaminated aquifer 
resembling an abandoned mine site. The developed 
GP models result in reducing the computational time 
and complexity, and appear to provide acceptable 
results. However from the limited results in this 
study, it cannot be concluded if the surrogate models 
can replace the simulators in all situations. This 
method can be applied to real scenarios of 
contaminated aquifers where especially repeated 
running of numerical simulation models is required, 
e.g., in linked simulation-optimization model where 
computational time is a major constraint. GP based 
surrogate models can increase efficiency and 
feasibility of developing optimal management 
strategies for complex contaminated aquifers such as 
mine sites.  
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Fig. 5 Compare data in wells set 3 
 

 
 
Fig. 6 Normalized errors for all wells sets 
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