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ABSTRACT: In this paper, Artificial Neural Network (ANN) has been used to predict the equivalent 
flexural strength of hybrid mesh and fiber reinforced cement-based composites (HMFRCBC). Three ANN 
models (Models 1, 2 and 3) were developed for predicting the flexural strength of cement-based composites. 
Model 1 used 48 data of the previously published data of the present authors and Model 2 used 48 data (out 
of the 75 ANN validated data) from previous studies related to mesh reinforced cement-based composites. 
Model 3 with 98 data (combined data sets of Model 1 and Model 2) employed seven input parameters, 
namely the width and depth of slab, cylinder compressive strength, mesh ultimate strength, mesh volume 
fraction, fiber volume fraction, fiber ultimate strength, and an output, the ultimate flexural strength of mesh 
and fiber reinforced cement based composites. Hidden layer was fixed based on 5 trial runs for Models 1 and 
2, and 10 trial runs for Model 3. All the three models (Models 1, 2 and 3) were trained with 80% of the data, 
and tested with balance 20% of the data. For Models 1, 2 and 3, the Lowest Individual Error (LIE) of 
11.18%, 6.95% and 11.56% (respectively) is achieved in Trial Run No.1.4 (with I-H-O, Input-Hidden 
Neurons-Output of 5-6-1), Trial Run No.2.2 (5-4-1) and Trial Run No.3.7 (7-10-1) respectively. Also, the 
lowest absolute average deviation (AAD%) of 4.81%, 3.51% and 4.58% (respectively);  lowest Root Mean 
Square Error (RMSE) of 0.86, 0.76 and 0.99 (respectively);  and highest R2 of 0.933, 0.988 and 0.975 
(respectively) are seen for these trials 1.4, 2.2, 3.7 in Models 1, 2 and 3 respectively.  All the three ANN 
models were found to be in good agreement with actual results, and these three ANN models can serve as 
simple but reliable predictive tools in determination of flexural strength of HMFRCBC.  
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1. INTRODUCTION 
 

Steel Mesh Reinforced Cement-Based 
Composite (SMRCC) (traditionally known as 
ferrocement) is made up of hydraulic cement 
mortar embedded with small diameter steel wires 
[1]. As there are some limitations in increasing the 
thickness of SMRCC slab elements (>25 mm) as 
well as number of reinforcing mesh layers, a novel 
method of adding fibers (mild or stainless steel 
fibers, mineral—glass or asbestos fibers, synthetic 
organic—carbon, cellulose or polymeric fibers) [2] 
as additional reinforcement to mesh-reinforced 
cement-based composites has been suggested by 
several authors [3]-[6]. 

Accordingly, the present authors have 
previously conducted experimental investigation  
[7] under four-point bending tests to determine the 
equivalent flexural strength of 12.5 mm, 18.75 mm 
and 25 mm thick hybrid mesh and fiber reinforced 
cement based composites (HMFRCBC). Also, 
several other experimental studies of the present 
authors [8]-[11] have determined the flexural and 
impact strength of HMFRCBC, which used 
variables such as steel mesh layers (3, 4 and 5 
layers), fiber volume fraction (0 to 2.5% with 0.5% 

interval), and fiber-type (polyolefin and stainless 
steel fibers). But there is a need to develop a 
holistic model from the available experimental 
data of the present authors and also from related 
studies to predict the strength parameters of 
HMFRCBC. This is because rational and ready-
made or easy-to-use equations are not available in 
design codes to accurately predict the properties of 
hybrid composites [12]. Even, the numerical 
modeling methods are static and cannot be 
generalized well on datasets outside those for 
which they were designed [13].  

Artificial Neural Network (ANN) is a powerful 
prediction tool that rapidly processes the 
information without any need for standard 
experimental design or assumptions or any specific 
equation to build such a model (which is normally 
a pre-requisite in parametric approach) [14]. ANN 
captures the numerical relationship between its 
nodes and no formal formula is utilized within the 
model; ANNs are trained based on guidelines and 
relationships between data [15]. ANN has the 
universal capability of approximating almost all 
kinds of non-linear functions including quadratic 
functions without any need for prior specification 
of suitable fitting function [16]. ANN replaces or 
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substitutes autocorrelation, multivariable 
regression, linear regression, trigonometric and 
other statistical analysis and techniques [17]-[18].  

ANN operates in an emulation of biological 
nervous system that is made up of several layers of 
neurons (nodes) interconnected by links [13], [19]. 
ANN resembles the functioning of the human 
brain, demonstrating the ability to learn, recall and 
standardizes from training patterns or data [19] 
through interconnected computing elements [20]-
[23]. ANN adapts to experimental test results, 
empirical data or theoretical results [24], tolerates 
approximate or imprecise data, gets continuously 
trained (or retrained), solves complex problems 
and provides accurate predictive solutions [19], 
[22]-[23], [25]-[27]. ANN learns from historical or 
previously measured data, captures unknown data 
better than traditional statistical methods and 
solves new problems with no prior idea on the 
nature of these interactions [12], [28]. 

Therefore, this study has made an attempt to 
develop ANN models to predict the flexural 
strength of hybrid mesh and fiber reinforced 
cement-based composites (HMFRCBC) using the 
previously published results of the present authors 
(Sakthivel et al., 2014a [7]; Sakthivel et al., 2015a, 
b) [9]-[10] and data from similar studies, as 
described in detail in Section 3. 
  
2.0 PREVIOUS STUDIES 
 
2.1 ANN Prediction & Modeling Studies 

 
Many researchers have solved a wide variety of 

problems in civil engineering applications relating 
to validation of new experimental studies or 
previously measured data, and developed new 
trustworthy models using ANN [29]. ANN has 
been helpful in solving structural engineering [30] 
and construction engineering related problems [21]. 
This includes structural analysis and design [31], 
[32], prediction of load-deflection of CFRF 
strengthened RC slabs [15]; prediction of shear 
capacity of concrete beam [27], [33]-[36], and 
shear strength of steel-fiber reinforced high 
strength concrete deep beams [24], prediction of 
moment capacity of ferrocement members [19], 
detection of structural damage [37]-[38], 
identification of structural system identification 
[39]-[40], modeling of material behavior, 
structural optimization [41] and structural 
dynamics and control [42].  

ANN has been used to predict concrete mix 
proportions [43] and compressive strength of 
concrete with different properties, subjected to 
various tests [25]; [44]-[46] and model the 
compressive strength of recycled aggregate 
concrete [47]. The workability of concrete with 
metakaolin and flyash [48-49], mechanical 

behavior of concrete at high temperatures [50]; and 
concrete strength [51-54] have also been 
ascertained. 

Kaklauskas et al. (1999) [55] have used a large 
number of stress-strain curves (with strain of 
tensile concrete as input and the corresponding 
stress as input) for tensile concrete to train a neural 
network material model; and 14 beams were tested 
under a four point loading system which gave a 
constant moment zone of 1.2 m. Karahan et al. 
(2008) [28] have used ANN and employed six 
input variables (amount of cement, fly ash 
replacement, sand aggregate, gravel aggregate, 
steel fiber, and age of samples) and two output 
parameters (compressive and flexural strength of 
concrete), after normalizing the original data. 
Similarly, Prasad et al. (2009) [21] have used 
ANN to predict a 28-day compressive strength of a 
normal and high strength self-compacting concrete 
(SCC) and high performance concrete (HPC) with 
high volume fly ash. Also, Liu et al. (2011) [56] 
have shown that ANN can predict the compressive 
strength and Altun et al. (2008) [57] have 
presented an ANN model for compressive strength 
of lightweight concrete containing steel fiber.  

Parichatprecha and Nimityongskul (2009) [12] 
have analyzed the influence of the content of water 
and cement, water-binder ratio, and the 
replacement of fly ash and silica fume on the 
durability of high performance concrete For 
developing ANN models, they have used 86 data 
from previous studies [58] on high strength 
concrete. The mean absolute percentage error of 
predicted test results was found to be 13.88% and 
the absolute fraction of variance (R2) was 0.9741. 
The results indicated that the developed ANN 
model is reliable and accurate.  

In another study, Khan et al. (2013) [59] have 
predicted the compressive strength of plain 
concrete confined with ferrocement using ANN, 
with 8 inputs, namely the cylinder and core 
dimensions, number of mesh layers, yield strength, 
wire diameter, wire spacing, unconfined 
compressive strength and experimental confined 
compressive strength, and one output, the 
theoretical confined compressive strength with 16 
neurons as hidden variables. Out of 55 
experimental results, 19 were selected for training 
of multi-layer feed forward neural network. The 
ANN predicted compressive strength (output) 
estimated by ANN predictive model was very 
close to the experimental results than existing 
theoretical models. 

Rashid et al. (2012) [60] have studied the 
behavior of ferrocement beam sections (I, 
rectangular, channel and box) and ferrocement slab 
section, reinforced with different percentage of 
tensile reinforcements with different sizes. A 
database of 43 tests on ferrocement members is 
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developed from the review of literature and some 
new tests are used for training and testing of this 
model. 4 input variables, section, loading type, 
load and length of the beam, and 2 outputs, shear 
force and bending moment were used. The 
theoretical predictions are made and mathematical 
models developed to predict the shear force and 
bending moment capacity of ferrocement beams 
and slabs using ANN; and the predicted results 
were in close agreement with experimental results. 

In the study of Tavakoli et al. (2014) [61], they 
have predicted the combined effects of nano-silica 
particles (0 to 6% replacement of cement content) 
and three fiber types (steel, polypropylene and 
glass) on the mechanical properties (compressive, 
tensile and flexural strength) of reinforced self-
compacting concrete (SCC) using ANN. The 
experimental data was used to train ANN, and two 
input variables (percentage of nano particles and 
fiber) and three outputs (flexural tensile strength, 
tensile strength behavior and compressive 
strength) were used. Before training procedure, the 
data set was normalized to their mean value and 
standard deviation. 25 out of 28 input-output data 
pairs are used to train the neural network with one 
hidden layer, and the remaining 3 data pairs were 
employed to test the network performance. The 
comparison revealed that the obtained ANN results 
are in good agreement with the experimental ones. 

Imam et al. (2015) [13] have developed four 
different ANN models; a model each to directly 
predict the residual flexural strength of corroded 
RC beams with the diameter of reinforced steel 
and corrosion activity index as input variables. 
Imam et al. (2015) [13] used the experimental data 
of Azad et al. (2010) [62] consisting of 48 RC 
beams of different cross sections and 
reinforcements; the beams were made of three 
different depths, viz., 215 mm, 265 mm and 315 
mm, two different diameters of tension bars, viz., 
16 and 18 mm, and different durations of 
corrosion; out of the 48 beams, 36 beams were 
subjected to accelerated corrosion; both the 
corroded and un-corroded beams were tested on 
four-point bending to find their load carrying 
capacity using a span length of 900 mm and a 
flexural span of 200 mm.  The data was divided 
into training and testing subsets in the ratio of 
70:30 respectively. ANN models with randomized 
data stratification have resulted in better 
predictions than those with fixed stratification. 
ANN models are thus simpler, adaptive and more 
reliable for the prediction of flexural strength of 
corroded RC beams. 

Naik and Kute (2013) [24] have predicted the 
shear strength of high-strength steel fiber-
reinforced concrete deep beams (output) using 
ANN, with eight input nodes that represent width, 
effective depth, volume fraction, fiber aspect ratio 

and shear span-to-depth ratio, longitudinal steel, 
compressive strength of concrete, and clear span-
to-overall depth ratio. 20 neurons were used in the 
hidden layer. 80% of the data was trained. The 
values used were normalized within the values of 0 
and 1. The results predicted by the developed 
ANN matches with previous research studies. 

Sudarsana Rao et al. (2012) [22] have used 
back-propagation neural networks for predicting 
the ultimate flexural strength of ferrocement 
elements (the output variable), employing 3 input 
variables, namely the span to depth ratios (3, 6, 9 
and 11.45), number of mesh layers (0, 1, 3, and 5) 
and percentage replacement of silica fume (0, 5, 10, 
15, 20, and 25). The hidden layer used 10 neurons. 
The network was trained with experimental data 
and the network model learned the relationship for 
predicting the ultimate flexural strength in 300 
training epochs, and after successful learning, the 
model predicted the ultimate flexural strength 
satisfying all the constraints with accuracy of 95%. 

 
3.  ANN MODEL DEVELOPMENT STAGES 
OF THE PRESENT STUDY 
 
The following steps are followed to develop the 
three ANN Models, as proposed in this study: 
 
Step No.1: ANN Inputs and Output 
 

1. Back-propagation neural network model has 
been used in this study, and the network is trained 
by feeding a set of mapping data with input and 
output (target) variables. For Models 1 and 2, the 
data of 5 inputs and 1 output data are given in 
Tables 1 and 2 respectively, as explained in Step 
No.2. For Model No.3, the data of two models 1 
and 2 are combined and presented in Step No.2. 

2. Next, the number of neurons for the hidden 
layers has to be fixed for all the models.  This is 
important as the hidden layers does all the pre-
processing functions and gives the output based on 
the sum of the weighted values from the input 
layer, modified by a sigmoid transfer function 
(transig) at the hidden layer, and a linear transfer 
function (purelin) as output [63].  

3. But there are no fixed guidelines to 
determine the exact number of neurons for the 
hidden layer, and the thumb-rule or trial-and-error 
method has to be used [12]. To fix the number of 
hidden neurons, several arbitrary architectures are 
tried, and the trial which has given the best 
performance was selected [14]. The number of 
hidden-layer nodes should be at least greater than 
the square root of the sum of the number of the 
components in the input and output vectors; or the 
number of nodes in the hidden layer is between the 
sum and the average of the number of nodes in the 
input and output layers [32], [64]-[65]. 
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Step No.2.  Data Sets for Modeling 

 
ANN Model No.1: Model 1 used 49 published 

data sets (see Table 2) of experimental work of 
present authors [7], [9-10] on HMFRCBC. 

 
Table 1.Data Sets for ANN Model No.1  

Dat
a 

No. 

d f’’c M. 
Vr 

F.
Vf 

F.UT
S 

EUFS R
e
f 

mm N 
/mm2 

% % N 
/mm2 

N/ 
mm2 

 

1 12.50 25.48 0.98 0.0 0 10.56 1 
2 12.50 30.57 0.98 0.5 640 11.52 1 
3 12.50 33.12 0.98 1.0 640 13.44 1 
4 12.50 35.67 0.98 1.5 640 17.28 1 
5 12.50 38.22 0.98 2.0 640 19.20 1 
6 18.75 25.48 0.66 0.0 0 8.10 1 
7 18.75 30.57 0.66 0.5 640 9.38 1 
8 18.75 33.12 0.66 1.0 640 11.09 1 
9 18.75 35.67 0.66 1.5 640 12.79 1 

10 18.75 38.22 0.66 2.0 640 17.06 1 
11 25.00 25.48 0.49 0.0 0 5.28 1 
12 25.00 30.57 0.49 0.5 640 6.96 1 
13 25.00 33.12 0.49 1.0 640 9.36 1 
14 25.00 35.67 0.49 1.5 640 10.56 1 
15 25.00 38.22 0.49 2.0 640 11.76 1 
16 25.00 48.41 0.49 2.5 640 12.48 1 
17 25.00 25.48 0.74 0.0 0 7.68 2 
18 25.00 30.57 0.74 0.5 640 8.88 2 
19 25.00 33.12 0.74 1.0 640 10.56 2 
20 25.00 35.67 0.74 1.5 640 12.48 2 
21 25.00 38.22 0.74 2.0 640 12.72 2 
22 25.00 48.41 0.74 2.5 640 12.96 2 
23 25.00 25.48 0.98 0.0 0 9.84 2 
24 25.00 30.57 0.98 0.5 640 12.48 2 
25 25.00 33.12 0.98 1.0 640 13.44 2 
26 25.00 35.67 0.98 1.5 640 15.36 2 
27 25.00 38.22 0.98 2.0 640 15.60 2 
28 25.00 48.41 0.98 2.5 640 16.56 2 
29 25.00 25.48 1.23 0.0 0 12.72 2 
30 25.00 30.57 1.23 0.5 640 13.44 2 
31 25.00 33.12 1.23 1.0 640 17.04 2 
32 25.00 35.67 1.23 1.5 640 17.28 2 
33 25.00 38.22 1.23 2.0 640 17.76 2 
34 25.00 48.41 1.23 2.5 640 15.84 2 
35 25.00 30.14 0.74 0.5 1353 8.64 3 
36 25.00 31.00 0.74 1.0 1353 8.88 3 
37 25.00 33.54 0.74 1.5 1353 9.84 3 
38 25.00 36.52 0.74 2.0 1353 11.04 3 
39 25.00 38.22 0.74 2.5 1353 12.48 3 
40 25.00 30.14 0.98 0.5 1353 10.32 3 
41 25.00 31.00 0.98 1.0 1353 13.20 3 
42 25.00 33.54 0.98 1.5 1353 14.64 3 
43 25.00 36.52 0.98 2.0 1353 12.24 3 
44 25.00 38.22 0.98 2.5 1353 12.96 3 
45 25.00 30.14 1.23 0.5 1353 14.64 3 
46 25.00 31.00 1.23 1.0 1353 15.36 3 
47 25.00 33.54 1.23 1.5 1353 17.04 3 
48 25.00 36.52 1.23 2.0 1353 16.80 3 
49 25.00 38.22 1.23 2.5 1353 16.32 3 

Note: Ref.1- Sakthivel et al., 2014a [7]; 2 – Sakthivel et al., 
2015a [9]; 3 – Sakthivel et al., 2015b [10] for data 1-49, 
d=depth; f’c=cylinder compressive strength, M.Vr=Mesh 
Volume fraction; F.Vf=Fiber Volume fraction; F.UTS=Fiber 
Ultimate Tensile Strength; Constant width (b)=200 mm, 
Constant Mesh Ultimate Tensile Strength (M.UTS)=512 
N/mm2; EUFS–Equivalent Ultimate Flexural Strength 

 
Table 1 shows that 5 variables have been used 

in this model as inputs, namely the depth (d=12.5-
25 mm) of specimen, cylinder compressive 
strength of mortar (f’c=25.48-48.41 N/mm2), Steel 
Mesh Volume of Reinforcement (M.Vr=0.49-
1.23%), Fiber Volume Fraction (F.Vf=0-2.5%, 
Fiber Ultimate Tensile Strength (F.UTS=0-1353 
N/mm2). Since Model 1 has used constant width, 
b=200 mm, and M.UTS=512 N/mm2 for dataset no. 
1-49, they are not included as inputs. Model No.1 
has used single output, Equivalent Ultimate 
Flexural Strength (EUFS) with values ranging 
from 5.28-19.20 N/mm2. From the number of 
hidden neurons (3 to 7), the best performance of 
the hidden neurons was determined from 5 trial 
runs, Trial Nos. 1.1, 1.2, 1.3, 1.4 and 1.5 with 
input variables-hidden neurons-output variables (I-
H-O) of 5-3-1, 5-4-1, 5-5-1, 5-6-1 and 5-7-1 
respectively, as shown in Tables 3 and 4. 
 

ANN Model No.2: Development of ANN 
Prediction Model, choosing 49 data sets (at 
random) (as in Table 3) from 75 validated data sets 
of Mashrei et al. (2010) [19] on ultimate moment 
of ferrocement elements. Model 2 has used five 
inputs variables, namely the width (b=76-400 mm) 
and depth of specimen (d=13-100 mm), cylinder 
compressive strength (f’c=8.06-39.68 N/mm2), 
Steel Mesh Ultimate Tensile Strength 
(M.UTS=371-979 N/mm2) and Mesh Volume of 
reinforcement (M.Vr=0.50-8.25 N/mm2) (as shown 
in Table 1). Since Model 2 has not used fibers in 
the experiments under dataset no.50-98, Fiber 
Volume fraction (F.Vf) and Fiber Ultimate Tensile 
Strength (F.UTS) are not used as inputs. One 
output, Equivalent Ultimate Flexural Strength 
(EUFS) with range of 5.74-43.18 N/mm2. From the 
varying number of hidden neurons (3 to 7), the 
best performance of the hidden neurons was 
determined from 5 trial runs (Trial Nos. 2.1, 2.2, 
2.3, 2.4 and 2.5 with I-H-O of 5-3-1, 5-4-1, 5-5-1, 
5-6-1 and 5-7-1 respectively), as in Tables 5 and 6. 

Originally, Mashrei et al. (2010) [19] have 
used 75 data to predict the moment capacity of 
ferrocement elements, consisting of 16 own data 
sets and 59 data from previous studies [66]-[73]. 
Mashrei et al. (2010) [19] used five input variables 
with ranges: width of specimen (76-400 mm), 
depth of specimen (13-80 mm), cube compressive 
strength of ferrocement matrix (12.5-62 N/mm2), 
ultimate strength of wire mesh (371-850 N/mm2) 
and volume fraction of wire mesh (0.164-6.64%), 
and one output, the ultimate moment capacity of 
ferrocement elements. Mashrei et al., 2010 [19] 
has split the 75 data sets into 61 back-propagation 
training sets (80%) and 14 test data sets (20%). 

From Mashrei et al. (2010) [19], the cylinder 
compressive strength has been calculated as 80% 
of cube compressive strength; and  the equivalent 
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ultimate flexural strength is converted from the 
actual ultimate moment values, as in Table 2. 

 
 

Table 2. Data Sets for ANN Model 2 
Data 
No. 

b d f’c M. 
UTS 

M. 
Vr 

EUFS Ref 

mm mm N/mm
2 

N/m
m2 

% N/mm
2 

50 400 75 8.06 371 0.80 9.20 4 
51 400 75 8.06 371 1.20 14.38 4 
52 400 50 8.06 371 1.20 11.61 4 
53 400 50 27.33 600 0.50 6.00 5 
54 200 80 32.00 600 1.03 10.16 5 
55 300 50 31.42 600 0.50 5.74 5 
56 300 50 32.00 600 1.30 16.01 5 
57 100 20 19.14 533 3.62 26.40 6 
58 100 40 19.14 533 3.62 25.87 6 
59 100 60 19.14 533 3.62 20.67 6 
60 100 100 19.14 533 3.62 20.25 6 
61 100 20 19.14 500 3.92 25.65 6 
62 100 30 19.14 500 3.92 23.40 6 
63 100 40 19.14 500 3.92 23.10 6 
64 100 60 19.14 500 3.92 24.38 6 
65 100 100 19.14 500 3.92 23.62 6 
66 100 25 32.00 371 2.10 13.20 7 
67 100 35 32.00 371 1.48 9.31 7 
68 100 25 32.00 371 3.01 19.44 7 
69 100 35 32.00 371 2.22 13.96 7 
70 100 25 32.00 371 4.18 22.8 7 
71 100 35 32.00 371 2.96 17.39 7 
72 100 25 28.80 371 1.72 12.00 8 
73 100 25 28.80 371 2.28 13.92 8 
74 100 25 28.80 371 2.86 16.32 8 
75 130 13 39.68 513 2.22 11.74 9 
76 130 13 39.68 513 4.44 24.44 9 
77 130 13 39.68 513 6.64 35.67 9 
78 130 13 39.68 714 4.44 29.14 9 
79 130 13 39.68 714 6.64 42.41 9 
80 130 13 39.68 562 4.62 25.45 9 
81 100 26 15.49 383 0.70 6.75 10 
82 100 26 15.49 383 1.38 7.96 10 
83 100 26 15.49 383 2.85 14.95 10 
84 100 26 15.49 383 4.09 18.61 10 
85 100 26 15.49 383 5.48 22.22 10 
86 100 26 15.49 383 6.82 23.98 10 
87 100 26 15.49 383 8.25 26.05 10 
88 200 25 18.11 979 1.62 9.18 11 
89 200 25 18.11 979 2.43 15.53 11 
90 76 50 23.04 628 1.85 23.19 12 
91 76 50 23.04 628 2.50 30.61 12 
92 76 50 23.04 628 3.12 33.16 12 
93 76 50 23.04 628 4.98 43.18 12 
94 76 50 23.04 628 2.52 27.48 12 
95 76 50 23.04 628 5.04 34.61 12 
96 76 50 23.04 628 1.68 23.19 12 
97 76 50 23.04 628 2.36 26.59 12 
98 76 50 23.04 628 3.40 31.94 12 
(Reference 4 - Paramasivam et al., 1985 [66];  5 - Mashrei et al. 
2010 [19];  6 - Mansur, 1988   [67]; 7 - Paramasivam and 
Ravindarajah, 1988  [68]; 8 - Mansur and Paramasivam, 1986  
[69]; 9 - Balaguru et al., 1977 [70];  10 - Alwash, 1974 [71]; 
11- Desayi and Reddy, 1991 [72]; 12 - Logan and Shah, 1973 
[73]); b=width and d=depth of specimens; f’c=cylinder 
compressive strength, M.UTS=Mesh Ultimate Tensile Strength; 
M.Vr=Mesh Volume Fraction; Fiber Volume Fraction 
(F.Vf)=0%; and Constant Fiber Ultimate Tensile Strength 
(F.UTS)=0 (N/mm2) for data set no. (Runs)=50-98; EUFS-
Equivalent Ultimate Flexural Strength  
 

ANN Model No.3: For Model 3, 98 data sets 
were used from 48 data sets of Model 1 (as in 
Table 2) and 48 data sets of Model 2 (as in Table 
3). Seven inputs (with their ranges) are width 
(b=76-400 mm) and depth (d=12.5-100 mm) of 
specimens, cylinder compressive strength 
(f’c=8.06-48.41 N/mm2) of plain/ fibrous mortar, 
Steel Mesh Ultimate Tensile Strength 
(M.UTS=371-979 N/mm2), Mesh Volume of 
Reinforcement (M.Vr=0.49-8.25%); Fiber Volume 
Fraction (F.Vf=0-2.5%;  and Fiber Ultimate 
Tensile Strength (F.UTS=0-1353 N/mm2) are used 
to develop this model. 

Model No.3 has used single output, Equivalent 
Ultimate Flexural Strength (EUFS) with values 
ranging from 5.28-43.18 N/mm2. From the varying 
number of hidden neurons (4 to 13), the best 
performance of the hidden neurons was determined 
from 10 trial runs, i.e., Trial Nos. 3.1, 3.2, 3.3, 3.4, 
3.5 with I-H-O of 7-4-1, 7-5-1, 7-6-1, 7-7-1 and 7-
8-1 (respectively), as shown in Tables 7A and 8A, 
and Trial Nos. 3.6, 3.7, 3.8, 3.9 and 3.10 with I-H-
O of 7-9-1, 7-10-1, 7-11-1, 7-12-1 and 7-13-1 
(respectively), as shown in Tables 7B and 8B. 

 
Step No.3. Splitting the Training and 

Testing Data:  
 
For testing purposes, separate data sets were 

used that are not part of the training phase [55], 
[63]-[74]. The data used in the network was split 
into training and testing in the proportion of 80:20.  

In Models 1 and 2, out of 49 data sets, 80% (38 
nos.) have been chosen at random for training 
purposes, and the balance 20% (10 nos.) utilised 
for test purposes. Similarly, out of the total 98 data 
sets under Model 3, 78 data sets (80%) were 
selected at random for training the network and the 
balance 20 data sets (20%) for testing purposes. 

Particularly, the randomization process was 
employed to split training and test data, as each 
sample will get an equal chance of being selected 
for training or testing; and there will be good mix 
of the data and all experimental cases will be 
represented in each subset [13]. In order to 
interpolate data very well, patterns which are 
chosen for training cover upper as well as lower 
boundaries and a sufficient number of samples 
representing particular feature over the entire 
training domain [75]. On completion of training, 
the neural network model is used to predict the 
target value, with the given input data in 
normalized form. 
     The testing was done for 5 trials for Model No. 
1 (Trial Nos. 1.1 to 1.5), as shown in Tables 3 and 
4, and Model No.2 (Trial Nos. 2.1 to 2.5), as 
shown in Tables 5 and 6. Similarly, 10 Trials 
(Trial Nos. 3.1 to 3.10) for Model No.3 done are 
shown in Tables 7A, 7B, 8A and 8B. The ANN 
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simulation was carried out using Neural Network 
Toolbox of MATLAB mathematical software 
(MATLAB, R2014a).  
 

Step No.4. Normalization of Data:  
 
As it can be seen in the input data, large 

difference in the actual values of the data is seen, 
which cannot be directly fed into the neural system 
without any normalization process. Generally, the 
values are normalized to a uniform/ specified 
range or same order of magnitude, before they are 
used in the neural network for fast convergence,  to 
avoid premature saturation of hidden nodes which 
is responsible for impeding the learning process, 
and to predict the output in a manner suiting the 
functioning of the network. Thus, the input values 
are normalized for the data shown in Tables 1 and 
2 separately for Models 1 and 2, and in a combined 
manner for Model No.3 to avoid floating-point 
overflow problems and prevent large numbers 
from overriding smaller ones, and to obtain the 
minimal root mean square error (RMSE) [12], [63].  

In this study, the input values in the three 
models shown in Tables 1 and 2 were normalized 
from 0 to 1 using formula given in Eq.(1) by Pal 
Pandian et al. (2013) [76]:  

minmax

minmax
min )(

XX
XX

XXX NN
ACcr −

−
−= ..(1) 

Where XAC= Actual value of the variable before 
normalization;   Xmin and Xmax are the minimum and 
maximum values of the variable X. 

For example, the inputs (b, d, f’c, M.UTS, 
SM.Vr, F.Vf and F.UTS) were normalized to values 
X Nmin and X Nmax such that 0 < X Nmin < X Nmax < 1. 
For example, in Model 3, from these 98 data sets, 
the minimum and maximum values for input 
variable, width (b) are X min = 76 mm and X max= 
400 mm. Using Eq.(1),  X Nmin = 0 and X Nmax = 1, 
and the range 76 to 400 is mapped between 0 and 1.  
 

Step No.5. Performance Checks: 
 
The following are the statistical checks used:  
 
RMSE indices are calculated to analyze the 

prediction efficiency of the ANN models that are 
developed [18].  The main intention of using 
RMSE is to measure the spread of the actual x 
values around the average of the predicted y 
values; and RMSE computes the average of the 
squared differences between each predicted value 
and its corresponding actual value. The formula to 
calculate RMSE is given in Eq. (1) by Imam et al. 
(2015) [13]; Aggarwal et al. (2013) [14] 
Shanmugaprakash and Sivakumar (2013) [63]; 
Khan et al, (2013) [59]; Tavakoli et al. (2014) 
[61]; Fakhim et al. (2013) [77]; and the lowest 

RMSE coefficient is recommended.  
The coefficient of determination (R2) is to test 

the goodness of fit of ANN predicted responses, 
and is calculated using Eq. (3) of Parichatprecha 
and Nimityongskul (2009) [12]; Yilmaz nd Kaynar 
(2011) [18]; Khan et al. (2013) [59]. 

The AAD (%) for ANN models is calculated to 
learn the accuracy of the models, and AAD% is 
calculated using Eq. (3) of Shanmugaprakash and 
Sivakumar, 2013 [63]; Fakhim et al. (2013) [77]. 
 
RMSE=√(1

𝑛𝑛
 ∑ (𝑋𝑋𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃. − 𝑋𝑋𝐴𝐴𝐴𝐴𝐴𝐴.)2𝑛𝑛

𝑖𝑖=1 )                 ..(2) 
 

R2= 1−(
 ∑ (𝑋𝑋𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃.−𝑋𝑋𝐴𝐴𝐴𝐴𝐴𝐴.)
𝑛𝑛
𝑖𝑖

2

 ∑ (𝑋𝑋𝐴𝐴𝐴𝐴𝐴𝐴.−𝑋𝑋𝐴𝐴𝐴𝐴𝐴𝐴.𝐴𝐴𝐴𝐴.))𝑛𝑛
𝑖𝑖

2 )                             .(3)  

 
AAD (%) = ( 𝟏𝟏

𝒏𝒏
 ∑ ∣ (𝑿𝑿𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷.−𝑿𝑿𝑨𝑨𝑨𝑨𝑨𝑨.

𝑿𝑿𝑨𝑨𝑨𝑨𝑨𝑨.

𝒏𝒏
𝒊𝒊=𝟏𝟏 ) ∣) × 𝟏𝟏𝟏𝟏𝟏𝟏 ..(4) 

Where XPRED= Predicted Data; XACT. = Actual 
(Measured) Value; XACT.AV = Actual Average of 
Actual Values; and n is the number of data 
 
4. RESULTS AND DISCUSSION 
 
This study has predicted the ultimate flexural 
strength of HMFRCBC, and the following are 
related to developing three ANN Models: 
 

1. Five trials were conducted for Models 1 and 
2 to fix the neurons for the hidden layer, and 
presented in Tables 3, 4, 5 and 6 and Figs. 1 and 4. 
For Model 3, the results of 10 trials are presented 
in Tables 7A, 7B, 8A and 8B. 5 input variables and 
1 output for Models 1 and 2, and 7 inputs and 1 
output for model 3 have been used. Fig. 10 gives 
the ANN predicted error for all the three models. 

2. Tables 3, 5 and 7A-7B and Figs. 1,4 and 7 
show that the actual values match with predicted 
ANN values for all the three models (Models 1, 2 
and 3) (respectively). Accordingly, it is seen from 
Tables 4, 6 and 8A-8B that the best results in 
choosing the hidden neurons are seen in Trial 
No.1.4 (I-H-O of 5-6-1), Trial No.2.2 (5-4-1) and 
Trial No.3.7 (7-10-1) for Models 1, 2 and 3 
respectively. The higher performance of these 
trials for each model is evidenced in Fig.10 by the 
LIE (%) of 11.18%, 6.95% and 11.56%. The 
present authors opine that one of the criteria for 
selecting the hidden layer should be based on 
lowest individual error, analyzed from trial runs. 

3. Model 1 (Table 4), Model 2 (Table 6), 
Model 3 (Tables 8A and 8B) show that the lowest 
AAD (%) of 4.81%, 3.51% and 4.58%  is achieved 
in  trial run nos. 1.4 (I-H-O of 5-6-1), 2.2 (5-4-1) 
and 3.7 (7-10-1) respectively. Accordingly, the 
lowest RMSE of 0.86, 0.76 and 0.99 are observed 
for Models 1, 2 and 3 respectively. The low values 
of AAD% and RMSE represent that the flexural 
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strength of HMFRCBC predicted by all ANN 
Models are in good agreement with actual results. 

4. The goodness of fit of the three models was 
confirmed by the coefficient of determination (R2), 
which showed 0.933, 0.988 and 0.975 for Model 
Nos. 1, 2 and 3, and R2 value closer to 1 indicates 
that the ANN models are accurate in predicting the 
ultimate flexural strength of HMFRCBC. For 
Models 1, 2 and 3, R2 of 93.3%, 98.8% and 97.5% 
demonstrates that the measured data of 
HMFRCBC are compatible with the data predicted 
by Trials 1.4, 2.2 and 3.7 (respectively), and only 
6.7%, 1.2% and 2.5% of the total variations 
(respectively) are not explained by the models. 

5. For Models 1, 2 and 3, Figs. 2, 5 and 8 show 
that the best training performance for Trial No.1.4, 
2.2 and.3.7 is achieved at 226, 695 and 372 epochs 
respectively. Fig. 3, 6 and 9 related to training sets 
of models 1, 2 and 3 (respectively) with co-
efficient of high correlation (R) values of 0.994, 
0.991 and 0.994 for Models 1, 2 and 3 respectively 
indicate that the network is well-trained and the 
output has deviated a little from the desired values. 

 
Table 3. ANN Predicted Ultimate Flexural 

Strength (Model No.1) 
No Act. 

Data 
(in N/ 
mm2) 

ANN Predicted Ultimate Flexural Strength  
(in N/mm2) (Model No.1) 

Trial 
No. 
1.1 

5-3-1 

Trial 
No. 
1.2 

5-4-1 

Trial 
No. 
1.3 

5-5-1 

Trial 
No. 
1.4 

5-6-1 

Trial 
No. 
1.5 

5-7-1 
4 17.28 17.65 17.97 17.38 17.14 17.75 
8 11.09 10.00 10.24 11.37 10.33 10.74 

14 10.56 10.60 10.40 10.94 10.45 9.93 
18 8.88 9.39 9.93 9.06 9.01 9.07 
22 12.96 13.41 12.60 13.21 13.95 11.67 
28 16.56 14.92 13.36 14.47 14.86 12.14 
33 17.76 17.71 17.62 17.83 17.75 17.44 
38 11.04 10.11 11.39 11.38 9.81 11.67 
46 15.36 17.09 17.64 16.44 16.52 17.51 
48 16.80 17.15 16.23 17.30 17.02 16.23 

 
 

 
Fig. 1. Actual Vs. ANN Predicted Ultimate 

Flexural Strength (ANN Model No.1)  

Table 4.ANN Predicted Error for Model No.1 

Test Data 
No. 

ANN Prediction Error (%) (Model No.1) 
Trial 
No. 
1.1 

5-3-1 

Trial 
No. 
1.2 

5-4-1 

Trial 
No. 
1.3 

5-5-1 

Trial 
No. 
1.4 

5-6-1 

Trial 
No. 
1.5 

5-7-1 
4 2.14 4.00 0.57 0.80 2.73 
8 9.80 7.65 2.52 6.85 3.2 

14 0.33 1.49 3.62 1.05 5.95 
18 5.70 11.88 2.07 1.48 2.16 
22 3.49 2.80 1.92 7.63 9.93 
28 9.93 19.32 12.60 10.29 26.72 
33 0.26 0.77 0.41 0.04 1.78 
38 8.41 3.13 3.08 11.18 5.71 
46 11.23 14.86 7.03 7.52 13.98 
48 2.10 3.38 2.96 1.29 3.41 

LIE % 11.23 19.32 12.60 11.18 26.72 
AAD% 5.34 6.93 3.68 4.81 7.31 
RMSE 0.92 1.36 0.79 0.86 1.65 

R2 0.925 0.823 0.937 0.933 0.764 
Note: LIE (%)-Lowest Individual Error (in percentage); AAD 
(%)-Absolute Average Deviation (in percentage); RMSE-Root 
Mean Square Error; R2-Coefficient of Determination  
 

 

 
Fig. 2 Best Training Performance for Training 
Data (Trial No.1.4, 5-6-1) (ANN Model No.1) 
 

 
Fig. 3. Predicted Output Vs. Target for Training 
Data (Trial No.1.4, 5-6-1) (ANN Model No.1) 
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Table 5. ANN Predicted Ultimate Flexural 
Strength (Model No.2) 

No Act. 
Data 

ANN Predicted Ultimate Flexural Strength 
(in N/mm2) (Model No.2) 

Trial 
No. 
2.1 

5-3-1 

Trial 
No. 
2.2 

5-4-1 

Trial 
No. 
2.3 

5-5-1 

Trial 
No. 
2.4 

5-6-1 

Trial 
No. 
2.5 

5-7-1 
57 26.40 25.73 27.29 28.34 28.17 27.96 
63 23.10 24.14 23.80 23.64 23.10 23.09 
66 13.20 13.47 13.44 15.20 13.74 13.74 
69 13.96 13.50 13.07 13.11 13.44 13.48 
72 12.00 11.02 11.17 11.40 10.75 10.93 
76 24.44 23.98 23.81 23.87 24.04 24.17 
85 22.22 21.81 21.64 21.86 20.93 21.09 
90 23.19 24.44 23.38 23.76 23.85 23.75 
92 33.16 31.61 32.02 31.84 31.81 31.81 
96 23.19 23.57 22.23 22.74 22.86 22.73 

 
 

 
Fig. 4. Actual Vs. ANN Predicted Ultimate 

Flexural Strength (ANN Model No.2)  
 

 
Table 6. ANN Prediction Error for Model No.2 

Test Data 
No. 

ANN Prediction Error (%) (Model No.2) 
Trial 
No. 
2.1 

5-3-1 

Trial 
No. 
2.2 

5-4-1 

Trial 
No. 
2.3 

5-5-1 

Trial 
No. 
2.4 

5-6-1 

Trial 
No. 
2.5 

5-7-1 
57 2.54 3.39 7.36 6.70 5.90 
63 4.48 3.01 2.34 0.00 0.06 
66 2.04 1.82 15.14 4.09 4.12 
69 3.27 6.39 6.12 3.70 3.47 
72 8.15 6.95 5.01 10.39 8.92 
76 1.90 2.57 2.33 1.62 1.13 
85 1.83 2.63 1.61 5.80 5.10 
90 5.40 0.81 2.46 2.83 2.44 
92 4.66 3.44 3.97 4.08 4.07 
96 1.65 4.14 1.93 1.40 1.99 

LIE(%) 8.15 6.95 15.14 10.39 8.92 
AAD(%) 3.75 3.51 4.83 4.13 4.05 
RMSE 0.85 0.76 1.09 0.97 0.88 

R2 0.982 0.988 0.970 0.978 0.982 
Note: LIE (%)-Lowest Individual Error (in percentage); AAD 
(%)-Absolute Average Deviation (in percentage); RMSE-Root 
Mean Square Error; R2-Coefficient of Determination  
 

 
Fig. 5 Best Training Performance for Training 
Data (Trial No.2.2, 5-4-1) (ANN Model No.2) 

 
Fig. 6. Predicted Output Vs. Target for Training 
Data (Trial No.2.2, 5-4-1) (ANN Model No.2) 
 
Table 7A. ANN Prediction of Ultimate Flexural 
Strength (Model No.3) 

No Act. 
Data 
(in N/ 
mm2) 

ANN Predicted Ultimate Flexural Strength 
 (in N/mm2) (Model No.3) 

Trial 
No. 
3.1 

7-4-1 

Trial 
No. 
3.2 

7-5-1 

Trial 
No. 
3.3 

7-6-1 

Trial 
No. 
3.4 

7-7-1 

Trial 
No. 
3.5 

7-8-1 
4 17.28 16.40 16.00 15.55 15.82 15.87 
8 11.09 10.74 10.88 11.18 11.20 10.96 

14 10.56 10.09 10.51 10.37 10.29 10.57 
18 8.88 9.38 9.21 9.34 9.26 9.32 
22 12.96 13.50 13.45 13.26 13.59 13.47 
28 16.56 14.42 14.51 14.28 14.64 14.52 
33 17.76 16.61 17.15 18.13 17.90 17.70 
38 11.04 10.42 10.48 10.30 10.44 10.67 
46 15.36 17.04 17.89 17.26 17.01 17.15 
48 16.80 15.56 15.87 15.98 15.78 15.92 
57 26.40 27.68 26.19 28.00 27.47 26.90 
63 23.10 22.84 23.49 23.42 24.02 24.09 
66 13.20 13.15 14.15 13.94 14.40 14.03 
69 13.96 12.95 13.35 12.56 13.73 13.67 
72 12.00 10.84 11.47 11.49 11.33 10.96 
76 24.44 23.85 24.39 22.70 22.96 23.38 
85 22.22 22.53 21.65 21.52 21.58 21.67 
90 23.19 25.51 24.62 24.89 24.44 24.64 
92 33.16 31.17 31.46 31.33 31.59 31.51 
96 23.19 24.45 23.06 23.41 22.75 23.16 
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Table 7B. ANN Prediction of Ultimate Flexural 
Strength (Model No.3) 

No Act. 
Data 
(in N/ 
mm2) 

ANN Predicted Ultimate Flexural Strength 
 (in N/mm2) (Model No.3) 

Trial 
No. 
3.6 

7-9-1 

Trial 
No. 
3.7 

7-10-
1 

Trial 
No. 
3.8 

7-11-
1 

Trial 
No. 
3.9 

7-12-
1 

Trial 
No. 
3.10 
7-13-

1 
4 17.28 16.65 16.70 16.49 15.90 16.49 
8 11.09 10.51 11.03 10.91 11.01 10.78 

14 10.56 10.56 10.40 10.55 10.45 10.76 
18 8.88 9.33 9.19 9.22 9.29 9.22 
22 12.96 13.88 13.48 13.60 13.52 13.38 
28 16.56 14.90 14.65 14.71 14.52 14.45 
33 17.76 17.27 17.46 18.46 17.91 17.27 
38 11.04 10.42 10.83 10.27 10.70 10.74 
46 15.36 17.20 17.09 16.69 17.05 16.69 
48 16.80 15.73 16.25 16.04 15.97 16.05 
57 26.40 28.19 27.80 27.88 26.94 27.99 
63 23.10 24.63 24.18 23.04 24.19 23.35 
66 13.20 14.49 14.63 14.85 14.35 13.99 
69 13.96 13.11 13.94 13.65 13.70 13.47 
72 12.00 11.35 11.07 11.52 10.95 11.14 
76 24.44 24.29 23.75 23.65 23.82 23.97 
85 22.22 21.34 21.26 21.46 21.67 21.63 
90 23.19 24.50 24.00 24.24 24.21 24.90 
92 33.16 30.97 31.60 31.20 31.64 31.34 
96 23.19 22.55 22.03 22.27 22.45 23.59 
 
 
 
 

Table 8A. ANN Prediction Error for Model No.3  

Test Data 
No. 

ANN Prediction Error (%) (Model No.3) 
Trial 
No. 
3.1 

7-4-1 

Trial 
No. 
3.2 

7-5-1 

Trial 
No. 
3.3 

7-6-1 

Trial 
No. 
3.4 

7-7-1 

Trial 
No. 
3.5 

7-8-1 
4 5.09 7.40 10.02 8.47 8.15 
8 3.12 1.88 0.84 1.02 1.15 

14 4.50 0.49 1.79 2.57 0.10 
18 5.63 3.70 5.13 4.32 4.97 
22 4.14 3.77 2.35 4.85 3.90 
28 12.92 12.39 13.78 11.59 12.34 
33 6.47 3.43 2.11 0.80 0.36 
38 5.59 5.04 6.67 5.44 3.36 
46 10.92 16.47 12.35 10.75 11.64 
48 7.39 5.51 4.87 6.06 5.26 
57 4.86 0.78 6.07 4.07 1.89 
63 1.14 1.70 1.37 3.98 4.29 
66 0.39 7.23 5.62 9.10 6.32 
69 7.22 4.34 10.04 1.66 2.11 
72 9.66 3.38 4.26 5.58 8.70 
76 2.40 0.18 7.12 6.06 4.32 
85 1.40 2.55 3.15 2.86 2.49 
90 10.02 6.18 7.32 5.39 6.25 
92 6.00 5.13 5.52 4.75 4.97 
96 5.44 0.56 0.95 1.88 0.13 

LIE % 12.92 16.47 13.78 11.59 12.34 
AAD % 5.71 4.60 5.57 5.06 4.63 
RMSE 1.18 1.03 1.20 1.03 1.00 

R2 0.968 0.974 0.965 0.973 0.975 
Note: LIE (%)-Lowest Individual Error (in percentage); AAD 
(%)-Absolute Average Deviation (in percentage); RMSE-Root 
Mean Square Error; R2-Coefficient of Determination  
 
 
 

Table  8B. ANN Prediction Error for Model No.3  
Test 

Data No. 
ANN Prediction Error (% ) (Model No.3) 

Trial 
No. 
3.6 

7-9-1 

Trial 
No. 
3.7 

7-10-1 

Trial 
No. 
3.8 

7-11-1 

Trial 
No. 
3.9 

7-12-1 

Trial 
No. 
3.10 

7-13-1 
4 3.67 3.37 4.55 7.97 4.55 
8 5.22 0.53 1.63 0.70 2.81 

14 0.04 1.51 0.13 1.08 1.91 
18 5.02 3.50 3.79 4.65 3.79 
22 7.10 4.00 4.95 4.36 3.22 
28 10.00 11.56 11.18 12.30 12.71 
33 2.76 1.68 3.93 0.85 2.74 
38 5.63 1.89 7.02 3.10 2.74 
46 11.98 11.24 8.65 11.03 8.67 
48 6.34 3.29 4.54 4.96 4.47 
57 6.78 5.30 5.59 2.04 6.02 
63 6.62 4.70 0.26 4.72 1.09 
66 9.79 10.80 12.48 8.71 5.99 
69 6.11 0.11 2.21 1.86 3.51 
72 5.39 7.77 3.98 8.76 7.16 
76 0.63 2.84 3.23 2.52 1.92 
85 3.95 4.33 3.40 2.49 2.63 
90 5.64 3.49 4.52 4.39 7.36 
92 6.60 4.69 5.92 4.60 5.48 
96 2.76 5.00 3.96 3.17 1.74 

LIE % 11.98 11.56 12.48 12.30 12.71 
AAD % 5.60 4.58 4.80 4.71 4.52 
RMSE 1.14 0.99 1.00 0.97 0.98 

R2 0.968 0.975 0.975 0.977 0.976 
 

 
Fig. 7. Actual Vs. ANN Predicted Ultimate 
Flexural Strength (ANN Model No.3) 

 

 
Fig. 8 Best Training Performance for Training 
Data (Trial No.3.7, 7-10-1) (ANN Model No.3)  
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Fig. 9. Predicted Output Vs. Target for Training 
Data (Trial No.3.7, 7-10-1) (ANN Model No.3) 
 

 
Fig. 10. ANN Predicted Error for all Models  

 
5. CONCLUSION 
 

In this study, the flexural strength of hybrid 
mesh and fiber reinforced cement based composite 
(HMFRCBC) slab elements have been predicted 
using Artificial Neural Network (ANN). Three 
ANN models were developed, and based on 
various trials, the number of neurons for hidden 
layers was determined. Based on Lowest 
Individual Error (LIE %), lowest Absolute 
Average Deviation (AAD %), lowest Root Mean 
Square Error (RMSE) and the highest co-efficient 
of correlation (R2), the best trial run have been 
finalized for all the three models in fixing the 
hidden neurons. The best trial run for Models 1, 2 
and 3 shows LIE (%) of 11.18%, 6.95% and 
11.56%, lowest AAD (%) of 4.81%, 3.51% and 
4.58%, lowest RMSE of 0.86, 0.76 and 0.99, and 
highest R2 of 0.933, 0.988 and 0.975 respectively. 
Thus, ANN can be an effective technique in 
predicting the values from previous experimental 
studies or empirical or theoretical data, thus saving 
time and cost in conduct of new experiments.  
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