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ABSTRACT: Submerged breakwaters are designed to reduce the wave run-up in coastal areas. The 
effectiveness can be modelled using numerical methods. The Nonlinear Shallow Water Equation has been 
applied as the fundamental model. The equation has been solved analytically and numerically to obtain the 
run-up coefficient. The results from the analytical and numerical solutions have been combined with published 
experimental data to validate the analytical model and numerical scheme. It is found that both analytical and 
numerical results are in a very good agreement with the experimental data with relatively small errors. 
Furthermore, the numerical scheme has been implemented to observe the influence of the breakwater’s 
characteristics, such as its height and length, towards the reduction of wave run-up. From the observation, the 
optimum size of the breakwater is determined to reduce the wave run-up as much as possible. The results can 
be applied to future design of submerged breakwaters for reducing long wave run-up. 
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1. INTRODUCTION 
 

One of the most dangerous disasters in coastal 
areas is tsunami. For example, the Indian Ocean 
tsunami in 2014 and the Japan tsunami in 2011 
wiped out almost everything in vicinity. Several 
researchers have studied the impact of tsunami such 
as in [1-3]. They analyzed the bathymetric data 
before and after the tsunami using the rapid visual 
method. From these unfortunate disasters, the cause 
of tsunami wave has been studied using 
experimental and analytical methods such as in [4-
9]. Many researchers have done other studies about 
wave run-up using mathematical models, such as 
[10-14]. One of the ways to diminish the severity of 
wave run-up is to lower the amplitude of the 
incoming waves. There are several methods to 
reduce the wave amplitude; one of them is using the 
submerged breakwater. Some researchers have 
studied about the submerged breakwater 
experimentally such as [15,16]. However, 
experimental approach is costly, subject to high 
overheads, and impractical. Consequently, other 
researchers attempted to use mathematical models 
to study breakwater as in [17-25]. Their present 
studies have suggested that submerged breakwater 
can reduce the wave amplitude. Nevertheless, the 
majority of those studies utilise potential theory or 
mild slope equations which are relatively difficult 
to be solved analytically and numerically. In 
another study, Fatemeh [26] discusses the effect of 
the submerged breakwater on wave energy 
dissipation. The model is based on RANS equation 
inclosure with a standard k-ϵ turbulence model. 

However, this method also has several challenges 
which are the lengthy computational time and its 
complicated derivatives. 

In addition to all of the shortcomings above, it is 
also not yet known the effect of submerged 
breakwater towards wave run-up reduction. 
Therefore, in this research, the effectiveness of a 
rectangular submerged breakwater to minimize 
wave run-up will be investigated through a 
mathematical model, the Non-Linear Shallow 
Water Equation. This model will be solved 
analytically obtain maximum wave run-up. Then, 
the numerical scheme used will be derived by the 
finite volume on a staggered grid method that is free 
from damping error [27-32]. The nonlinear 
mathematical model was evaluated by comparing 
with the results from [33], they evaluated the 
evolution of nonlinear long waves in converging-
diverging channels of variable depth and width. 
Furthermore, the numerical scheme obtained will be 
compared with the experimental data from [34,11]. 
In the end, the results of the simulation will be able 
to determine the effectiveness of submerged 
breakwater to wave run-up reduction. 

 
2. MATHEMATICAL MODEL 

 
In this research, the authors observed a domain 

with a rectangular submerged breakwater over a flat 
bottom and a single sloping beach. The incoming 
waves propagate from the sea towards the coast 
over the breakwater and approach the sloping 
beach. Furthermore, the vertical height above the 
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still-water level along the beach or also known as 
the wave run-up is measured. 

First, the observation domain is divided into 
four regions: Ω1, Ω2, Ω3, and Ω4, where Ω1 and Ω3 
have flat bottom topography, Ω2 has a rectangular 
breakwater over a flat bottom topography, and Ω4 
has the sloping beach bottom topography (see Fig. 
1). Hence, the depth function is described as 
follows: 
 

𝒅𝒅(𝒙𝒙) = �

 𝒉𝒉𝟎𝟎,         𝒊𝒊𝒊𝒊     𝒙𝒙 ∈ 𝛀𝛀𝟏𝟏
 𝒉𝒉𝟏𝟏,        𝒊𝒊𝒊𝒊     𝒙𝒙 ∈ 𝛀𝛀𝟐𝟐
 𝒉𝒉𝟎𝟎,        𝒊𝒊𝒊𝒊     𝒙𝒙 ∈ 𝛀𝛀𝟑𝟑
 𝜶𝜶𝒙𝒙,       𝒊𝒊𝒊𝒊     𝒙𝒙 ∈ 𝛀𝛀𝟒𝟒

        (1) 

 
where 𝒉𝒉𝟎𝟎  is a positive constant representing the 
water depth in 𝛀𝛀𝟏𝟏,𝛀𝛀𝟑𝟑 , 𝒉𝒉𝟏𝟏  is water depth that is 
measured from the peak of the breakwater to the 
still water level, and 𝜶𝜶 is the angle of the slope. 

 

 
 

Fig.1 Problem sketch for mathematical model 
 

Here, the Non-Linear Shallow Water Equations 
(NSWE) is used to study the reduction of the wave 
run-up by the submerged breakwater. Let 𝜼𝜼(𝒙𝒙, 𝒕𝒕) 
and 𝒖𝒖(𝒙𝒙, 𝒕𝒕)  denote surface elevation and average 
horizontal velocity, respectively. Notation 𝒈𝒈 is for 
the gravitational acceleration. The water thickness 
is defined by 𝒉𝒉(𝒙𝒙, 𝒕𝒕) = 𝜼𝜼(𝒙𝒙, 𝒕𝒕) + 𝒅𝒅(𝒙𝒙), with 𝒅𝒅(𝒙𝒙) 
is the water depth measured from the still water 
level. Therefore, the NSWE reads as: 

 
 𝜼𝜼𝒕𝒕 + (𝒉𝒉𝒉𝒉)𝒙𝒙 = 𝟎𝟎, (2) 
  
 𝒖𝒖𝒕𝒕 + 𝒖𝒖𝒖𝒖𝒙𝒙 + 𝒈𝒈𝜼𝜼𝒙𝒙 = 𝟎𝟎. (3) 

 
where Eq. (2) and Eq. (3) represent the mass 
conservation and momentum balance equation, 
respectively. 
 
3. ANALYTICAL SOLUTION 
 

In this section, an analytical solution will be 
derived from the Linearized-SWE to obtain the 
maximum height of wave run-up. Assuming that the 

surface elevation is relatively small compared to the 
water depth 𝜼𝜼 << 𝒅𝒅, thus 𝒉𝒉 = 𝒅𝒅, yields in:  

 
𝜼𝜼𝒕𝒕 + (𝒅𝒅𝒅𝒅)𝒙𝒙 = 𝟎𝟎, (4) 

  
𝒖𝒖𝒕𝒕 + 𝒈𝒈𝜼𝜼𝒙𝒙 = 𝟎𝟎. (5) 

 
 The analytical solution for surface elevation 

and horizontal velocity will be derived in each of 
the four domains, according to the following 
problem sketch: 

 

 
 

Fig.2 Domain description for deriving the analytical 
solution 

 
Here, the authors use variable separation method by 
assuming the incoming wave is a monochromatic 
wave with a certain frequency (𝝎𝝎 ). 𝜼𝜼(𝒙𝒙, 𝒕𝒕)  and 
𝒖𝒖(𝒙𝒙, 𝒕𝒕) can be written as follows:  
 
𝜼𝜼(𝒙𝒙, 𝒕𝒕) = 𝑭𝑭(𝒙𝒙)𝒆𝒆−𝒊𝒊𝝎𝝎𝒕𝒕, (6) 
 
𝒖𝒖(𝒙𝒙, 𝒕𝒕) = 𝑮𝑮(𝒙𝒙)𝒆𝒆−𝒊𝒊𝝎𝝎𝒕𝒕. (7) 
 

First, the analytical solution at the domain 𝛀𝛀𝟏𝟏 
will be derived. Consider the following equations:  

 
 𝜼𝜼𝟏𝟏(𝒙𝒙, 𝒕𝒕) = 𝑭𝑭𝟏𝟏(𝒙𝒙)𝒆𝒆−𝒊𝒊𝝎𝝎𝒕𝒕, (8) 
  
 𝒖𝒖𝟏𝟏(𝒙𝒙, 𝒕𝒕) = 𝑮𝑮𝟏𝟏(𝒙𝒙)𝒆𝒆−𝒊𝒊𝝎𝝎𝒕𝒕. (9) 

 
By substituting Eq. (8) and (9) to the mass 
conservation equation (see Eq. (4)) and momentum 
balance equation (see Eq. (5)), the following 
equations are obtained: 
 
𝑭𝑭𝟏𝟏(𝒙𝒙) = 𝒉𝒉𝟎𝟎

𝒊𝒊𝝎𝝎
𝑮𝑮𝟏𝟏  ′(𝒙𝒙), (10) 

 
𝑮𝑮𝟏𝟏(𝒙𝒙) = 𝒈𝒈

𝒊𝒊𝝎𝝎
𝑭𝑭𝟏𝟏  ′(𝒙𝒙). (11) 

 
Differentiate Eq. (11) with respect to 𝒙𝒙,  
 
𝑮𝑮𝟏𝟏  ′(𝒙𝒙) = 𝒈𝒈

𝒊𝒊𝝎𝝎
𝑭𝑭𝟏𝟏  ′′(𝒙𝒙). (12) 
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Substituted Eq. (11) to Eq. (10) results in the 
following ordinary second order differential 
equation:  
 
𝑭𝑭𝟏𝟏  ′′(𝒙𝒙) + 𝒘𝒘𝟐𝟐

𝒈𝒈𝒉𝒉𝟎𝟎
𝑭𝑭𝟏𝟏(𝒙𝒙) = 𝟎𝟎, (13) 

 
where 𝒉𝒉𝟎𝟎  denotes the water depth at 𝛀𝛀𝟏𝟏 . The 
solution of Eq. (13) is  

 

𝑭𝑭𝟏𝟏(𝒙𝒙) = 𝑨𝑨𝒊𝒊𝒆𝒆
( 𝒘𝒘
�𝒈𝒈𝒉𝒉𝟎𝟎

𝒊𝒊𝒊𝒊)
+ 𝑨𝑨𝒓𝒓𝒆𝒆

(− 𝒘𝒘
�𝒈𝒈𝒉𝒉𝟎𝟎

𝒊𝒊𝒊𝒊)
. (14) 

  
where 𝑨𝑨𝒊𝒊 is the amplitude of the incoming wave and 
𝑨𝑨𝒓𝒓 is the amplitude of the reflection wave. Thus, the 
analytical solution for wave elevation at 𝛀𝛀𝟏𝟏 is  
 

𝜼𝜼𝟏𝟏(𝒙𝒙, 𝒕𝒕) = 𝑨𝑨𝒊𝒊𝒆𝒆
( 𝒘𝒘
�𝒈𝒈𝒉𝒉𝟎𝟎

𝒙𝒙−𝝎𝝎𝒕𝒕)𝒊𝒊
+ 𝑨𝑨𝒓𝒓𝒆𝒆

(− 𝒘𝒘
�𝒈𝒈𝒉𝒉𝟎𝟎

𝒙𝒙−𝝎𝝎𝒕𝒕)𝒊𝒊
. (15) 

 
Next, by using the same technique, the solution 

for surface elevation in domain 𝛀𝛀𝟐𝟐 is as follow: 
 

𝜼𝜼𝟐𝟐(𝒙𝒙, 𝒕𝒕) = 𝒂𝒂𝒆𝒆
( 𝒘𝒘
�𝒈𝒈𝒉𝒉𝟏𝟏

𝒙𝒙−𝝎𝝎𝒕𝒕)𝒊𝒊
+ 𝒃𝒃𝒆𝒆

(− 𝒘𝒘
�𝒈𝒈𝒉𝒉𝟏𝟏

𝒙𝒙−𝝎𝝎𝒕𝒕)𝒊𝒊
. (16) 

  
Moving right along, the analytical solutions for 
domain 𝛀𝛀𝟑𝟑  will be derived using the same 
techniques as the calculations in domain 𝛀𝛀𝟏𝟏. Thus, 
the analytical solution for wave elevation at 𝛀𝛀𝟑𝟑 is:  

 

𝜼𝜼𝟑𝟑(𝒙𝒙, 𝒕𝒕) = 𝑩𝑩𝒊𝒊𝒆𝒆
( 𝒘𝒘
�𝒈𝒈𝒉𝒉𝟎𝟎

𝒙𝒙−𝝎𝝎𝒕𝒕)𝒊𝒊
+ 𝑩𝑩𝒓𝒓𝒆𝒆

(− 𝒘𝒘
�𝒈𝒈𝒉𝒉𝟎𝟎

𝒙𝒙−𝝎𝝎𝒕𝒕)𝒊𝒊
, (17) 

 
where 𝒉𝒉𝟎𝟎 denotes the water depth at 𝛀𝛀𝟏𝟏 and 𝛀𝛀𝟑𝟑. 

Lastly, in order to get the analytical solution in 
domain 𝛀𝛀𝟒𝟒 , note that the depth of water in the 
domain 𝛀𝛀𝟒𝟒 is expressed by 𝒅𝒅(𝒙𝒙) = 𝜶𝜶𝒙𝒙. Hence, the 
shallow water equation can be expressed as:  

 
𝜼𝜼𝒕𝒕 + ((𝒅𝒅 + 𝜼𝜼)𝒖𝒖)𝒙𝒙 = 𝟎𝟎, (18) 

  
𝒖𝒖𝒕𝒕 + 𝒈𝒈𝜼𝜼𝒙𝒙 = 𝟎𝟎. (19) 

 
Eq. (18) and Eq. (19) can be simplified to: 

 
(𝜼𝜼𝒕𝒕)𝒕𝒕 − 𝒈𝒈(𝒅𝒅𝜼𝜼𝒙𝒙)𝒙𝒙 = 𝟎𝟎. (20) 

 
Then, 𝜼𝜼𝟒𝟒(𝒙𝒙, 𝒕𝒕) can be stated as:  

 
𝜼𝜼𝟒𝟒(𝒙𝒙, 𝒕𝒕) = 𝑨𝑨(𝒙𝒙)𝒆𝒆−𝒊𝒊𝝎𝝎𝒕𝒕. (21) 

  
Substitute the Eq. (21) to the Eq. (20), yields in: 
 
𝒈𝒈𝜶𝜶(𝒙𝒙(𝑨𝑨𝒙𝒙)𝒙𝒙 + 𝑨𝑨𝒙𝒙) + 𝝎𝝎𝟐𝟐𝑨𝑨 = 𝟎𝟎. (22) 

 
The solution of the Eq. (20) contains the Bessel 
function as follow:  
 

𝑨𝑨(𝒙𝒙) = 𝑪𝑪𝟏𝟏𝑱𝑱𝟎𝟎(�𝟒𝟒𝝎𝝎𝟐𝟐𝒙𝒙
𝒈𝒈𝜶𝜶

) + 𝑪𝑪𝟐𝟐𝒀𝒀𝟎𝟎(�𝟒𝟒𝝎𝝎𝟐𝟐𝒙𝒙
𝒈𝒈𝜶𝜶

). (23) 

 
At the shore, the amplitude value is finite and 

given that 𝒀𝒀𝟎𝟎(�𝟒𝟒𝝎𝝎𝟐𝟐𝒙𝒙
𝒈𝒈𝜶𝜶

) ≠ 𝟎𝟎, hence 𝑪𝑪𝟐𝟐 = 𝟎𝟎. 

Therefore, the solution of Eq. (23) is:  
 

𝜼𝜼𝟒𝟒(𝒙𝒙, 𝒕𝒕) = 𝑪𝑪𝟏𝟏𝑱𝑱𝟎𝟎(�𝟒𝟒𝝎𝝎𝟐𝟐𝒙𝒙
𝒈𝒈𝜶𝜶

)𝒆𝒆−𝒊𝒊𝒊𝒊𝒊𝒊. (24) 

 
Moreover, at the shore, 𝜼𝜼𝟒𝟒(𝟎𝟎, 𝒕𝒕) = 𝑪𝑪𝟏𝟏𝒆𝒆−𝒊𝒊𝒊𝒊𝒊𝒊  with 
𝑪𝑪𝟏𝟏  as the maximum value. Hence, 𝑪𝑪𝟏𝟏  is the 
maximum run-up height which will be denoted by 
R. Thus Eq. (24) can be written as:  

 

𝜼𝜼𝟒𝟒(𝒙𝒙, 𝒕𝒕) = 𝑹𝑹𝑱𝑱𝟎𝟎(�𝟒𝟒𝝎𝝎𝟐𝟐𝒙𝒙
𝒈𝒈𝜶𝜶

)𝒆𝒆−𝒊𝒊𝒊𝒊𝒊𝒊. (25) 

  
Then, since continuity condition for 𝜼𝜼 and 𝝏𝝏𝜼𝜼

𝝏𝝏𝝏𝝏
 have 

to be satisfied at 𝒙𝒙 = 𝑳𝑳𝟏𝟏, 𝒙𝒙 = 𝑳𝑳𝟐𝟐, and 𝒙𝒙 = 𝑳𝑳𝟑𝟑, the 
following systems of equations are obtained: 
 
• At 𝒙𝒙 = 𝑳𝑳𝟏𝟏, 
 
𝑹𝑹𝑱𝑱𝟎𝟎(𝜸𝜸𝟏𝟏) = 𝑩𝑩𝒊𝒊𝒆𝒆𝜸𝜸𝟐𝟐 + 𝑩𝑩𝒓𝒓𝒆𝒆−𝜸𝜸𝟐𝟐 , (26) 

  

𝑹𝑹𝑹𝑹� 𝒉𝒉𝟎𝟎
𝜶𝜶𝑳𝑳𝟏𝟏

𝑱𝑱𝟏𝟏(𝜸𝜸𝟏𝟏) = 𝑩𝑩𝒊𝒊𝒆𝒆𝜸𝜸𝟐𝟐 − 𝑩𝑩𝒓𝒓𝒆𝒆−𝜸𝜸𝟐𝟐 . (27) 

 
From Eq. (26) and Eq. (27),  
 
𝑩𝑩𝒊𝒊 = 𝑹𝑹.𝑷𝑷,  (28) 

  
𝑩𝑩𝒓𝒓 = 𝑹𝑹.𝑸𝑸,  (29) 
 
with  

𝑷𝑷 =
𝑱𝑱𝟎𝟎(𝜸𝜸𝟏𝟏)+𝒊𝒊�

𝒉𝒉𝟎𝟎
𝜶𝜶𝑳𝑳𝟏𝟏

𝑱𝑱𝟏𝟏(𝜸𝜸𝟏𝟏)

𝟐𝟐𝒆𝒆𝜸𝜸𝟐𝟐
 and 𝑸𝑸 =

𝑱𝑱𝟎𝟎(𝜸𝜸𝟏𝟏)−𝒊𝒊�
𝒉𝒉𝟎𝟎
𝜶𝜶𝑳𝑳𝟏𝟏

𝑱𝑱𝟏𝟏(𝜸𝜸𝟏𝟏)

𝟐𝟐𝒆𝒆−𝜸𝜸𝟐𝟐
.  

 
• At 𝒙𝒙 = 𝑳𝑳𝟐𝟐,  
 
𝑩𝑩𝒊𝒊𝒆𝒆𝜸𝜸𝟑𝟑 + 𝑩𝑩𝒓𝒓𝒆𝒆−𝜸𝜸𝟑𝟑 = 𝒂𝒂𝒆𝒆𝜸𝜸𝟒𝟒 + 𝒃𝒃𝒆𝒆−𝜸𝜸𝟒𝟒 , (30) 

  

�𝒉𝒉𝟏𝟏
𝒉𝒉𝟎𝟎

(𝑩𝑩𝒊𝒊𝒆𝒆𝜸𝜸𝟑𝟑 − 𝑩𝑩𝒓𝒓𝒆𝒆−𝜸𝜸𝟑𝟑) = 𝒂𝒂𝒆𝒆𝜸𝜸𝟒𝟒 − 𝒃𝒃𝒆𝒆−𝜸𝜸𝟒𝟒. (31) 

  
From Eq. (30) and Eq. (31), 

 
𝒂𝒂 = 𝑹𝑹.𝑴𝑴,  (32) 
 
𝒃𝒃 = 𝑹𝑹.𝑵𝑵,  (33) 

with 𝑴𝑴 =
(𝟏𝟏+�

𝒉𝒉𝟏𝟏
𝒉𝒉𝟎𝟎

)𝑷𝑷𝒆𝒆𝜸𝜸𝟑𝟑+(𝟏𝟏−�
𝒉𝒉𝟏𝟏
𝒉𝒉𝟎𝟎

)𝑸𝑸𝒆𝒆−𝜸𝜸𝟑𝟑

𝟐𝟐𝒆𝒆𝜸𝜸𝟒𝟒
 and 𝑵𝑵 =

(𝟏𝟏−�
𝒉𝒉𝟏𝟏
𝒉𝒉𝟎𝟎

)𝑷𝑷𝒆𝒆𝜸𝜸𝟑𝟑+(𝟏𝟏+�
𝒉𝒉𝟏𝟏
𝒉𝒉𝟎𝟎

)𝑸𝑸𝒆𝒆−𝜸𝜸𝟑𝟑

𝟐𝟐𝒆𝒆−𝜸𝜸𝟒𝟒
. 
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• At 𝒙𝒙 = 𝑳𝑳𝟑𝟑  
 
𝒂𝒂𝒆𝒆𝜸𝜸𝟓𝟓 + 𝒃𝒃𝒆𝒆−𝜸𝜸𝟓𝟓 = 𝑨𝑨𝒊𝒊𝒆𝒆𝜸𝜸𝟔𝟔 + 𝑨𝑨𝒓𝒓𝒆𝒆−𝜸𝜸𝟔𝟔 , (34) 
 

�𝒉𝒉𝟎𝟎
𝒉𝒉𝟏𝟏

(𝒂𝒂𝒆𝒆𝜸𝜸𝟓𝟓 − 𝒃𝒃𝒆𝒆−𝜸𝜸𝟓𝟓) = 𝑨𝑨𝒊𝒊𝒆𝒆𝜸𝜸𝟔𝟔 − 𝑨𝑨𝒓𝒓𝒆𝒆−𝜸𝜸𝟔𝟔 . (35) 

  
From Eq. (34) and (35), 

 
𝑹𝑹
𝑨𝑨𝒊𝒊

= 𝟏𝟏
𝑼𝑼

,  (36) 
 

with 𝑼𝑼 =
(𝟏𝟏+�

𝒉𝒉𝟎𝟎
𝒉𝒉𝟏𝟏

)𝑴𝑴𝒆𝒆𝜸𝜸𝟓𝟓+(𝟏𝟏−�
𝒉𝒉𝟎𝟎
𝒉𝒉𝟏𝟏

)𝑵𝑵𝒆𝒆−𝜸𝜸𝟓𝟓

𝟐𝟐𝒆𝒆𝜸𝜸𝟔𝟔
.  

 
The Eq. (36) will be referred as the run-up 
coefficient. 
 
4. NUMERICAL METHOD 
 

In this section, the numerical scheme will be 
derived. Here, the finite volume on a staggered grid 
method is used, as illustrated in Fig. 3. Suppose the 
length of the observation domain is [𝟎𝟎,𝑳𝑳] . The 
domain is partitioned in a staggered way into half 
and full grids with a spatial step 𝚫𝚫𝒙𝒙. 

 

 
 
Fig.3 Staggered grid illustration 

    
Equation (2) will be calculated in cells 

[𝒙𝒙𝒋𝒋−𝟏𝟏𝟐𝟐
,𝒙𝒙𝒋𝒋+𝟏𝟏𝟐𝟐

] or cells with blue line, while Eq. (3) 

will be calculated in cells [𝒙𝒙𝒋𝒋,𝒙𝒙𝒋𝒋+𝟏𝟏] or cells with red 
line. Here, the wave elevation 𝜼𝜼(𝒙𝒙, 𝒕𝒕) and 𝒉𝒉(𝒙𝒙, 𝒕𝒕) 
are calculated at the point with the full grid 𝒙𝒙𝒋𝒋 , 
while 𝒖𝒖 is calculated at every half-grid point 𝒙𝒙𝒋𝒋+𝟏𝟏𝟐𝟐

. 

Using Forward Time Centered Space, the numerical 
approximation of Eq. (2) and Eq. (3) are: 

 
𝜼𝜼𝒋𝒋
𝒏𝒏+𝟏𝟏−𝜼𝜼𝒋𝒋

𝒏𝒏

𝚫𝚫𝒕𝒕
+

(𝒉𝒉𝒉𝒉)
𝒋𝒋+𝟏𝟏𝟐𝟐

𝒏𝒏 −(𝒉𝒉𝒉𝒉)
𝒋𝒋−𝟏𝟏𝟐𝟐

𝒏𝒏

𝚫𝚫𝒙𝒙
= 𝟎𝟎, (37) 

 
𝒖𝒖
𝒋𝒋+𝟏𝟏𝟐𝟐

𝒏𝒏+𝟏𝟏−𝒖𝒖
𝒋𝒋+𝟏𝟏𝟐𝟐

𝒏𝒏

𝚫𝚫𝒕𝒕
+ 𝒈𝒈

𝜼𝜼𝒋𝒋+𝟏𝟏
𝒏𝒏+𝟏𝟏−𝜼𝜼𝒋𝒋

𝒏𝒏+𝟏𝟏

𝚫𝚫𝒙𝒙
+ (𝒖𝒖𝒖𝒖𝒙𝒙)

𝒋𝒋+𝟏𝟏𝟐𝟐

𝒏𝒏 = 𝟎𝟎, (38) 

  
where subscripts and superscripts denote the spatial 
grid point and time, respectively. Note that 𝒉𝒉 does 
not have a value in the half-grid point to calculate 

𝒉𝒉𝒉𝒉. Therefore, 𝒉𝒉 will be approximated using the 
first-order upwind scheme which depends on the 
flow velocity. A new 𝒉𝒉 is denoted with the symbol 
 ∗𝒉𝒉 described as follow: 

 

 ∗𝒉𝒉
𝒋𝒋+𝟏𝟏𝟐𝟐

𝒏𝒏 = �
𝒉𝒉𝒋𝒋𝒏𝒏,         𝒊𝒊𝒊𝒊     𝒖𝒖

𝒋𝒋+𝟏𝟏𝟐𝟐

𝒏𝒏 > 𝟎𝟎

𝒉𝒉𝒋𝒋+𝟏𝟏𝒏𝒏 ,      𝒊𝒊𝒊𝒊     𝒖𝒖
𝒋𝒋+𝟏𝟏𝟐𝟐

𝒏𝒏 < 𝟎𝟎 (39) 

 
Then, one of the challenges on solving NSWE 

numerically is to approximate the advection term 
which is denoted by 𝒖𝒖𝒖𝒖𝒙𝒙. Here, a simple method is 
proposed to approximate the 𝒖𝒖𝒖𝒖𝒙𝒙. First, write the 
following equation: 

 
𝒖𝒖𝒖𝒖𝒙𝒙 = 𝒒𝒒𝒖𝒖𝒙𝒙

𝒉𝒉
= 𝒒𝒒

𝒉𝒉
𝝏𝝏𝝏𝝏
𝝏𝝏𝝏𝝏

 , (40) 
 

with 𝒒𝒒 = 𝒉𝒉𝒉𝒉. Next, Eq. (40) can be written as 
 

(𝒖𝒖𝒖𝒖𝒙𝒙)𝒋𝒋+𝟏𝟏𝟐𝟐
=

𝒒𝒒�
𝒋𝒋+𝟏𝟏𝟐𝟐
𝒉𝒉�
𝒋𝒋+𝟏𝟏𝟐𝟐

� ∗𝒖𝒖𝒋𝒋+𝟏𝟏−∗𝒖𝒖𝒋𝒋
𝚫𝚫𝒙𝒙

�, (41) 

where 
 

𝒉𝒉�𝒋𝒋+𝟏𝟏𝟐𝟐
= 𝟏𝟏

𝟐𝟐
(𝒉𝒉𝒋𝒋 + 𝒉𝒉𝒋𝒋+𝟏𝟏), (42) 

 
 

𝒒𝒒�𝒋𝒋 = 𝟏𝟏
𝟐𝟐

(𝒒𝒒𝒋𝒋+𝟏𝟏𝟐𝟐
+ 𝒒𝒒𝒋𝒋−𝟏𝟏𝟐𝟐

), (43) 

 
 

𝒒𝒒𝒋𝒋+𝟏𝟏𝟐𝟐
=∗ 𝒉𝒉𝒋𝒋+𝟏𝟏𝟐𝟐

𝒖𝒖𝒋𝒋+𝟏𝟏𝟐𝟐
. (44) 

 
The value of  ∗𝒖𝒖𝒋𝒋  is approximated with the first-
order upwind scheme as follow:  

 

 ∗𝒖𝒖
𝒋𝒋+𝟏𝟏𝟐𝟐

𝒏𝒏 = �
𝒖𝒖𝒋𝒋−𝟏𝟏𝟐𝟐

,          𝒊𝒊𝒊𝒊    𝒒𝒒�𝒋𝒋 ≥ 𝟎𝟎

𝒖𝒖𝒋𝒋+𝟏𝟏𝟐𝟐
, ,        𝒊𝒊𝒊𝒊   𝒒𝒒�𝒋𝒋 < 𝟎𝟎  (45) 

 
 In order to simulate the wave propagation over 

a sloping structure 𝒉𝒉 , it is necessary for the 
numerical scheme to adapt with the moving wet-dry 
interface. Therefore, the discrete formula for Eq. 
(38) will be computed only if the water depth is 
greater than a minimum threshold depth 𝒉𝒉 = 𝟎𝟎. 
 
5. RESULTS AND DISCUSSIONS 
 

In this section, the numerical scheme will be 
implemented. Several simulations are presented to 
study the reduction of the amplitude by the 
submerged breakwater. For validation, first, the 
numerical results will be compared with the 
experimental data from [34] to observe its ability to 
simulate the wave run-up over a sloping bottom. 
Second, the capability of the numerical scheme to 
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simulate the wave run-up over a submerged 
breakwater and a sloping bottom will be confirmed. 
For this part, it will be compared with the analytical 
solution that has been obtained in Section 3 and also 
with the experimental data from [11]. After the 
numerical scheme has been examined, the effect of 
the breakwater’s characteristic on the wave run-up 
will be investigated further. 

 
5.1 Wave Run-up over a Sloping Bottom 

 
Here, the accuracy of the numerical scheme to 

simulate the wave run-up over a sloping bottom will 
be examined. The numerical results will be 
validated by comparing with the experimental data 
in [34]. The initial conditions and parameters used 
in numerical simulation will be determined 
according to the experiment setup. 

 
 
Fig.4 Wave surfaces at T = 30, 40, 50, 60, 70 s 

 
The Synolakis’ experiment was done in 31.73 

cm length, 39.97 cm width, and 60.96 cm depth 
wave tank. The waves first propagate from a 
position of 𝑳𝑳𝒈𝒈 from the edge of slope beach with 
𝑳𝑳𝒈𝒈 = 𝟏𝟏

𝜸𝜸
𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚√𝟐𝟐𝟐𝟐 . The slope angle used is 

𝟏𝟏/𝟏𝟏𝟏𝟏.𝟖𝟖𝟖𝟖. Consider the following initial condition:  
 

𝜼𝜼(𝒙𝒙,𝟎𝟎) = 𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝒉𝒉𝟐𝟐(𝜸𝜸(𝒙𝒙 − 𝒙𝒙𝟎𝟎)) (46) 
 

with  
 

𝒖𝒖𝟏𝟏(𝒙𝒙,𝟎𝟎) = 𝜼𝜼(𝒙𝒙,𝟎𝟎)�𝒈𝒈
𝑯𝑯

, (47) 

 

where notation 𝑨𝑨 is the wave amplitude, 𝑯𝑯 is the 
depth of water in the constant domain, 𝒈𝒈  is the 
acceleration of gravity, 𝒙𝒙𝟎𝟎  is the position of the 

wave crest, and 𝜸𝜸 = � 𝟑𝟑𝑨𝑨
𝟒𝟒𝒅𝒅𝟎𝟎

. This initial condition 

produces a solitary wave propagating towards the 
sloping beach on the right. The parameters used in 
this simulation are 𝒈𝒈 = 𝟏𝟏 and 𝒅𝒅𝟎𝟎 = 𝟏𝟏. To avoid the 
breaking wave phenomenon, 𝑨𝑨 = 𝟎𝟎.𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎 and 
𝒙𝒙𝟎𝟎 = 𝟑𝟑𝟑𝟑.𝟑𝟑𝟑𝟑 are chosen. 

Figure 4 shows that the surface elevation from 
the numerical simulations (denoted by the solid 
line) confirm the experimental data (indicated by 
the dashed line) at five different times 𝑻𝑻 =
𝟑𝟑𝟑𝟑,𝟒𝟒𝟒𝟒,𝟓𝟓𝟓𝟓,𝟔𝟔𝟎𝟎,𝟕𝟕𝟕𝟕 𝒔𝒔. This finding implies that the 
numerical scheme is able to simulate wave run-up 
with a moving boundary accurately. In this 
particular test case, the wet-dry procedure plays an 
important role to produce results correctly. 
 
5.2 Wave Run-up over a Submerged Breakwater 
and a Sloping Bottom 
 

In this sub-section, the ability of the numerical 
scheme to simulate the wave run-up over a 
submerged breakwater and a sloping bottom will be 
validated. First, the numerical results will be 
compared with the analytical solution. Next, the 
result from the numerical scheme will also be 
validated with the experimental data from [11]. 

 
5.2.1  Comparison between numerical and 
analytical result 

 
First, simulations were carried out with various 

sizes of breakwaters using the following initial 
condition:  

 
𝜼𝜼 = 𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨(𝒘𝒘𝒘𝒘) (48) 
 
The values used in Figure 2 are 𝒉𝒉𝟎𝟎 = 𝟎𝟎.𝟖𝟖 m, 𝒉𝒉𝟏𝟏 
varies between 0.3-0.5 m, 𝜶𝜶 = 𝟏𝟏/𝟐𝟐 , and 𝑳𝑳𝟏𝟏 =
𝟐𝟐.𝟓𝟓 m, 𝑳𝑳𝟐𝟐 = 𝟒𝟒 𝐦𝐦, and 𝑳𝑳𝟑𝟑  varies between 5-10 m. 
In addition, 𝝎𝝎  = 𝟎𝟎.𝟑𝟑𝝅𝝅  rad/s is used with the 
observation duration 𝑻𝑻 = 𝟑𝟑𝟑𝟑 𝒔𝒔.  The comparison 
between the non-dimensional run-up coefficient 
(𝑹𝑹/𝑨𝑨𝑨𝑨) resulting from the numerical simulation 
and analytical solution is presented in the Table 1. 

From the table above, it can be seen that the run-
up coefficients from the numerical simulation 
confirm the analytical results with the RMSE value 
is 0.052.  
 
5.2.2  Comparison between numerical and 
experimental results 

 
 Shing Tony’s [11] experiment was done in 1.25 

feet (0.38 m) length, 6 inches (0.15 m) width, and 
3/16 inches (0.0048 m) depth wave tank, and 5 
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degrees slope. The ratio between breakwater height 
and depth of water is 3:10. There are four width 
variations of the breakwater: 30 inches (0.76 m), 60 
inches (1.52 m), 90 inches (2.29 m), and 120 inches 
(3.05 m). Here, a solitary wave is simulated with the 
following initial and boundary condition:  
 
𝜼𝜼(𝟎𝟎, 𝒕𝒕) = 𝜶𝜶𝟐𝟐(𝒌𝒌𝒌𝒌−𝒌𝒌𝒙𝒙𝟎𝟎)

𝟏𝟏−𝜶𝜶𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝟐𝟐(𝒌𝒌𝒌𝒌−𝒌𝒌𝒙𝒙𝟎𝟎)
 (49) 

 
Table 1 Comparison between numerical and 
analytical run-up coefficient 

 
Am 
(m) 

𝒉𝒉𝟏𝟏 
 (m) 

𝑳𝑳𝟑𝟑  
(m) 

 Analytical 
R/Am  

Numerical 
R/Am  

.02   0.3   5   2.396   2.400  
.045   0.3   6   2.531   2.555  
.016   0.3   7   3.171   3.125  

.026   0.3   8   3.892   3.846  

.012   0.3   9   3.292   3.333  

.2   0.3  10  2.585   2.525  

.016   0.4   5   2.517   2.500  

.0155   0.4   6   2.588   2.500  

.025   0.4   7   2.942   3.000  

.032   0.4   8   3.433   3.438  

.207   0.4   9   3.470   3.382  

.021   0.4  10   2.993   2.976  

.03   0.5   5   2.597   2.620  

.03   0.5   6   2.636   2.580  

.04   0.5   7   2.839   2.750  

.032   0.5   8   3.129   3.125  

.03   0.5   9   3.277   3.333  

.022   0.5  10   3.113   3.181  

 

𝒖𝒖(𝒙𝒙,𝟎𝟎) = �𝒈𝒈
𝑯𝑯
𝜼𝜼(𝒙𝒙,𝟎𝟎) (50) 

 
with  

 

𝒌𝒌 = � 𝟑𝟑𝜶𝜶
𝟒𝟒(𝟏𝟏+𝟎𝟎.𝟎𝟎𝟎𝟎𝟎𝟎𝜶𝜶)

 (51) 

 
Table 2 Experimental and numerical run-up without 
breakwater 

 
Am 
(m) 

 Analytical 
R/Am  

Numerical 
R/Am  

Error 
 

.0320   0.0460   0.0459   0.2174  

.0630   0.1010   0.0934   7.5248  

.0750   0.1380   0.1385   0.3623  

.1170   0.1580   0.1578   0.1266  

.1270   0.1900   0.1900   0.0000  

.1480   0.2500   0.2491   0.3600  

.1740   0.3200   0.3203   0.0937  

.2070   0.3630   0.3633   0.0826  

.2330   0.4050   0.4053   0.0741  

.2580   0.4610   0.4607   0.0651  

 
Table 3 Experimental and numerical run-up with 30 
inches breakwater 

 
Am 
(m) 

 Analytical 
R/Am  

Numerical 
R/Am  

Error 
 

.0180   0.0360   0.0359   0.2778 

.0550   0.0730   0.0720   1.3699 

.0880   0.1150   0.1171   1.8261 

.1050   0.1560   0.1562   0.1282 

.1240   0.1920   0.1921   0.0521 

.1370   0.2430   0.2427   0.1235 

.1750   0.3050   0.3047   0.0984 

.2070   0.3680   0.3681   0.0272 

.2180   0.3990   0.3989   0.0251 

.2500   0.4510   0.4504   0.1330 
 
Table 4 Experimental and numerical run-up with 60 
inches breakwater 

 
Am 
(m) 

 Analytical 
R/Am  

Numerical 
R/Am  

Error 
 

.0190   0.0260   0.0259   0.3846  

.0570   0.0600   0.0602   0.3333  

.0770   0.1220   0.1227   0.5738  

.1070   0.1490   0.1499   0.6040  

.1210   0.1760   0.1765   0.2841  

.1320   0.2130   0.2135   0.2347  

.1620   0.2650   0.2660   0.3774  

.1880   0.3110   0.3113   0.0965  

.2100   0.3420   0.3419   0.0292  

.2450   0.4050   0.4021   0.7160  
 
Table 5 Experimental and numerical run-up with 90 
inches breakwater 

 
Am 
(m) 

 Analytical 
R/Am  

Numerical 
R/Am  

Error 
 

.0200   0.0290   0.0285   1.7241  

.0630   0.0790   0.0781   1.1392  

.0710   0.1160   0.1171   0.9483  

.1100   0.1490   0.1499   0.6040  

.1230   0.1910   0.1908   0.1047  

.1390   0.2360   0.2367   0.2966  

.1640   0.2680   0.2681   0.0373  

.2080   0.3470   0.3472   0.0576  

.2290   0.3830   0.3831   0.0261  

.2570   0.4120   0.4116   0.0971  
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From Table 2 – Table 6, it can be seen that the 

relative errors are very small, which implies that the 
numerical scheme is able to simulate the wave run-
up over a sloping bottom, both with and without the 
existence of submerged breakwater. Furthermore, it 
signifies that the submerged breakwater is able to 
reduce the height of wave run-up. However, further 
analysis is needed to observe the influence of the 
length of breakwater towards the reduction of wave 
run-up, which will be discussed in the next section. 
 
Table 6 Experimental and numerical run-up with 
120 inches breakwater 

 
Am 
(m) 

 Analytical 
R/Am  

Numerical 
R/Am  

Error 
 

.0400   0.0310   0.0309   0.3226  

.0480   0.0550   0.0554   0.7273  

.0830   0.1120   0.1171   4.5536  

.1190   0.1610   0.1615   0.3106  

.1260   0.1770   0.1755   0.8475  

.1430   0.2540   0.2533   0.2756  

.1750   0.2940   0.2968   0.9524  

.2000   0.3190   0.3193   0.0940  

.2300   0.4090   0.4090   0.0000  

.2570   0.4230   0.4235   0.1182  
 

5.3 Sensitivity Analysis 
 

After the numerical scheme is confirmed, this 
section will discuss on how to use it to analyze the 
optimal breakwater size to minimize the height of 
wave run-up. From Figure 5, for every 𝒉𝒉𝟏𝟏 value, the 
run-up reduction tends to oscillate as the length of 
the breakwater continues to increase. Here, notation 
𝒉𝒉𝟏𝟏 is the depth of water calculated from the top of 
breakwater to shallow water, 𝒅𝒅  is the depth of 
shallow water, and 𝑳𝑳𝒃𝒃 is the length of breakwater. 

 

 
 
Fig.5 R/Am against the length of the breakwater 

 

Breakwaters are said to be effective if the run-
up coefficient is below the black constant line. 
While a breakwater is said to be optimal if the run-
up coefficient has the smallest value of the other 
breakwaters. The most optimal value of 𝒉𝒉𝟏𝟏 in this 
case is 𝒉𝒉𝟏𝟏/𝒅𝒅 = 𝟎𝟎.𝟑𝟑𝟑𝟑𝟑𝟑 and the optimal breakwaters 
length are 𝑳𝑳𝑳𝑳/𝒅𝒅 = 𝟏𝟏.𝟒𝟒𝟒𝟒. To determine the optimal 
breakwater length due to the oscillate result, the 
shortest length can be chosen. This way, the 
installation costs will be minimized. Therefore, 𝒉𝒉𝟏𝟏 
= 0.3 m is chosen, with the length of the breakwater 
is between 0.5-0.8 m as the optimal breakwater 
length setting for this case. 

  
6. CONLUSIONS  
 

In this paper, the authors have derived a 
numerical model that is able to simulate run-up 
waves after passing through submerged rectangular 
breakwater well. The analytical solution shows the 
reduction of the wave runup depends on the size of 
breakwater. Moreover, the numerical results show a 
good agreement with the analytical solution and 
experimental data from Shing Tony (2014). It is 
indicated by RMSE value that is approaching to 
zero and also the small value of relative errors. 
Subsequently, the length of the breakwater which 
gives the lowest run-up height has been determined 
using two methods. After varying the length of 
breakwater, the authors found that a breakwater 
with ℎ1/𝑑𝑑 = 0.375  and length between 𝐿𝐿𝐿𝐿/𝑑𝑑 =
1.45  produces the lowest run-up coefficient and 
minimum estimated installation cost. The authors 
believe that the result from this research will be 
beneficial as a part of assessment tool to build a 
breakwater which aims to reduce the risk of wave 
run-up.  
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