
42 

COMPARISON OF DIFFERENT VEGETATION INDICES 

FOR ASSESSING MANGROVE DENSITY 

USING SENTINEL-2 IMAGERY  

* Firman Farid Muhsoni12*, A.B Sambah34, M. Mahmudi3, D.G.R Wiadnya3

1Marine Science Department, University of Trunojoyo Madura, 
 Indonesia 

2Post-Graduate Program, Faculty of Fisheries and Marine Science, University of Brawijaya  

Indonesia 

3Faculty of Fisheries and Marine Science, University of Brawijaya, Indonesia 
4Marine and Fisheries Resources Exploration & Management Research Group,  

Brawijaya University, Indonesia 

* Corresponding Author: Received: 08 June  2017,   Revised: 29 July 2017, Accepted: 25 Aug. 2017

ABSTRACT: Vegetation mapping provides important information for understanding ecological condition 

through calculation of vegetation density. It based on vegetation indices developed through algorithms of a 

mathematical model within the visible and near-infrared reflectance bands. The index is an estimate of either 

leaf density per species or vegetation types, respectively. This study aimed to evaluate those indices and find 

the best algorithm using Sentinel-2 satellite image. Twenty four algorithms of vegetation indices were analyzed 

for mangrove density mapping, i.e., BR, GNDVI BR, GR, SAVI, MSAVI, NDRE, NDVI, NDVI2, NDWI, 

NNIP, PSRI, RR, RVI, VIRE, SVI, VIRRE, MTV1, MTVI2, RDVI, VARI, VI green, MSR, and TVI. During 

pre-processing stage, a digital number of a Sentinel-2 image was converted into radiance and reflectance value. 

The analysis resulted in three algorithms that provide the highest accuracy, i.e., NDVI (normalized difference 

vegetation indices) with exponential regression approach, RVI (Ratio Vegetation indices) with the exponential 

approach and NDVI (normalized difference vegetation indices) with a polynomial approach. The mangrove 

biomass spatial modeling NDVI with exponential regression approach (RMSE = 89 kg) showed the average of 

each pixel (10x10m) was 0.97 ton / 100 m2. Total mangrove biomass for above ground and underground 

vegetation in the study area was 22,365.6 tons. Sentinel-2 satellite image may best use one of those three 

algorithms, especially applied for mangrove vegetation.  

Keywords: Vegetation Indices, Sentinel-2 Imagery, Mangrove Biomass 

1. INTRODUCTION

 Global warming becomes a global issue. It leads 

to climate change, due to an increase in atmospheric 

gas or it was called greenhouse gases. Greenhouse 

gases occur due to the accumulation of carbon in 

atmosphere accumulation due to the burning of 

fossil fuels (the activity of vehicle and industry) [1], 

[2].  

Mangrove has a function as a carbon sink, 

although the information and data are still relatively 

minimal [3]. Mangroves are also called mangroves 

for tree or shrub communities that grow in the 

coastal area, or they are applied to one type of 

vegetation species [4]. Mangrove is an intertidal 

plant found along tropical and non-tropical 

coastlines [5]. This plant is inundated by tides in the 

brackish area and has physiological adaptations to 

salinity [6], [7], [8]. Mangrove ecosystem stored the 

highest carbon if compared to tropical forests, 

subtropical forests and boreal forests. Much of the 

carbon stored in the rich organic underground 

[7],[9], [10]. Mangrove stores carbon four to five 

times faster than tropical forests  [7];[11]. Climate 

change is closely related to the existence of forest 

biomass. Biomass plays a role in the carbon cycle. 

Forest carbon is stored in forest vegetation. The 

increase of carbon in the atmosphere caused by the 

damage or forest fire. More than 50% of the world's 

mangroves have been destroyed and in the past of 

two decades, 35% of damage caused by coastal 

cultivation and development [12]. Mangrove 

damage has resulted in the contribution of carbon 

sequestration in the atmosphere [13]. Mangrove 

area is only 0.7% of the area of tropical forest, but 

mangrove destruction will supply 10% of CO2 from 

the mangrove deforestation [14]. 

 Remote Sensing, flowed by the application of 

GIS provide quantitative information to investigate 

the spatial distribution of vegetation, including 

mangrove forests in the coastal [15]. The 

application of satellite image analysis has been 

applied in various ways to illustrate mangrove 

ecosystems. Some of the published study includes 

mapping the distribution of mangrove in the coastal, 

observing mangrove species by ground survey 
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combination, and estimates its structure such as leaf 

area, canopy height, and biomass [16].  

 Satellite imagery data is one of the basic 

information that could describe the location of the 

deforested area, also healthy vegetation. Satellite 

remote sensing approach, due to its synoptic, multi-

temporal, and multi-spectral ability, can effectively 

act as one of the methods in providing reliable 

information on mangrove extent and status of its 

growth along the coastal areas. The reflectance 

pattern of the vegetation in red-visible & near infra-

red spectral region illustrated the density of all 

vegetation coverage in the coastal. 

 Moreover, earth observation satellite like 

Landsat satellite was commonly applied to define 

the distribution and density of the mangrove forest 

[17]. In addition to some satellite applied in 

vegetation density mapping, Sentinel-2 satellite is a 

relatively new satellite that is assumed can be used 

in the mapping of vegetation spatial distribution. 

Sentinel-2 is a European wide-swath, high-

resolution, multi-spectral imaging mission. The full 

mission specification of the twin satellites flying in 

the same orbit but phased at 180°, which is designed 

to give a high revisit frequency of 5 days (temporal 

resolution) at the Equator [18]. In this study, we 

analyze Sentinel-2 satellite imagery to investigate 

and evaluate the density of mangrove forest by 

calculation of several vegetation indices.   

Vegetation mapping provides valuable 

information for understanding the natural and man-

made environment. It is important to obtain 

vegetation cover in the framework of vegetation 

protection and restoration programs [19]. Mangrove 

ecosystems have tremendous relevance to the 

ecological and economic conditions for 

conservation and restoration measures. The latest 

information concerning the extent and condition of 

mangrove ecosystems is essential for management, 

policy process, and decision making. It can be 

solved using remote sensing technology [20]; [21]. 

The vegetation indices approach in remote sensing 

is commonly used for vegetation mapping [22]. The 

vegetation indices have calculated the vegetation 

density of green leaf and specifically for vegetation 

species. The purpose of this study is evaluating the 

different vegetation indices that collected from the 

Sentinel-2 satellite image analysis. 

2. MATERIALS AND METHODS

2.1. Satellite Remote Sensing Data 

Sentinel-2 satellite images (Copernicus 

Sentinel data (2017)) were used in the calculation 

and mapping of mangrove distribution. The 

Sentinel-2 satellite has 13 spectral bands from near-

infrared to shortwave infrared. Spatial resolution 

varies from 10m - 60m depending on spectral band 

[23]. Sentinel 2 image used in this research was 

December 6, 2016. The bands used in this study 

were band 2, 3, 4, 5, 6, 8, 8a, with specifications as 

in Table 1. Moreover, the illustration of Sentinel- 2 

spectral bands for 10m and 20m spatial resolution 

as described in Figure 2 and Figure 3. 

Table 1. Sentinel-2 band spesification [4] 

No Band 
Wavelength 

(µm) 

Spatial 

resolution 

1 Band 2 – Blue 0.490 10m 

2 Band 3 – Green 0.560 10m 

3 Band 4 – Red 0.665 10m 

4 Band 5 – Vegetation 

Red Edge 

0.704 20m 

5 Band 6 – Vegetation 

Red Edge 

0.740 20m 

6 Band  8 – NIR 0.835 10m 

7 Band 8a – Vegetation 

Red Edge 

0.865 20m 

Figure 2. Sentinel-2 10 m spatial resolution bands: 

B2 (490 nm), B3 (560 nm), B4 (665 nm) and B8 

(842 nm) [4] 

Figure 3. Sentinel-2 20 m spatial resolution bands: 

B5 (705 nm), B6 (740 nm), B7 (783 nm), B8a (865 

nm), B11 (1610 nm) and B12 (2190 nm) [4] 

2.2. Radiometry Corrections 

The radiometric correction uses the at-sensor 

reflectance method by changing the pixel value to 

the radiance-sensor, then converted to at-sensor 

reflectance, with the following formula [24]: 

𝐿𝑥 = 𝑜𝑓𝑓𝑠𝑒𝑡𝑥 + 𝐺𝑎𝑖𝑛𝑥 × (𝐵𝑉)𝑥  (1) 

𝐺𝑎𝑖𝑛𝑥 = (𝐿𝑚𝑎𝑘𝑠 − 𝐿𝑚𝑖𝑛)/𝐵𝑉𝑚𝑎𝑘𝑠  (2) 
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Where, Lᵪ is the radiance value; BV is 

Brightness Value; and Offset, Gain from the 

mathematical calculation of maximum-minimum 

spectral radiance value in image metadata. The 

radiance value is changed to the at-sensor 

reflectance value based on the equation: 

𝑃 =
∗𝐿𝑥∗𝑑

2

𝐸𝑆𝑈𝑁𝑥∗𝐶𝑜𝑠𝑆
  (3) 

d = 1 – 0,01674 cos (0,9856(JD – 4))     (4) 

Where: ρP = the value of at-sensor reflectance; 

Lᵪ = radiance value (Wm-2sr-1μm-1); Π = 

3,142857142857143; D = distance of earth-sun 

(astronomical unit); ESUNᵪ = spectral irradiance 

sun value (Wm-2μm-1); Ɵs = angle sun zenith 

(degree); JD = Julian Day. 

2.3. Transformation of Vegetation Indices 

The vegetation indices method that used is 

structure vegetation indices. The vegetation indices 

method was also adapted to the images band 

spectral of Sentinel-2 images. The vegetation 

indices used in the mapping of mangrove 

distribution in this study is described in table 2. 

Table 2. An appropriate vegetation indices for 

Sentinel image 2 

No Vegetation Indices 

1 BR (Blue Ratio)[25],[26] 

(
𝐑

𝐁
) × (

𝐆

𝐁
) × (

𝐑𝐄𝟏

𝐁
) × (

𝐍𝐈𝐑𝟏

𝐁
)              (5) 

2 GNDVI (Green normalized difference 

Vegetation indices) [27]  
𝐍𝐈𝐑𝟏−𝐆

𝐍𝐈𝐑𝟏+𝐆
 (6) 

3 GR (Green Ratio) [25] 
𝐆

𝐑
 (7) 

4 SAVI (Soil-Adjusted Vegetation Indices)  [28], 

[29], [30]   
(𝟏+𝟎.𝟐)∗(𝐍𝐈𝐑𝟏−𝐍𝐈𝐑𝟐)

(𝐍𝐈𝐑𝟏+𝐍𝐈𝐑𝟐)+𝟎.𝟐
 (8) 

5 MSAVI(modified SAVI) [31] 
𝟏

𝟐
[𝟐 ∗ 𝐍𝐈𝐑𝟏 + 𝟏 −

√(𝟐 ∗ 𝐍𝐈𝐑𝟏 + 𝟏)𝟐 − 𝟖 ∗ (𝐍𝐈𝐑𝟏 − 𝐑)]       (9) 

6 NDRE (Normalized difference Red-Edge 

indices)[32],[33].  
𝐍𝐈𝐑𝟏−𝐑𝐄

𝐍𝐈𝐑𝟏+𝐑𝐄
 (10) 

7 NDVI (normalized difference vegetation 

indices)[34],[35],[27]   
𝐍𝐈𝐑𝟏−𝐑

𝐍𝐈𝐑𝟏+𝐑
  (11) 

8 NDVI2 (normalized difference vegetation 

indices) [34] 
𝐍𝐈𝐑𝟐−𝐑

𝐍𝐈𝐑𝟐+𝐑
      (12) 

9 NDWI (Normalized Difference Water Indices) 

[36] 
𝐆−𝐍𝐈𝐑𝟏

𝐆+𝐍𝐈𝐑𝟏
 (13) 

10 NNIP (Normalized Near Infrared) [37], [26] 
𝐍𝐈𝐑𝟏

(𝐍𝐈𝐑𝟏+𝐑+𝐆)
 (14) 

11 PSRI (Plant Senescence Reflectance 

Indices)[38] 
𝐑−𝐁

𝐑𝐄𝟏
 (15) 

12 RR (Red Ratio) [25] 

(
𝐍𝐈𝐑𝟏

𝐑
) × (

𝐆

𝐑
) × (

𝐍𝐈𝐑𝟏

𝐑𝐄𝐈
)          (16) 

13 RVI (Ratio Vegetation indices) [39] 
𝐍𝐈𝐑𝟏

𝐑
 (17) 

14 SVI (Sentinel Improved Vegetation Indices) [26] 
𝐍𝐈𝐑𝟐−𝐑

𝐍𝐈𝐑𝟐+𝐑
 (18) 

15 VIRE (Vegetation Indices based on RedEdge) 

[26] 
𝟏𝟎.𝟎𝟎𝟎−𝐍𝐈𝐑𝟏

𝐑𝐄𝐈𝟐
 (19) 

16 VIRRE (Vegetation Indices Ratio based on 

RedEdge) [26] 
𝐍𝐈𝐑𝟏

𝐑𝐄𝐈
        (20) 

17 WVVI (WorldView Improved Vegetative 

Indices) [40] 
𝐍𝐈𝐑𝟐−𝐑𝐄𝐈

𝐍𝐈𝐑𝟐+𝐑𝐄𝐈
 (21) 

18 MTV (Modified Triangular Vegetation 

Indices1) [30] 

𝟏, 𝟐 ∗ [𝟏, 𝟐 ∗ (𝐍𝐈𝐑 − 𝐆) − 𝟐, 𝟓 ∗ (𝐑 − 𝐆)]  (22) 

19 MTV 2 (Modified Triangular Vegetation 

Indices2)[30] 
𝟏.𝟓∗(𝟏,𝟐∗(𝐍𝐈𝐑−𝐆)−𝟐.𝟓∗(𝐑−𝐆))

√(𝟐∗𝐍𝐈𝐑+𝟏)𝟐−(𝟔∗𝐍𝐈𝐑−𝟓∗√𝐑)−𝟎,𝟓

   (23) 

20 RDVI (renormalized difference vegetation 

indices) [29] 

[(𝐍𝐈𝐑 − 𝐑)/(𝐍𝐈𝐑 + 𝐑)𝟐]  (24) 

21 VARI (vegetation atmospherically resistant 

indices)[41] 
(𝐆−𝐑)

(𝐆+𝐑−𝐁)
 (25) 

22 VI green [41] 
(𝐆−𝐑)

(𝐆+𝐑)
 (26) 

23 MSR (Modified Simple Ratio) [42], [30] 

((
𝐍𝐈𝐑

𝐑
)−𝟏)

((
𝐍𝐈𝐑

𝐑
)+𝟏)

𝟎.𝟓  (27) 

24 TVI (triangular vegetation indices) [39] 

𝟎. 𝟓 ∗ (𝟏𝟐𝟎 ∗ (𝐍𝐈𝐑 − 𝐆)) − 𝟐𝟎𝟎 ∗ (𝐑 − 𝐆)       (28) 

Description: Blue (B), Green (G), Red (R), Near-

infrared 1 (NIR1), Near-infrared 2 (NIR2), Red 

Edge 1 (RE1), Red Edge 2 (RE2). 

2.4. Estimation of Mangrove Biomass 

Estimation of mangrove tree biomass in this 

study was conducted using allometric equations. 
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Allometric equations for aboveground biomass 

[43]; [44] are: 

W=0.168**(DBH)2.471           (29) 

Meanwhile, biomass measurements below ground 

level  [7]; [44] are: 

𝑩 = 𝟎. 𝟏𝟗𝟗 ∗ 𝟎.𝟖𝟗𝟗 ∗ (𝑫𝑩𝑯)𝟐,𝟐𝟐   (30) 

Description:  

W = above ground level biomass, B = below ground 

biomass (kg),  = Wood density (g / cm3), DNH = 

diameter at breast height (cm). 

The best vegetation indices search was 

performed by non-linear regression statistical 

analysis between biomass and vegetation indices 

values. Root Mean Square Error (RMSE) is used for 

determining the best vegetation indices in 

mangrove biomass estimation. The best regression 

equation is used to estimate mangrove biomass. 

2.5. Study Area 

This research was conducted in Majungan 

Village, Pademawu Sub-district, Pamekasan 

Regency. This location is located on the Madura 

Island which is part of East Java Province. The 

boundary of the study area is in coordinates of 

113029’48”-113031’24” E, 7013’48”-7015’12” S.  

Figure 1. Map of Research Location 

3. RESULTS AND DISCUSSION

In this study, the mangrove area was separated 

by another land cover. The process of mangrove 

masking was done due to the vegetation indices that 

was applied to detect canopy density variation, 

rather than differentiate the type of vegetation. The 

initial stages of the study began with radiometric 

correction of sentinel-2 images. The radiometric 

correction was done by converting radian value to 

at-sensor reflectance. The corrected image then 

analyzed the vegetation indices through the 

calculation of 24 types of vegetation indices (see 

Table 2). The result of vegetation indices analysis is 

presented in Table 3. 

Table 3. Analysis Results 24 Types of Vegetation 

Indices.  

vegetation indices 

(Histogram, 

Min/max/ 

mean/Stdev) 

image of vegetation indices 

1.BR

Min =-8.79 , 

Max = 5.13, 

Mean =-4.56 ; 

Stdev = 1.1 

2.GNDVI

Min = -0.09, 

Max = 0.52, 

Mean = 0.35, 

Stdev = 0.07 

3. GR

Min = 0.8, 

Max = 1.32, 

Mean = 1.16, 

Stdev = 0.08 

4. SAVI

Min = -5943.31, 

Max = 30299,  

Mean = -2.02,   

Stdev = 230.23 
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vegetation indices 

(Histogram, 

Min/max/ 

mean/Stdev) 

image of vegetation indices 

5.MSAVI

Min = -0.23, 

Max = 0.66, 

Mean = 0.49, 

Stdev = 0.08 

6.NDRE

Min = -13367.00, 

Max = 10940.00, 

Mean = -4.40,  

Stdev = 201.74 

7.NDVI

Min = -0.07, 

Max =  0.59, 

Mean = 0.41, 

Stdev = 0.09 

8.NDVI2

Min = -2442.56, 

Max = 2449,  

Mean = 1.56,  

Stdev = 24.39 

9.NDWI

Min = -0.52, 

Max = 0.09, 

Mean = -0.35, 

Stdev = 0.07 

vegetation indices 

(Histogram, 

Min/max/ 

mean/Stdev) 

image of vegetation indices 

10.NNIP

Min = 0.3, 

Max = 0.63, 

Mean = 0.53, 

Stdev = 0.04 

11.PSRI

Min = -107.94, 

Max = 10.88,  

Mean = 0.05,  

Stdev = 0.91 

12. RR

Min = -1138.47, 

Max =  144.26,  

Mean = -2.19,  

Stdev = 12.31 

13. RVI

Min = 0.87, 

Max = 3.86, 

Mean = 2.48, 

Stdev = 0.44 

14.SVI

Min = -2442.56, 

Max = 2449,  

Mean = 1.56,    

Stdev = 24.39 
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vegetation indices 

(Histogram, 

Min/max/ 

mean/Stdev) 

image of vegetation indices 

15. VIRE

Min = -15.23,  

Max = 0.0005,  

Mean = -0.0017, 

Stdev =  0.14 

16. VIRRE

Min = -829.78, 

Max = 75.02,  

Mean = -0.82,  

Stdev = 9.25 

17. WVVI

Min =   -4546.2, 

Max = 25214,  

Mean = 5.21,  

Stdev = 310.65 

18. MTV

Min = -65734.1,  

Max = -13520.6, 

Mean = -24856.8, 

Stdev = 5439.4 

19. MTV2

Min = -4.59, 

Max = -0.48, 

Mean = -1.22, 

Stdev = 0.41 

vegetation indices 

(Histogram, 

Min/max/ 

mean/Stdev) 

image of vegetation indices 

20.RDVI

Min = -0.000005, 

Max = 0.000029, 

Mean = 0.000022, 

Stdev = 0.000005 

21. VARI

Min = -0.19, 

Max = 0.33, 

Mean = 0.17, 

Stdev = 0.08 

22.VI green

Min = -0.11 , 

Max = 0.14, 

Mean = 0.07 , 

Stdev = 0.03 

23. MSR

Min =  -0.0012, 

Max = 0.0193, 

 Mean = 0.0109, 

Stdev = 0.0032 

24.TVI 

 Min = -136940 , 

Max = 1019240, 

Mean = 572097.6, 

Stdev = 160378.9 
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Field measurements were carried out to obtain 

biomass values of mangrove trees, i.e. above 

ground biomass values and below ground biomass 

values. Sampling point field measurement as on the 

map Figure 4. 

Figure 4. Map of the field measurement sample 

points 

Based on the results of field 

measurements, biomass mangrove for above 

ground biomass was 382 kg/100m2, below ground 

biomass was 352,7 kg/100m2 and total biomass was 

735 kg/100m2. In this study, for soil biomass is not 

taken into account. Table 4 describes the minimum 

and maximum values of mangrove biomass 

measured in the field. 

Table 4. Mangrove biomass from field data 

calculation  

Above 

ground 

biomass 

(kg/100m2) 

Below 

ground 

biomass 

(kg/100m2) 

Total 

biomass 

(kg/100m2) 

Min 86.9 84.2 171 

Max 817.3 754.4 1572 

Mean 382.0 352.7 735 

The mangrove species found in the sample 

location plots were Rhizophora stylosa, Rhizophora 

mucronata, Rhizophora apiculata, Avicennia 

marina, Aegiceras corniculatum, Sonneratia alba, 

Ceriops decandra, and Xylocarpus moluccensis. 

The composition of dominant mangrove species in 

the study area was Aegiceras corniculatum (32%), 

Ceriops decandra (21.2%), Rhizophora apiculata 

(18.9%), Sonneratia alba (12.2%) and Rhizophora 

stylosa (10.7 %). 

The next step has analyzed the relationship 

between image vegetation indices values that have 

been produced with field measurement data, using 

logarithmic, quadratic, and exponential regression 

Field measurement was the measurement of 

mangrove biomass at the sampling point. The 

model constructed for biomass estimation was 

based on the statistical analysis of vegetation 

indices results of image transformation of Sentinel-

2 with the result of biomass calculation value in the 

field. The regression analysis model used was a 

non-linear regression. Non-linear regression 

statistical analysis was based on determination 

coefficient  (R2). The value of R2 shows the 

proportion of the independent variables decrease 

due to the utilization of the dependent variable 

information. The range of R2 is between 0 and 1. It 

depicting how much dispersion is explained by the 

prediction. The value of zero means there is no 

correlation at all, while the value of 1 means the 

dispersion of the prediction equals the observation. 

A good R2 value approaches 1.0 [45]. Root mean 

square error (RMSE) was used in the best model 

accuracy test with the lowest error value at the 

RMSE value [46]. 

The Kolmogorov-Smirnov normality test was 

performed before the independent variable used 

was normally distributed against the dependent 

variable or not. Normality test results will show 

normally distributed data when the value of 

significance on skewness ratio and the kurtosis ratio 

is in the range -2 to 2. Based on statistical analysis 

of skewness ratio and the kurtosis ratio value, 24 

vegetation indices was spanned between -2 to 2, 

only 3 Vegetation indices greater than 2, i.e. SAVI, 

NDVI2, and SVI. 

Table 5. Regression results of 24 vegetation indices 

with R2 >0.8 value.  

Vegetat
ion 

Indices 

Regression 

Model 

Regression 

Equation 
R2 

RMSE 
(kg) 

NDVI Eksponential y = 0.0316e22.26x 0.859 89 

Polynomial y = 86773x2 - 

62664x + 11397 

0.814 353 

NNIP Eksponential y = 

0.0000001e41.24x 

0.832 459 

RVI  Eksponential y = 0.09e3.40x 0.850 352 

Logarithmic y = 5534.6ln(x) - 

4538.8 

0.809 510 

Polynomial y = 903.25x2 - 

2542.1x + 1215.4 

0.815 397 

MTV1 Eksponential y = 

1485906.17e0.00033x 

0.813 724 

MTV2 Eksponential y = 180217.44e5.32x 0.829 452 

MSR Eksponential y = 1.7209e504.63x 0.860 553 

Polynomial  

y = 

48,915,274.97x2 - 

812,817.55x + 

3,499.67 

0.815 463 

TVI Eksponential y = 

0.356602e0.000012x 

0.821 2615 

The best combination of vegetation indices 

results can be seen in Table 5. Consistently, the non-

linear regression approach through exponential 
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equation shows higher R2 value than a logarithmic 

or polynomial equation. The best result of 24 

vegetation indices seen from RMSE values was 

NDVI (normalized difference vegetation indices) 

with an exponential regression approach (RMSE 

value = 89 kg). The next decent vegetation indices 

were RVI (Ratio Vegetation indices) with an 

exponential approach (RMSE value = 352 kg) and 

NDVI (normalized difference vegetation indices) 

with the polynomial (RMSE value = 353 kg), as 

shown in table 5. 

Spatial modeling of mangrove distribution 

based on vegetation indices was done using NDVI 

with an exponential regression approach. Mapping 

of the spatial distribution of mangrove biomass in 

Pademawu Subdistrict of Pamekasan Regency of 

East Java Province was based on exponential non-

linear regression equation of NDVI vegetation 

indices. The results of this mapping were illustrated 

on the map Figure 3. 

Figure 3. Spatial distribution of biomass in 

Pademawu Sub-district of Pamekasan Regency of 

East Java Province based on exponential non-linear 

regression equation of exponential NDVI 

vegetation indices. 

The result of mangrove biomass spatial 

modeling showed that the average of mangrove 

biomass at each pixel (10x10m) was 0.97 ton / 100 

m2. Total mangrove biomass for above ground and 

underground vegetation in the study area was 

22,365.6 tons 

4. CONCLUSION

The best results of 24 vegetation indices 

analyzed by exponential regression were NDVI 

(normalized difference vegetation indices) with 

exponential regression approach, RVI (Ratio 

Vegetation indices) with the exponential and NDVI 

(normalized difference vegetation indices) with the 

polynomial. The mangrove biomass spatial 

modeling NDVI with exponential regression 

approach (RMSE = 89 kg) showed the average of 

each pixel (10x10m) was 0.97 ton / 100 m2. Total 

mangrove biomass for above ground and 

underground vegetation in the study area was 

22,365.6 tons. 
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