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ABSTRACT: In this paper, we discuss the most powerful techniques of tuning parallel/distributed databases. 
As in engineering, database tuning becomes an inescapable part of big projects since the conception phase of 
research projects. The needs of companies including big data have increased to databases optimization. 
Systems that not take into account the optimization rules become heavy after five years of their production; 
these reasons were of a paramount of importance to prepare this paper. Indexing is the most suitable way to 
optimize database systems, further one of the top ways of optimizing index is the application of 
parallelization. In this paper, we will discuss parallelization and we will practice it with different complex 
queries and sub-queries using different types of indexes; then we will compare the results gotten from each 
index. To top it all, the most suitable interference between the major types of index: B*Tree index, Bitmap 
index, composite parallel index, local parallel index and global parallel index. 
 
Keywords: parallelization, sub-query, optimization, interference between indexes, b*tree, bitmap, local index, 
data partitioning, sub-query. 
 
1. INTRODUCTION 

 
 To satisfy the needs of data processing speed 

and decrease the response time of complex 
queries, optimizing a large database remains 
essentially to good query writing. A poorly 
written query can increase the input output gets, 
which leads to the increasing of the execution 
time. The most companies’ needs have increased 
to store and analyze the ever-growing data 
transparently, such as search logs, crawled web 
content and click streams. Such analysis becomes 
crucial for businesses in different ways; such as to 
improve service quality and support novel 
features, to detect changes in patterns over time 
and to detect fraudulent activities[1] . As actual 
computers have powerful processors and very 
speed RAM, then applications require much 
higher data operation speed, the traditional 
RDBMS. Difference between memory and disk in 
terms of writing and reading speed is very large, 
so since 1980s, researchers try to move the whole 
database from disk into main memory to improve 
the execution time. From the one hand to optimize 
the latency time, because main memory is faster 
than disk and from the other hand, to minimize 
the interference between different processes when 
accessing to the data; this type of databases is 
called Main Memory Databases[2]. Our ultimate 
topic in this paper is not to discuss main memory 
databases, but to discuss and analyze different 
types of indexes and their interferences on a given 
query. 

The most researches and practices focus on 
two types of indexes, BTree and Bitmap. BTree is 

three types, local index, global index and 
composite index. The same for Bitmap index, 
bitmap local index, bitmap global index and 
bitmap composite index. We will make a join 
query between two or more tables, each one is 
indexed by a distinct type of index; we analyze 
every method, and compare between them. 

The list-based, view-based and disk-based 
methods are other optimization’s methods. First, 
the list-based methods construct a set of lists by 
sorting all tuples based on their values in each 
attribute. It then finds the tuples by merging as 
many lists as needed. Second, the view-based 
methods pre-compute the results of multiple 
queries and store these results as a view. Third, 
disk-based methods build an index using disk[3]. 

Commercial optimizers classify query 
optimization techniques into two dimensions, 
optimization time and optimization granularity. 
Optimization time is when optimization decisions 
are made. However, optimization granularity 
defines if the optimization decisions are based 
upon dynamic sampling. In terms of optimization 
time, some database systems determine query 
plans in advance at compile time. While others 
forego pre-computed plans and “route” tuples on 
the fly at runtime[4]. 

Our contribution in this paper is to propose a 
set of index interference structures and algorithms, 
which allow us to decrease efficiently the costs of 
different complex queries in parallel/distributed 
database systems. These costs are real-time 
querying or real execution time and CPU cost or 
input output gets. 

The following table describes a part of the 
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table CLIENTS. Is due to flexibility of the 
document, we cannot specify the full table. 

 
Table. 1 The part of the running table CLIENTS 
 
NO NAME CITY COUNTRY 
1 Mohamed Rak Maroc 
3 Hamid Casa Maroc 
25 Khalid Fes Maroc 
32 Salah Casa Maroc 
39 Karim Safi Maroc 
43 Houdi Essaouia Maroc 
46 Jalal Sfaqes Tunisie 
50 Charif Casa Maroc 
55 Jamali Agadir Maroc 
66 Gill Doncast

 
United 

 67 Will Arizona USA 
70 Bernar Muniche

 
Germany 

76 Mak Curitiba Brazil 
78 Bridge PointeCl

 
Canada 

80 Fransis Yamaga
 

Japan 
81 Brolin Rockfor

 
USA 

83 Clark Linz Australia 
85 Favreau Zagreb Croatia 
87 Phillippe Lyon France 
88 Nakai New 

 
India 

 
2. RELATED WORKS 

 
The Structured Query Language (SQL) is the 

most used language in the existing database 
applications by database researchers as a standard 
language of querying[5]. SQL was designed for 
managing data in a Relational or Object Database 
Management Systems (RDBMS or ODBMS). 
SQL makes it possible to create, read, update 
and/or delete records. Actually SQL has many 
dialects that can well-establishes different query 
languages, it is widely applied in industrial 
context. SQL is specified around a set of 
operations on data stored in tables. Working with 
object concepts, requires traditional Object-
Relational Mapping (ORM). Furthermore, the 
complexity of such queries would quickly 
increase beyond levels of feasibility. Even though 
the creation of nested, recursive queries using 
standard SQL is available through some 
implementations and extension modules. Even if 
there is, no standardized support that would be 
necessary to match the requirements formulated 
earlier[6] .  
2.1 Btree Index: 
 

BTree is a well-organized structure as a tree, 
so the information retrieval will be easier; a 
BTree index is based on either one column or 
more (composite BTree index). 

The BTree contains many nodes, the highest 
node called root node, the descendent node called 
child node. Each node that have a child called 
internal node and the node that has no child called 
leaf node. Each node have k keys; we suppose 
that the root node has two keys n and m, the right 
child keys must be lower than n, the left child 
keys must be higher than m and the middle child 
node keys must be between n and m. 

We distinguish between two major types of 
BTree, B+Tree discussed by David Taniar[7] and 
B*Tree discussed by Chakraoui Mohamed[8]. 
The Figure 1. Describes a part of tree structure. 

 
Fig. 1. A part of our B*Tree index structure 

 
2.2 Bitmap Index 

The bitmap index is also based on one or more 
columns; it is based on the bit masks for the 
separate values on the indexed column or columns. 

This type of index is useful when the indexed 
column contains many distinct values and when 
the predicate in the query is an equal operation[9]. 

 
3. PARALLELISM 
 

Resources such as memory space or CPU time 
used for buffering messages or temporal data can 
be released once a given query has consumed its 
quantum, being necessary to keep only the partial 
results calculated until that moment and the query 
state data used to enable its next quantum in the 
next super step. Thus processing a given query 
completely can take one or more super steps. In 
the case of asynchronous mode of parallel 
computing, the round-robin principle is emulated 
by performing proper thread scheduling at each 
processor to grant each active query its respective 
quantum of execution[10] . 

With the arriving of big data, the classical 
index takes an important portion of the main 
memory and execution time; it is not match 
reduced on a given query. Then researchers 
migrate to parallelism as a good way to reduce 
this execution time, following the number of 
processors available on a given machine. 
Parallelism allows executing one query by more 
than one processor. 

We take the following tables as a running 
example: 
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CLIENTS (noclient number not null, name 
varchar2(50) not null, city varchar2(50), country 
varchar2(25)).  

CMD (nocmd number not null, noclient# 
number, datecmd date, etatcmd char(1)). 

LINECMD (noline number not nul, nocmd# 
number not null, productId number not nul, 
quantity number not null,  amount number not 
null). 
3.1 Partitioning by Range  

We divide the table CLIENTS by range into 
three partitions. We give to the first partition the 
range [0, 40], to the second partition the range] 40, 
80] and to the third partition the rest] 80, +1000].  

The Figure 2 describes the partitioning bounds 
of the underlying table by range. 

 
Fig. 2. Part of partitioning B*Tree index by range 
 
3.2 Partitioning by List 

In this case, the index is based on a varchar 
column and then the partitioning can perform as 
follows: if the second letter of name (partitioning 
column) is a consonant, we place the record in the 
first partition. If the second letter of name is a 
vowel of a letter a or e, the record go to partition 
two and finally if the second letter of the name is 
a vowel of letter i, o or u the record went to the 
third partition[7]. 

The following tables illustrate the partitioning 
of our running example of index B*Tree. 

 
TAB. 2 – Part 1of index partitioning by list 

Partition 1 

NOCLIENT NAME 

25 Khalid 

50 Charif 

78 Bridge 

80 Fransis 

81 Brolin 

83 Clark 

87 Phillipp
e  

 

TAB. 3 – Part 2 of index partitioning by list 
Partition 2 

NOCLIENT NAME 
3 Hamid 
32 Salah 
39 Karim 
46 Jalal 
55 Jamali 
70 Bernar 
76 Mak 
85 Favreau 
88 Nakai 

 
TAB. 4 – Part 3 of index partitioning by list 

Partition 3 
NOCLIENT NAME 

1 Mohamed 
43 Houdi 
66 Gill 
67 Will 

 
3.3 Global Parallel Index 

Global parallel index (GPI) is a BTree 
structure made on the underlying table globally, 
GPI do not like to partition the underlying table. 
However, it could do so; but partitioning methods 
and intervals on global index and partitioning 
methods and intervals on the underlying table 
could differ. One of the disadvantages of global 
index is when a data on the underlying table is 
moved or removed, all partitions of a global index 
are affected, and the index must be completely 
rebuilt[11]. 

 
3.4 Local Parallel Index 

Local index is a BTree structure that can be 
partitioned. The partition methods, intervals and 
bounds must be respectively the same of the 
partition methods, intervals and bounds on the 
underlying table. LPI is one of the most useful 
indexes, among their advantages, the simplicity 
and the fact that the bounds of their partitions are 
the same of table partitions[9] and it is very 
dependent to the underlying table.  

 
3.5 Composite Parallel Index (CPI) 

Composite parallel index is a BTree index, it 
can be a global or local parallel index; it is based 
on two or more columns. Composite index can be 
useful when the predicate on the query is a logical 
and between two values on two columns. 
Parallelism can be exploited by partitioning one 
or more underlying attributes at the underlying 
table. 

 
4. INTERFERENCE BETWEEN LOCAL 
AND GLOBAL PARALLEL INDEXES 
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 For an efficient execution of the continuous 

location-dependent queries, incremental search 
algorithms are required, thus avoiding solving 
each search problem independently from 
scratch[12]. Incremental search implies reusing 
information from previous researches for each 
query, to obtain the current result without having 
to recomputing everything each time[13]. 

 
4.1 Simple   Select Query (SSQ) 

For search queries, the RDBMS cannot lock 
any partition, because the select query does not 
change any underlying data. We take the 
following query as a running example:  

SELECT city FROM CLIENTS where 
noclient = 39 and name = ‘jack’; The execution 
time is described in Figure 3. 

 
4.2 Select Join Query (SJQ) 

The same reasoning for the previous section, 
initially, we partition the table CLIENTS by list 
following the column ‘name’ as described before; 
then we create a local parallel index based on the 
same column ‘name’, and we partition it too 
following the underlying table partitioning. 
Secondly, we create a global index based on the 
table CMD, we take the following query as a 
testing example. SELECT datecommande FROM 
CMD, CLIENTS WHERE CLIENTS.noclient = 
CMD.noclient AND CLIENTS.name in 
‘mohamed’; The execution time for this type of 
interference is described in Figure 3. 

 
4.3 Simple Update Query (SUQ) 

Optimizing update query based on a single 
table is simple; we analyze the index interferences 
in this type of query by taking two predicates on 
the same running query each one is based on an 
index; then compare between obtained results; the 
following query is as a running example: 

UPDATE CLIENTS SET name = ‘ALI’ 
WHERE noclient = 30; 

Following the partitioning methods, if three 
processors try to send requests to the current table, 
three cases are possible. The first is when the 
range of the clause where belongs to one partition 
for example, the last will be locked by the first 
request; but others partitions remain unlocked, 
and accessible for other processors. Secondly, if 
the clause where of our update query is extended 
to two ranges (partitions), for example the 
partition [0, 40] and the partition] 80, 1000], these 
ranges will be locked, but the range] 40, 80] 
remains unlocked; then it behaves like two tables. 
Nevertheless, if the clause where is based on three 
ranges, it proceeds like three tables. The 
following query illustrates this case treatment: 

UPDATE CLIENTS SET city = ‘paris’ 
WHERE noclient = 45 or noclient = 10 or 
noclient = 120;  Taking  x in milliseconds (ms) 
the execution time cost; the table CLIENTS 
behavior seems heavy, but when we partition it as 
described in this section, the execution time 
becomes: x/3 (ms) + interference (ms); with an 
interference ≈ x/9 and x ∈  ℝ + . Due to the 
parallelism, the RDBMS can handle more than 
one request in the same time, following the 
number of processors that we have. 

 
4.4 Join Update Query on Local and Global 
Index 

Join Update Query (JUQ) throws many 
problems, as concurrent access when the query is 
based on more than one partition.  We take the 
following query as testing example:  

UPDATE CLIENTS SET name = ‘thomas’ 
WHERE CLIENTS.noclient IN (select noclient 
from CMD where  CLIENTS.noclient = 
CMD.noclient);  

We create an index LPI on CLIENTS and an 
index GPI on CMD. Local parallel index allows 
the same partitioning rules as the CLIENTS table; 
then LPI partition the table CLIENTS. However, 
global parallel index did not partition the 
underlying table; then the table CMD remains 
non-partitioned. The execution time is described 
in Figure 3. 

 
Fig. 3. Number of consistent gets for different 
query interferences between LPI and GPI 

 
5. INTERFERENCES BETWEEN 
COMPOSITE PARALLEL INDEX AND 
OTHER PARALLEL INDEX ON COMPLEX 
QUERIES 

 
5.1 Interference between composite parallel 
index and local parallel index  

This type of query interference is rarely used, 
the execution time following the number of 
operations have to be performed by the RDBMS 
in the clause where: 
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UPDATE CLIENTS SET nom = 'simon' 
where ville = 'paris' AND pays= 'france';  

The execution time is described in Figure 4. 

 
Fig. 4. Number of consistent gets of different 

index interferences 
 

5.2 Interference between global parallel index 
and composite index: 

This type of query is slightly close to the last 
cited interference on term of syntax, but different 
on term of execution time, following the number 
of operations have to be performed by the 
RDBMS in the clause where. 

UPDATE CMD SET nocmd = 1234567890 
WHERE datecmd =  to_date('08-10-2013', 'dd-
mm-yyyy') AND etatcmd = 'C';  

 
The execution time is described in Figure 5. 

 
Fig. 5. Number of consistent gets of different 

types of queries between GPI and CPI 
 

5.3 Interference between complex aggregate 
queries with LPI and with GPI 

Complex aggregate query is a query with 
several query blocks (views or sub-queries) 
correlated together with a multiple joins[14].  

To compare the performance of complex 
aggregate queries between LPI, GPI and CPI, we 
use the following two views attended by one 
query with our running example: 

CREATE VIEW V1_AGG as SELECT noline, 
average = AVG (amount) 
FROM LINECMD GROUP BY noline; 

CREATE VIEW V2_AGG AS SELECT 
noline, maximum = MAX (average) 
FROM V1_AGG GROUP BY noline; 

SELECT V1_AGG.noline, 
V2_AGG.maximum 
FROM V1_AGG, V1_AGG  

WHERE V1_AGG.noline = V2_AGG.noline 
AND V2_1GG.maximum = V1_AGG.average; 

The results obtained using this query with our 
running examples are presented in the Figure 8. 
 
6. INTERFERENCE BETWEEN BITMAP 
LOCAL PARALLEL INDEX AND BITMAP 
GLOBAL PARALLEL INDEX 

 
Bitmap index is the bit masks for distinct 

values of indexed columns: the binary AND and 
OR can make the equality tests. 

For bitmap index, we do not prefer the global 
index because it cannot partition the table, but we 
use the bitmap local parallel index. We take the 
following as running query: 

SELECT name FROM CLIENTS WHERE 
city = ‘paris’ AND country = ‘france’; 

The column city is indexed by bitmap local 
parallel index; however, the column country is 
indexed by bitmap global parallel index. The local 
index has partition the underlying table, but 
global bitmap index did not partition it, then the 
local bitmap parallel index is most suitable in this 
case. 

 
6.1 Sub-Query and Index Partitioning 

Sub-query is a select query embedded in a 
clause of another SQL statement. We distinguish 
between two statements, the outer query or outer 
statement and the inner query or inner statement. 
Then we say that the sub-query is nested within 
the outer query; there are two strategies to 
executing sub-queries: serial and parallel 
execution scheduling strategies. When a sub-
query is being processed, parallelization 
techniques must be applied[15]. One of the 
highlights of sub-queries is via query 
parallelization and data partitioning, a query can 
be segmented to multiple sub-queries; each of 
them, which contains joins on partitioned data 
sets and pre-aggregation. The final results are 
obtained by applying a final aggregation over the 
results of sub-queries [16]. 

[17] presents four other optimization methods 
for indexes that we use its interferences with sub-
queries in this paper. Continuous index tuning, 
periodic index tuning, triggered index tuning and 
hybrid index tuning. The sub-query reconstruction 
mechanism consists of reconstructing the set of 
original queries before dispatching them to the 
data sources and computing the answers to the 
original queries based on answers to the 
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reconstructed queries [16]. 
 

6.2 Sub-query and global parallel index 
In this section, we take the same global index 

used above with the following sub-query: 
SELECT datecmd FROM CMD WHERE 

noclient IN (SELECT noclient FROM CLIENTS 
WHERE name = 'alain');  

The results obtained are showed in Figure 6. 
 

 
Fig.6. Number of consistent gets of different 

index interferences 
 

6.3 Sub-query and local index 
In this case, we use the same sub-query used 

in section A, with our local parallel index; then 
we get the results of Figure 7. 

 

 
Fig.7. Number of consistent gets in sub-query 

with different indexes 
 

6.4 Sub-query and composite index 
With the last sub-query used in section A, 

indexed by composite parallel index, we get the 
results of Figure 8. 

 
6.5 Complex sub-query with many types of 
index 

Tables can reference the same table under a 
different correlation names. Adding two attributes 
to our table CLIENTS and considering a query to 
find all the clients who are younger than the 
oldest client of their gender[18]: 

 

 
Fig.8. Number of consistent gets in complex 
aggregate queries with different indexes 

 
SELECT S1.noclient, S1.name, S1.sex, S1. 

age  
FROM CLIENTS AS S1  WHERE age  < 
(SELECT MAX(age)  
FROM CLIENTS AS S2  WHERE S1.sex = 
S2.sex); 

We can also demonstrate the efficiency of 
inline views with the following sub-query: 

SELECT C.noclient, M.name, CMD.datecmd 
FROM CLIENTS C, (SELECT LC.amount, 
CMD.noclient, MCD.nocmd FROM CMD, 
(SELECT LC.nocmd, amount, quantity FROM 
linecmd) LC WHERE CMD.nocmd = LC.nocmd) 
M WHERE M. noclient = G. noclient; 

The results of two last queries are described in 
Figure 9 and Figure 10.  

 

 
Fig.9. Number of consistent gets in complex 

sub-queries with different indexes 

7. RESULTS AND ANALYSIS  
 
Our experiments are performed on Intel (R) 

Pentium(R)  Dual CPU T3200 @2.00 GHz 
machine with 3 GB of main memory running a 
Windows 7 Integral Edition  operating system.  
All queries are performed on an oracle 11g 
release 2. 
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Fig.10. Number of consistent gets in complex 

sub-queries written on inline views with different 
indexes 

 
The total cost of a parallel synchronous query 

program is the cumulative sum of the costs of its 
super steps and the cost of each superstep is the 
sum of the following three quantities, the 
maximum of the computations performed by each 
processor (CPU cost), the maximum of the 
messages sent/received by each processor (I/O 
CPU)[10]. Then we can minimize the cost of a 
query by minimizing the CPU cost and the 
number of I/O disk, these costs are the subject of 
this paper. Analyzing the results obtained, we can 
get the following explanations: 
• SJQ: Following the Figure 3, the interference 

between local and global index, the number 
of input output decreases when the number of 
records increases, once the number of records 
on the underlying tables outgrew, the number 
of input output becomes stable and less than 
2000. 

• SUQ: Following the Figure 3, initially the 
number of consistent gets was around 2000; 
then it starts to decrease slightly and then 
stabilizes when the number of data in the 
underlying tables becomes too big. SUQ 
consumes less input output than SJQ. 

• L & G: Following the Figure 4, this 
interference causes many inputs outputs bloc. 

• L & C: Following the Figure 4, interference 
between local and composite allows many 
and stable input output gets. 

• G & C: Following the Figure 6, interference 
between global and composite index is 
slightly close to the L & C. 

• JUQ: Following Figure 3 and Figure 5, 
interference between local and global index, 
join update query increases the number of 
input-output gets with the increase of the data 
of the underlying tables. 

• Sub-query and different indexes: following 
the Figure 7, for the small table, the global 
index and the composite index are the most 

suitable with sub-query; however when the 
underlying table is so big, the most suitable 
index is local parallel index followed by 
global index with sub-query.  

• Complex query and complex sub-query, with 
different indexes: the results obtained in 
Figures 9, and Figure 10, by executing 
complex query, and complex sub-query 
successively, demonstrate that all time the 
LPI  causes less consistent gets followed by 
CPI, itself followed by GPI.  

 
7.1 Comparative analysis: 

 
As there are different kinds of interferences 

between different indexes, it is important to 
analyze the efficiency of each case of interference 
scheme discussed above. 

When it is a join query, is not recommended to 
use both of local parallel index and global parallel 
index, each one on a table; but in this case it is 
advisable to use either a global parallel index or a 
local parallel index and not both of them. 

In the case of a single table, we can use either 
local parallel index, or global parallel index, or 
both of them following the type of query; but the 
number of consistent gets remains close for each 
case. 

The use of global or local parallel index on 
join query with composite index is useful, 
according to the schemes 4 and 5. Generally, the 
use of different indexes is useful when the 
number of data in tables is big. 

We can explain the efficiency of LPI by the 
consistency, between the partitioning of attribute, 
and the underlying table partitioning; the same 
reasoning of CPI, thing is not realized for GPI. In 
many past researches, GPI was the most whished 
index, but these researches partition just the index, 
but not both of index and underling table. Finally, 
we are in favor on our proposed partitioning 
method for the LPI as the most efficient and 
optimized index, followed by CPI and finally GPI. 

Using sub-query also prefers the local parallel 
index as best optimization result. 

 
8. CONCLUSION AND FUTURE WORK 

 
On the first part of this paper, we introduce 

different parallel indexes, and a taxonomy of 
various parallel indexes, and their interferences. 

Interferences between different parallel 
indexes mean that we can use more than one type 
of parallel index in the same query. Different 
queries are made in the current paper to conclude 
the most desirable combinations of 
indexes.Following different queries and analysis, 
we can conclude that the most useful interference 
is the local parallel index with the composite 
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parallel index, and the global parallel index with 
the composite parallel index. These interferences 
between different indexes and data structures, 
allows us to propose the optimized model for the 
use of both multiple indexes.  

The second part of this paper studies the uses 
of sub-queries with different indexes used in the 
first part, the results obtained are in favor of the 
uses of the sub-queries with the LPI. For our 
future works, we plan to incorporate these 
methods in the backgrounds of a noncommercial 
RDBMS like PostgreSQL.  
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