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ABSTRACT: In the past few decades,majority of dynamic behavior of slope have been conducted using the 

finite element method(FEM). However, earthquakes often cause large deformation and post-seismic soil 

deformation which are difficult to predict usingthe FEM due to mesh distortion issues.As an alternative 

numerical method, the smoothed particle hydrodynamics (SPH) has been recently applied to geotechnical field 

and showed to be a promising numerical technique to handle large deformation and post-failure behavior of 

geomaterials. In this paper, taking into consideration of this advantage, the SPH method is applied to simulate 

response of a slopesubjected to seismic loading. Reliability of SPH results was assessed by comparing with 

experimental data available in the literature. It is shown that the SPH method could qualitatively predict slope 

failure behavior observed in the experiment. 
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1. INTRODUCTION 

 

Seismic induced lateral displacement in a slope 

is traditionally determined by Newmark’s sliding 

block approach in design and assessment [1]. 

However, this method has limitations because of its 

simplicity. Nowadays, FEM (Finite Element 

Method), DEM (Distinct Element Method) [2] and 

FDM (Finite Difference Method) are used to 

simulate the co-seismic and post-seismic 

deformation of a slope subjected to seismic load. 

However, FEM and FDM methods have some 

disadvantage such as mesh distortion due to large 

deformation induced by soil failure. DEM, which is 

based on continuum mechanics, is favorable to 

simulate large deformation. However, DEM is 

computationally expensive to simulate the large 

problem. Moreover, it is quite difficult to specify 

DEM parameters for contact models. 

Alternatively, the mesh-free smoothed particle 

hydrodynamics (SPH) [3] has been applied to 

dynamic analysis of geomaterials [4] and shown that 

the method can be used effectively to predict the 

large deformation due to soil failure such as slope 

failure.In this paper, the SPH method is used to 

study the seismic behavior of a slope. The co-

seismic slope displacements and failure surface are 

calculated and compared with laboratory 

experimental results. The soil behavior is modeled 

with the elasto-plastic Drucker-Prager model. The 

artificial time history is used to simulate the 

earthquake loading. The seismic loading is applied 

to the slope by enforcing the motion of the model 

boundaries.  

 

2. SIMULATION APPROACH 

 

2.1 Soil constitutive model in SPH 

 

As stated, soil is modeled using the elastic-

plastic Drucker-Prager constitutive model. The 

implementation ofthis soil model in the SPH 

framework was already presented by Bui et al. [5]. 

The key equation used to represent the advance soil 

stresses are summarized here for brevity. The stress-

strain relationship of Drucker-Prager’s model with 

non-associate flow rule can be written as follow, 
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with the rate of change of plastic multiplier ��, 
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where G is the elastic shear modulus;K is the elastic 

bulk modulus;��is the deviatoric shear strain tensor;�� 

is the elastic strain tensor;ψtheis dilatancy angle;δ is 

the Kronecker’s delta;s is the deviatoric shear 

stress;J2 is the second invariants of stress tensor; 

andαφ is the Drucker-Prager’s constant. These 

equations are discretized with SPH as following, 
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whereiindicates a particle under consideration. ��, ��  
are the strain rateand spin rate tensors,respectively, 

which are discretized as below, 
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where � = 1,2, … , �  are particles in the influence 

domain of a certain particlei.W indicates function of 

approximation so-called“kernel function”.The 

particle position is finally determined as follows, 
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Further detailsabout SPH framework for soil can be 

found in [5] and [6]. 

 

2.2 Boundary conditions and earthquake loading 

 

Accuracy and stability of computation depend on 

the boundary conditions. In this paper, two types of 

boundary condition are considered: free-roller and 

full-fixity. Details of these boundary conditions and 

their inclusion of seismic motion are discussed in the 

following section.  

 

2.2.1 Free-roller boundary with seismic motion 

 

Free-roller boundary condition is usually used to 

represent a far field boundary condition. At the free-

roller boundary, soil particles are free to move in the 

direction which is parallel to the wall boundary. In 

SPH, the free-roller boundary can be simulated 

using ghost particles which areplaced 

symmetricallyon the opposite side of the wall 

boundary as shown in Fig.1.The stress boundary 

condition is set as follow [5],  
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Fig.1 Arrangement and treatment of ghost particles 

 

whereσG and σRare the stress tensor of ghost and real 

SPH particles, respectively. The velocity of ghost 

particlesvG is represented as follows [5-6], 
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wherevR is thevelocity of real particles and vwall is 

used to represent moving wall. In this paper, the 

seismic wave velocity on the roller boundary is 

enforced through vwall. In addition, the roller 

boundary is also subjected to motion according to 

the seismic motion input. 

 

2.2.2 Full-fixityboundarywith seismic motion 

 

The second type of boundary condition which is 

often used to restraint soil motions at the solid 

boundary is the full-fixity boundary. In SPH, the 

fully-fixity boundary condition can be modeled 

using “boundary particles” which are placed outside 

the wall boundary as shown in Fig. 2. These 

particles are normally fixed in the space and carry 

the same material properties as soil particles [5-6], 

except the velocity. In this paper, the same approach 

presented by Bui et al. [5-6] which can be dated 

back to the original work proposed by Morris et al. 

[7] is applied. Accordingly, velocity of boundary 

particles are updated using the following equation, 

 

ABAAB vvvv β=−=
       (10) 
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where vAand vBare the velocity of real and boundary 

particles, respectively;  dAand dBare the distance 

from the real and boundary particles to the wall 

boundary; and βmaxis a constantnumber which should 

be chosen to prevent particles getting closer to the 

wall boundary. In this study, βmax=1.5 is applied 

based on the recommendationby Bui et al [5]. 
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Fig.2Arrangement and treatment of solid boundary 

 

It is worth noting here that, although boundary 

particles are assigned with a virtual velocity (vB), 

these particles are fixed in the space. However, for 

the case of moving boundary such as due to seismic 

motion, equation (10) must be replaced by the 

following equation,  

 

)( wallAAB vvv −= β
       (12)

 

 

where vwall is again the seismic velocity wave. As a 

result, the virtual velocity of boundary particles on 

the moving boundary can be estimated as follows, 

 

wallAB vvv ββ +−= )1(
       (13)

 

 

Equation (13) assures that the velocity of real soil 

particles right at the solid wall will be exactly zero 

which satisfies the full-fixity boundary condition. 

However, this boundary condition does not represent 

the true natural seismic loading condition where the 

motion of boundary should be applied. In this paper, 

to simulate the true seismic loading boundary, the 

boundary particles are subjected to seismic motion 

which can be obtained by taking integration of the 

input acceleration. 

 

3. OUTLINE OF EXPERIMENT 

 

A small-scale cut slope shaking table experiment 

was conducted to verify SPH results. Figure 3 and 4 

show the schematic diagram of the experimental 

setup and the overview of the soil slope shaking 

table setup respectively. A steel box of 100cm long, 

60cm wide and 70cm high was mounted on top of 

the shaking table. The soil slope model of 90cm 

length, 60cm widthand 50cm height was set in the 

shaking box, and the slope angle was 45°. The soil 

used in the experiment was Masa soil which is a 

weathered granite commonly found at Kansai area in 

Japan. The particle size over 5mm was eliminated 

and the water content of soil is set at 10%. The slope 

was constructed in phases using 5cm thickness 

compacted layers of 90cm length and 60cm width  to 

achieve the homogeneous soil slope. Finally, the soil 

 
 

Fig. 3 Outline of the experiment (Unit: mm) 

 

 
 

Fig. 4  View of the slope model in experiment 

 

 
 

Fig. 5 Acceleration - time history used in 

experiment  

 

 
 

Fig. 6 Final slope configuration after loading 

 

block was shaved to the angle of 45°.The soil 
parametersare given in Table 1. 
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Fig. 7 Input seismic motions: a) velocity and b) 

displacement 

 

Table 1 Soil parameters 

Items Values Items Value 

ρ 1.68g/cm
3
 ψ 0 - φ 

φ 22.56
o
 E 2.57MPa 

c 0.78 kPa ν 0.33 

To measure displacement within the slope, seven 

laser displacement sensors were used. Three sensors, 

named SH1, SH2, and SH3, were fixed to slope side 

on the soil box to measure horizontal displacement 

of the slope at given height (see Fig.3). Four laser 

displacement sensors, named SV1, SV2, SV3, and 

SV4, were fixed to the top of the soil box to measure 

vertical displacement at given locations.The shaking 

table can generatea maximum acceleration of 

323m/s
2
with a corresponding displacement of 5cm 

in horizontal direction and a frequencyof 700Hz.  

 

The slope model was subjected to the seismic 

wave loading shown in Fig.5, which was recorded 

from the experiment. Test was run for 14 

secondsuntil the slope was completely collapsed. 

Figure 6 shows the deformation pattern of the slope 

at the end of the testing.The top surface of the slope 

was settled down due to the soil compaction. Four 

distinct failure surfaces were identified from the side 

wall, suggesting that the slope was collapsed in 

several stages during loading. In addition, because 

the soil slope was constructed on the steel box, 

thefraction at the bottom of the slope is significantly 

low. Therefore, the sliding along the steel box could 

also be considered as one of the factors triggering 

the slope failure. 

 

4. NUMERICAL VALIDATION 

 

A 2D-SPH model was conducted to simulate the  

 
 

Fig. 8 Effects of dilatancy angle on the failure 

mechanism. 

 

dynamic behavior of the slope model. Soil 

parameters for the constitutive model can be found 

in [7] and summarized in Table 1. The effect of 

dilatancy angle on the failure mechanism of the 

slope is investigated. In general, the dilatancy angle 

can vary from zero to the friction angle. In the case 

of ψ = 0, the plastic volume is constant, and there is 

no plastic volumetric expansion; however, for the 

case of ψ = ϕ, the plastic volumetric expansion is 

maximal. Therefore, dilatancy angles of ψ =0, ϕ/2, 

andϕ are adopted throughout this paper. Results of 

the failure surface and soil displacements are then 

compared with those observed in the experiment. 

The effect of pore-water pressure was assumed to be 

negligible and not considered in this study. 

A total of 3245 SPH particles were used to create 

the slope model shown in Fig.3 with an initial 

smoothing length of 1.2cm. Boundary conditions are 

free-roller at the vertical and full-fixity at the base. 

The initial stress condition in the slope was obtained 

by applyingthe gravity loading to soil particles [6]. 

The slope model was then subjected to the seismic 

wave loading shown in Fig.7 which was computed 

from the acceleration time history recoded in the 

shaking table test. The load was applied by 

enforcing the seismic motions of the solid wall 

boundaries. 
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Fig. 9Comparison between SPH simulation and 

experiment for the failure surface. 

 

 
 

Fig. 10 Effects of dilatancy angle on the post 

failure behavior of the slope. 

 

Figure 8 shows a comparison of the failure 

surface obtained in the simulations for different 

dilatancy angles. The contour plotrepresents the 

accumulated deviatoric strain. In the case of ψ =0°, 

soil underwent shear deformation without plastic 

volumetric expansion, which resulted in the thick 

shear band layer. Contrarily, when the dilatancy 

angle was increased, the failure occurred locally due 

to the development of plastic volumetric strain. As a 

result, the slip surface was found to be localized in a 

narrow band.  

Figure 9 shows a comparison between 

experiment and simulation for the failure surface. In 

the experiment, the failure surface was obtained by 

removing collapsing soil carefully above the failure 

surface. It can be seen that the SPH simulation with 

high dilatancy angle (i.e. ψ > 0.5ϕ)predicted fairly 

well the failure surface observed in the experiment. 

However, the SPH model with (ψ =0) overestimated 

the failure zone. The ends of sliding surface line are 

the same in both experiment and simulations.The 

shape of the sliding surface in the simulation was 

found to be almost circular, while that of experiment 

was a curved line having higher curvature angle. It is 

still not clearabout this failure mechanism observed 

in the experiment because there might have 

sometechnical errors when removing the collapsing 

soil to specify thefailure surface in the experiments. 

Further tests should beconducted to clarify this 

difference for a future work. 

In term of the progressive failure, the 

experimental results showed that the slope model 

underwent four failure stages which correspond to 

four different failure surfaces as shown in Fig.6. The 

SPH model was unable to reproduced this failure 

mechanism; however, two failure surfaces were 

observed in the SPH simulation with (ψ =0); while 

only one failure surface was found in the SPH model 

(ψ > 0.5ϕ). On the other hand, the SPH method can 

simulate well the sliding process of soil after 

collapse.  

Figure 10 shows a comparison of SPH 

simulations for the post-failure behavior of soil 

using different dilatancy angles. It can be seen that 

the higher dilatancy angle is utilized in the 

simulation, the larger final run-out distance could be 

predicted in the simulation. This result is 

conceptually correct and reflects well the behavior 

of the current constitutive model, that is the larger 

dilatancy angle is adopted in the constitutive model, 

the higher plastic volumetric strain could be 

predicted during the post-yielding process. This 

result suggests that if a suitable constitutive model is 

used, the SPH simulation could simulate well post-

failure behavior of soil.  

Figure 11 shows a comparison between the SPH 

simulation and the experiment for the vertical and 

horizontal displacements measured at some specific 

locations as outlined in Fig.3, i.e. SH1-SH4 and 

SV1-SV4. In both cases (i.e. ψ =0 and ψ =0.5ϕ), the 

SPH simulations predicted fairly well the vertical 

and horizontal displacement profiles measured at 

different layer displacement sensors. However, 

simulation results over predicted the final run-out 

distance of soil measured in the experiment. The 

SPH model with zero-dilatancy angle seems 

providing better prediction of the displacement as 

compared to the SPH model utilizing high dilatancy 

angle. In addition, it is also noticed that the 

horizontal displacement at sensor SH1 in the SPH 

simulation of ψ =0.5ϕ went negative, which is 

significantly different from that observed in the 

experiment. This can be explained due to the fact the 

slope collapsed and slid downward along the failure 

surface. Thus, the measuring location of SH1 in the 

simulation was no longer on the sliding soil volume, 

but on the failure surface. This mechanism was 

however not clear from the experiment. Further 

research is required to confirm the mechanism. 
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Fig. 11 Comparison between SPH simulation and 

experiment results for the displacements. 

 

5. CONCLUSION 

 

This study presented the application of SPH to 

simulate the large deformation and failure behavior 

of the slope subjected to dynamic loading. Results 

showed that SPH predicted fairly well the failure 

surface observed in the experiment, but significantly 

overestimated the slope deformation. In order to 

improve the accuracy of the SPH simulation, 

advanced soil constitutive model and damping 

should be taken into consideration. These are the 

subjects of future work. 
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