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ABSTRACT: Submerged breakwaters are designed to reduce the wave run-up in coastal areas. The
effectiveness can be modelled using numerical methods. The Nonlinear Shallow Water Equation has been
applied as the fundamental model. The equation has been solved analytically and numerically to obtain the
run-up coefficient. The results from the analytical and numerical solutions have been combined with published
experimental data to validate the analytical model and numerical scheme. It is found that both analytical and
numerical results are in a very good agreement with the experimental data with relatively small errors.
Furthermore, the numerical scheme has been implemented to observe the influence of the breakwater’s
characteristics, such as its height and length, towards the reduction of wave run-up. From the observation, the
optimum size of the breakwater is determined to reduce the wave run-up as much as possible. The results can
be applied to future design of submerged breakwaters for reducing long wave run-up.
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1. INTRODUCTION

One of the most dangerous disasters in coastal
areas is tsunami. For example, the Indian Ocean
tsunami in 2014 and the Japan tsunami in 2011
wiped out almost everything in vicinity. Several
researchers have studied the impact of tsunami such
as in [1-3]. They analyzed the bathymetric data
before and after the tsunami using the rapid visual
method. From these unfortunate disasters, the cause
of tsunami wave has been studied using
experimental and analytical methods such as in [4-
9]. Many researchers have done other studies about
wave run-up using mathematical models, such as
[10-14]. One of the ways to diminish the severity of
wave run-up is to lower the amplitude of the
incoming waves. There are several methods to
reduce the wave amplitude; one of them is using the
submerged breakwater. Some researchers have
studied about the submerged breakwater
experimentally such as [15,16]. However,
experimental approach is costly, subject to high
overheads, and impractical. Consequently, other
researchers attempted to use mathematical models
to study breakwater as in [17-25]. Their present
studies have suggested that submerged breakwater
can reduce the wave amplitude. Nevertheless, the
majority of those studies utilise potential theory or
mild slope equations which are relatively difficult
to be solved analytically and numerically. In
another study, Fatemeh [26] discusses the effect of
the submerged breakwater on wave energy
dissipation. The model is based on RANS equation
inclosure with a standard k-e turbulence model.

However, this method also has several challenges
which are the lengthy computational time and its
complicated derivatives.

In addition to all of the shortcomings above, it is
also not yet known the effect of submerged
breakwater towards wave run-up reduction.
Therefore, in this research, the effectiveness of a
rectangular submerged breakwater to minimize
wave run-up will be investigated through a
mathematical model, the Non-Linear Shallow
Water Equation. This model will be solved
analytically obtain maximum wave run-up. Then,
the numerical scheme used will be derived by the
finite volume on a staggered grid method that is free
from damping error [27-32]. The nonlinear
mathematical model was evaluated by comparing
with the results from [33], they evaluated the
evolution of nonlinear long waves in converging-
diverging channels of variable depth and width.
Furthermore, the numerical scheme obtained will be
compared with the experimental data from [34,11].
In the end, the results of the simulation will be able
to determine the effectiveness of submerged
breakwater to wave run-up reduction.

2. MATHEMATICAL MODEL

In this research, the authors observed a domain
with a rectangular submerged breakwater over a flat
bottom and a single sloping beach. The incoming
waves propagate from the sea towards the coast
over the breakwater and approach the sloping
beach. Furthermore, the vertical height above the
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still-water level along the beach or also known as
the wave run-up is measured.

First, the observation domain is divided into
four regions: Q1, Q, Q3, and Q4, where Q1 and Q3
have flat bottom topography, Q» has a rectangular
breakwater over a flat bottom topography, and Q4
has the sloping beach bottom topography (see Fig.
1). Hence, the depth function is described as
follows:

h(), if X € Ql
_ ) hy, if xeQ,
d(x) - ho, if X € 93 (1)
ax, if xeQ,
where hy is a positive constant representing the
water depth in Qq,Q3, hy is water depth that is

measured from the peak of the breakwater to the
still water level, and a is the angle of the slope.
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Fig.1 Problem sketch for mathematical model

Here, the Non-Linear Shallow Water Equations
(NSWE) is used to study the reduction of the wave
run-up by the submerged breakwater. Let p(x,t)
and u(x, t) denote surface elevation and average
horizontal velocity, respectively. Notation g is for
the gravitational acceleration. The water thickness
is defined by h(x,t) = n(x, t) + d(x), with d(x)
is the water depth measured from the still water
level. Therefore, the NSWE reads as:

ne + (hu), =0, )
u; + uu, + gn, = 0. 3)
where Eqg. (2) and Eq. (3) represent the mass
conservation and momentum balance equation,
respectively.
3. ANALYTICAL SOLUTION

In this section, an analytical solution will be

derived from the Linearized-SWE to obtain the
maximum height of wave run-up. Assuming that the

surface elevation is relatively small compared to the
water depth n << d, thus h = d, yields in:

N + (du), = 0, (4)

u, +gn, = 0. ®)

The analytical solution for surface elevation
and horizontal velocity will be derived in each of
the four domains, according to the following
problem sketch:
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Fig.2 Domain description for deriving the analytical
solution

Here, the authors use variable separation method by
assuming the incoming wave is a monochromatic
wave with a certain frequency (w). p(x,t) and
u(x, t) can be written as follows:

n(x,t) = F(x)e™"", (6)
u(x,t) = G(x)e L, (7

First, the analytical solution at the domain Q,
will be derived. Consider the following equations:

n1(xt) = Fy(x)e™, 8
u (x, t) = Gy (x)e ™t 9)
By substituting Eq. (8) and (9) to the mass
conservation equation (see Eqg. (4)) and momentum

balance equation (see Eqg. (5)), the following
equations are obtained:

ho
Fi(x) =226/ (%), (10)
G1(x) = - F{ (%). (11)
Differentiate Eq. (11) with respect to x,

G/(x) = LF/' ). (12)
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Substituted Eqg. (11) to Eg. (10) results in the
following ordinary second order differential
equation:

2
F{'(x) + —F4(x) =0, (13)
gho

where hy denotes the water depth at Q. The
solution of Eq. (13) is

Fy(x) = A0 4 4, R, (14)
where A; is the amplitude of the incoming wave and

A,. is the amplitude of the reflection wave. Thus, the
analytical solution for wave elevation at Q4 is

Y obi ¥ ot
n(x, t) = Aie(\/mx ot +Are( Jarg~ 0" (15)

Next, by using the same technique, the solution
for surface elevation in domain Q, is as follow:

n2(x,t) = ae(\/g—Tlx_wt)i + be(_mx_wt)i. (16)

Moving right along, the analytical solutions for
domain Q3 will be derived using the same
techniques as the calculations in domain Q4. Thus,
the analytical solution for wave elevation at Q5 is:

wt)i

w Y wb)i
m(xt) = B,-e(\/mx + Bre( Jorg )l, a7

where h, denotes the water depth at Q; and Q5.
Lastly, in order to get the analytical solution in
domain Q,, note that the depth of water in the

domain Q, is expressed by d(x) = ax. Hence, the
shallow water equation can be expressed as:

N+ ((d+mu), =0, (18)
u,+gn, =0. (19)
Eqg. (18) and Eq. (19) can be simplified to:

(M)e — g(dny)x = 0. (20)
Then, n4(x, t) can be stated as:

N4(x,t) = A(x)e ™t (21)
Substitute the Eq. (21) to the Eq. (20), yields in:
ga(x(4), +A,) + w*A = 0. (22)

The solution of the Eq. (20) contains the Bessel
function as follow:

4wx 4

a ) + €Y o(

A@) = Cio “n @

At the shore, the amplitude value is finite and
4w?x.

v )# 0, hence C,=0.
Therefore, the solution of Eq. (23) is:

given that Yy(

402 s
Na(x,t) = C1Jo( :ax)e W, (24)
Moreover, at the shore, 17,(0,t) = C;e~™* with
C, as the maximum value. Hence, C; is the

maximum run-up height which will be denoted by
R. Thus Eq. (24) can be written as:

4w?x

Ma(x,8) = Ro( "2 5e (25)

Then, since continuity condition for n and g—z have

to be satisfied at x = Ly, x = L,, and x = L3, the
following systems of equations are obtained:

e Atx= L1,

Rjy(y1) = B;e"? + B,e™?, (26)
. [n _

Ri a—LOlh(Yl) = B;e"? — B,e7"2. (27)

From Eq. (26) and Eq. (27),

B;=R.P, (28)
B, =R.Q, (29)
with
o+ i)  Jolrd=i Gt
- 2e¥2 Q= 2e7Y2 )
e Atx= Lz,
B;e?"3 + B.e7 73 = ae’* + be™"4, (30)
% (B;e'3 — B,.e13) = ae’* — be V4. (31)
0

From Eqg. (30) and Eq. (31),
a=R.M, (32)

b =R.N, (33)
"1y poy _ My pe-y
A+ [FYHpe’3+(1 )Qe Y3

with M= ‘/:" ‘/:" and =

2e¥4 -
(- [Mypers1+ [Myger
ho ho

2e” V4
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o Atx=1L3
ae’s + be Vs = A;e¥s + A,.e77s, (34)

From Eq. (34) and (35),

R 1
A_i = E' (36)
"0y o5+ (1— |0y Ne—Y
1+ YMeY5+(1 )Ne™ Vs

The Eq. (36) will be referred as the run-up
coefficient.

4. NUMERICAL METHOD

In this section, the numerical scheme will be
derived. Here, the finite volume on a staggered grid
method is used, as illustrated in Fig. 3. Suppose the
length of the observation domain is [0,L]. The
domain is partitioned in a staggered way into half
and full grids with a spatial step Ax.

mass momentum

i— i+%
———y ——

i Mi+1

O=x1 X1 X3--X 1% X 1 Xy oo Xy Xy 1= L
) 2 z z
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Fig.3 Staggered grid illustration

Equation (2) will be calculated in cells

[x. 1,x. 1] or cells with blue line, while Eq. (3)
I= Ut

will be calculated in cells [x;, x;.4] or cells with red
line. Here, the wave elevation n(x,t) and h(x,t)
are calculated at the point with the full grid x;,

while w is calculated at every half-grid point X1
2

Using Forward Time Centered Space, the numerical
approximation of Eq. (2) and Eq. (3) are:

L (hu);’+l—(hu);’_l
] ] 2 2 _ 0 37
At + Ax ! (37)
un+11—un 1 n+1_ n+1
jty  Jty Nj+1 —MNj n
uu =0 38
At + g Ax + ( x)]-_'_% ’ ( )

where subscripts and superscripts denote the spatial
grid point and time, respectively. Note that h does
not have a value in the half-grid point to calculate

hu. Therefore, h will be approximated using the
first-order upwind scheme which depends on the
flow velocity. A new h is denoted with the symbol
*h described as follow:

n . n
hy, if uj% >0

*h" = . (39)
j+3 o if u]’,‘+%<0

Then, one of the challenges on solving NSWE
numerically is to approximate the advection term
which is denoted by uu,. Here, a simple method is
proposed to approximate the uu,. First, write the
following equation:

qu qou
uu, ZTXZZE' (40)

with g = hu. Next, Eq. (40) can be written as

Sl

1 *
s L |
(U, 1 =7 1( ™ ) (41)
Itz
where
= 1
— 1
4G =3;@1+q 0 (43)
qj+% =" hj+%u]_+%. (44)

The value of "u; is approximated with the first-
order upwind scheme as follow:

w.i, if §;20

ut =4 2 o= 45
j+3 w1, if q;<0 (49)

In order to simulate the wave propagation over
a sloping structure h, it is necessary for the
numerical scheme to adapt with the moving wet-dry
interface. Therefore, the discrete formula for Eq.
(38) will be computed only if the water depth is
greater than a minimum threshold depth h = 0.

5. RESULTS AND DISCUSSIONS

In this section, the numerical scheme will be
implemented. Several simulations are presented to
study the reduction of the amplitude by the
submerged breakwater. For validation, first, the
numerical results will be compared with the
experimental data from [34] to observe its ability to
simulate the wave run-up over a sloping bottom.
Second, the capability of the numerical scheme to
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simulate the wave run-up over a submerged
breakwater and a sloping bottom will be confirmed.
For this part, it will be compared with the analytical
solution that has been obtained in Section 3 and also
with the experimental data from [11]. After the
numerical scheme has been examined, the effect of
the breakwater’s characteristic on the wave run-up
will be investigated further.

5.1 Wave Run-up over a Sloping Bottom

Here, the accuracy of the numerical scheme to
simulate the wave run-up over a sloping bottom will
be examined. The numerical results will be
validated by comparing with the experimental data
in [34]. The initial conditions and parameters used
in numerical simulation will be determined
according to the experiment setup.
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Fig.4 Wave surfaces at T = 30, 40, 50, 60, 70 s

The Synolakis’ experiment was done in 31.73
cm length, 39.97 cm width, and 60.96 cm depth
wave tank. The waves first propagate from a
position of L, from the edge of slope beach with
L, =}1,arccoshx/20. The slope angle used is
1/19.85. Consider the following initial condition:

n(x,0) = Asech?(y(x — x,)) (46)
with
0 (x0) = n(x,0) [% @7)

where notation A is the wave amplitude, H is the
depth of water in the constant domain, g is the
acceleration of gravity, x, is the position of the

wave crest, and y = /%. This initial condition
0

produces a solitary wave propagating towards the
sloping beach on the right. The parameters used in
this simulation are g = 1 and dy, = 1. To avoid the
breaking wave phenomenon, A =0.0185 and
xo = 38.34 are chosen.

Figure 4 shows that the surface elevation from
the numerical simulations (denoted by the solid
line) confirm the experimental data (indicated by
the dashed line) at five different times T =
30,40,50,60,70 s. This finding implies that the
numerical scheme is able to simulate wave run-up
with a moving boundary accurately. In this
particular test case, the wet-dry procedure plays an
important role to produce results correctly.

5.2 Wave Run-up over a Submerged Breakwater
and a Sloping Bottom

In this sub-section, the ability of the numerical
scheme to simulate the wave run-up over a
submerged breakwater and a sloping bottom will be
validated. First, the numerical results will be
compared with the analytical solution. Next, the
result from the numerical scheme will also be
validated with the experimental data from [11].

5.2.1 Comparison between numerical and
analytical result

First, simulations were carried out with various
sizes of breakwaters using the following initial
condition:

n = Asin(wt) (48)

The values used in Figure 2 are hy = 0.8 m, hy
varies between 0.3-05 m, a=1/2, and L, =
2.5m, L, =4 m, and L5 varies between 5-10 m.
In addition, w = 0.3m rad/s is used with the
observation duration T = 30 s. The comparison
between the non-dimensional run-up coefficient
(R/Am) resulting from the numerical simulation
and analytical solution is presented in the Table 1.

From the table above, it can be seen that the run-
up coefficients from the numerical simulation
confirm the analytical results with the RMSE value
is 0.052.

5.2.2 Comparison between numerical and
experimental results

Shing Tony’s [11] experiment was done in 1.25
feet (0.38 m) length, 6 inches (0.15 m) width, and
3/16 inches (0.0048 m) depth wave tank, and 5
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degrees slope. The ratio between breakwater height
and depth of water is 3:10. There are four width
variations of the breakwater: 30 inches (0.76 m), 60
inches (1.52 m), 90 inches (2.29 m), and 120 inches
(3.05m). Here, a solitary wave is simulated with the
following initial and boundary condition:

a? (kx—kxg)
1—atanh?2 (kx—kxg)

n(0,t) = (49)
Table 1 Comparison between numerical and

analytical run-up coefficient

Am h, L; Analytical Numerical
(m) (m) (m) R/Am R/Am
.02 0.3 5 2.396 2.400
.045 0.3 6 2531 2.555
.016 0.3 7 3.171 3.125
.026 0.3 8 3.892 3.846
.012 0.3 9 3.292 3.333
2 0.3 10 2.585 2.525
.016 0.4 5 2517 2.500
.0155 0.4 6 2.588 2.500
.025 0.4 7 2.942 3.000
.032 0.4 8 3.433 3.438
.207 0.4 9 3.470 3.382
021 0.4 10 2.993 2.976
.03 0.5 5 2.597 2.620
.03 0.5 6 2.636 2.580
.04 05 7 2.839 2.750
.032 05 8 3.129 3.125
.03 0.5 9 3.277 3.333
.022 05 10 3.113 3.181

u(x,0) = \/% 1n(x,0) (50)
with

k= [—3* (51)
\/4(1+0.068a)

Table 2 Experimental and numerical run-up without
breakwater

Am Analytical Numerical Error

(m) R/Am R/Am
.0320 0.0460 0.0459 0.2174
.0630 0.1010 0.0934 7.5248
.0750 0.1380 0.1385 0.3623
1170 0.1580 0.1578 0.1266
1270 0.1900 0.1900 0.0000
.1480 0.2500 0.2491 0.3600
1740 0.3200 0.3203 0.0937

.2070 0.3630 0.3633 0.0826

.2330 0.4050 0.4053 0.0741
.2580 0.4610 0.4607 0.0651

Table 3 Experimental and numerical run-up with 30
inches breakwater

Am Analytical Numerical Error
(m) R/AmM R/AmM

.0180 0.0360 0.0359 0.2778
.0550 0.0730 0.0720 1.3699
.0880 0.1150 0.1171 1.8261
.1050 0.1560 0.1562 0.1282
.1240 0.1920 0.1921 0.0521
1370 0.2430 0.2427 0.1235
.1750 0.3050 0.3047 0.0984
.2070 0.3680 0.3681 0.0272
.2180 0.3990 0.3989 0.0251
.2500 0.4510 0.4504 0.1330

Table 4 Experimental and numerical run-up with 60
inches breakwater

Am Analytical Numerical Error

(m) R/AmM R/AmM
.0190 0.0260 0.0259 0.3846
.0570 0.0600 0.0602 0.3333
.0770 0.1220 0.1227 0.5738
.1070 0.1490 0.1499 0.6040
1210 0.1760 0.1765 0.2841
1320 0.2130 0.2135 0.2347
.1620 0.2650 0.2660 0.3774
.1880 0.3110 0.3113 0.0965
.2100 0.3420 0.3419 0.0292
.2450 0.4050 0.4021 0.7160

Table 5 Experimental and numerical run-up with 90
inches breakwater

Am Analytical Numerical Error

(m) R/AmM R/AM
.0200 0.0290 0.0285 1.7241
.0630 0.0790 0.0781 1.1392
.0710 0.1160 0.1171 0.9483
.1100 0.1490 0.1499 0.6040
1230 0.1910 0.1908 0.1047
1390 0.2360 0.2367 0.2966
.1640 0.2680 0.2681 0.0373
.2080 0.3470 0.3472 0.0576
.2290 0.3830 0.3831 0.0261
.2570 0.4120 0.4116 0.0971
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From Table 2 — Table 6, it can be seen that the
relative errors are very small, which implies that the
numerical scheme is able to simulate the wave run-
up over a sloping bottom, both with and without the
existence of submerged breakwater. Furthermore, it
signifies that the submerged breakwater is able to
reduce the height of wave run-up. However, further
analysis is needed to observe the influence of the
length of breakwater towards the reduction of wave
run-up, which will be discussed in the next section.

Table 6 Experimental and numerical run-up with
120 inches breakwater

Am Analytical Numerical Error
(m) R/AM R/AM
.0400 0.0310 0.0309 0.3226
.0480 0.0550 0.0554 0.7273
.0830 0.1120 0.1171 4.5536
.1190 0.1610 0.1615 0.3106
.1260 0.1770 0.1755 0.8475
.1430 0.2540 0.2533 0.2756
1750 0.2940 0.2968 0.9524
.2000 0.3190 0.3193 0.0940
.2300 0.4090 0.4090 0.0000
.2570 0.4230 0.4235 0.1182

5.3 Sensitivity Analysis

After the numerical scheme is confirmed, this
section will discuss on how to use it to analyze the
optimal breakwater size to minimize the height of
wave run-up. From Figure 5, for every h, value, the
run-up reduction tends to oscillate as the length of
the breakwater continues to increase. Here, notation
h, is the depth of water calculated from the top of
breakwater to shallow water, d is the depth of
shallow water, and L, is the length of breakwater.

——hi/d=0.375
— —h2/d=05
2| ha/d = 0.625
0 breakwater
) \
O 3
250 N\ -
| .
0 2 4 6 8
Lb/d

Fig.5 R/Am against the length of the breakwater

Breakwaters are said to be effective if the run-
up coefficient is below the black constant line.
While a breakwater is said to be optimal if the run-
up coefficient has the smallest value of the other
breakwaters. The most optimal value of h4 in this
case is hy/d = 0.375 and the optimal breakwaters
length are Lb/d = 1.45. To determine the optimal
breakwater length due to the oscillate result, the
shortest length can be chosen. This way, the
installation costs will be minimized. Therefore, hy
= 0.3 mis chosen, with the length of the breakwater
is between 0.5-0.8 m as the optimal breakwater
length setting for this case.

6. CONLUSIONS

In this paper, the authors have derived a
numerical model that is able to simulate run-up
waves after passing through submerged rectangular
breakwater well. The analytical solution shows the
reduction of the wave runup depends on the size of
breakwater. Moreover, the numerical results show a
good agreement with the analytical solution and
experimental data from Shing Tony (2014). It is
indicated by RMSE value that is approaching to
zero and also the small value of relative errors.
Subsequently, the length of the breakwater which
gives the lowest run-up height has been determined
using two methods. After varying the length of
breakwater, the authors found that a breakwater
with hy/d = 0.375 and length between Lb/d =
1.45 produces the lowest run-up coefficient and
minimum estimated installation cost. The authors
believe that the result from this research will be
beneficial as a part of assessment tool to build a
breakwater which aims to reduce the risk of wave
run-up.
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