

2267

International Journal of GEOMATE, Aug., 2016, Vol. 11, Issue 24, pp. 2267-2274
Geotec., Const. Mat. & Env., ISSN: 2186-2982(Print), 2186-2990(Online), Japan

TUNING DIFFERENT TYPES OF COMPLEX QUERIES USING THE

APPROPRIATE INDEXES IN PARALLEL/DISTRIBUTED
DATABASE SYSTEMS

Mohamed Chakraoui1, Abderrafiaa El Kalay2 and Naoual Mouhni3

Faculty of Sciences and Techniques Marrakech, Cadi Ayyad University, Marrakech, Morocco

ABSTRACT: In this paper, we discuss the most powerful techniques of tuning parallel/distributed databases.
As in engineering, database tuning becomes an inescapable part of big projects since the conception phase of
research projects. The needs of companies including big data have increased to databases optimization.
Systems that not take into account the optimization rules become heavy after five years of their production;
these reasons were of a paramount of importance to prepare this paper. Indexing is the most suitable way to
optimize database systems, further one of the top ways of optimizing index is the application of
parallelization. In this paper, we will discuss parallelization and we will practice it with different complex
queries and sub-queries using different types of indexes; then we will compare the results gotten from each
index. To top it all, the most suitable interference between the major types of index: B*Tree index, Bitmap
index, composite parallel index, local parallel index and global parallel index.

Keywords: parallelization, sub-query, optimization, interference between indexes, b*tree, bitmap, local index,
data partitioning, sub-query.

1. INTRODUCTION

 To satisfy the needs of data processing speed

and decrease the response time of complex
queries, optimizing a large database remains
essentially to good query writing. A poorly
written query can increase the input output gets,
which leads to the increasing of the execution
time. The most companies’ needs have increased
to store and analyze the ever-growing data
transparently, such as search logs, crawled web
content and click streams. Such analysis becomes
crucial for businesses in different ways; such as to
improve service quality and support novel
features, to detect changes in patterns over time
and to detect fraudulent activities[1] . As actual
computers have powerful processors and very
speed RAM, then applications require much
higher data operation speed, the traditional
RDBMS. Difference between memory and disk in
terms of writing and reading speed is very large,
so since 1980s, researchers try to move the whole
database from disk into main memory to improve
the execution time. From the one hand to optimize
the latency time, because main memory is faster
than disk and from the other hand, to minimize
the interference between different processes when
accessing to the data; this type of databases is
called Main Memory Databases[2]. Our ultimate
topic in this paper is not to discuss main memory
databases, but to discuss and analyze different
types of indexes and their interferences on a given
query.

The most researches and practices focus on
two types of indexes, BTree and Bitmap. BTree is

three types, local index, global index and
composite index. The same for Bitmap index,
bitmap local index, bitmap global index and
bitmap composite index. We will make a join
query between two or more tables, each one is
indexed by a distinct type of index; we analyze
every method, and compare between them.

The list-based, view-based and disk-based
methods are other optimization’s methods. First,
the list-based methods construct a set of lists by
sorting all tuples based on their values in each
attribute. It then finds the tuples by merging as
many lists as needed. Second, the view-based
methods pre-compute the results of multiple
queries and store these results as a view. Third,
disk-based methods build an index using disk[3].

Commercial optimizers classify query
optimization techniques into two dimensions,
optimization time and optimization granularity.
Optimization time is when optimization decisions
are made. However, optimization granularity
defines if the optimization decisions are based
upon dynamic sampling. In terms of optimization
time, some database systems determine query
plans in advance at compile time. While others
forego pre-computed plans and “route” tuples on
the fly at runtime[4].

Our contribution in this paper is to propose a
set of index interference structures and algorithms,
which allow us to decrease efficiently the costs of
different complex queries in parallel/distributed
database systems. These costs are real-time
querying or real execution time and CPU cost or
input output gets.

The following table describes a part of the

http://www.fstg-marrakech.ac.ma/contact.php

International Journal of GEOMATE, Aug., 2016, Vol. 11, Issue 24, pp.2267-2274

2268

table CLIENTS. Is due to flexibility of the
document, we cannot specify the full table.

Table. 1 The part of the running table CLIENTS

NO NAME CITY COUNTRY
1 Mohamed Rak Maroc
3 Hamid Casa Maroc
25 Khalid Fes Maroc
32 Salah Casa Maroc
39 Karim Safi Maroc
43 Houdi Essaouia Maroc
46 Jalal Sfaqes Tunisie
50 Charif Casa Maroc
55 Jamali Agadir Maroc
66 Gill Doncast

United

 67 Will Arizona USA
70 Bernar Muniche

Germany

76 Mak Curitiba Brazil
78 Bridge PointeCl

Canada

80 Fransis Yamaga

Japan
81 Brolin Rockfor

USA

83 Clark Linz Australia
85 Favreau Zagreb Croatia
87 Phillippe Lyon France
88 Nakai New

India

2. RELATED WORKS

The Structured Query Language (SQL) is the

most used language in the existing database
applications by database researchers as a standard
language of querying[5]. SQL was designed for
managing data in a Relational or Object Database
Management Systems (RDBMS or ODBMS).
SQL makes it possible to create, read, update
and/or delete records. Actually SQL has many
dialects that can well-establishes different query
languages, it is widely applied in industrial
context. SQL is specified around a set of
operations on data stored in tables. Working with
object concepts, requires traditional Object-
Relational Mapping (ORM). Furthermore, the
complexity of such queries would quickly
increase beyond levels of feasibility. Even though
the creation of nested, recursive queries using
standard SQL is available through some
implementations and extension modules. Even if
there is, no standardized support that would be
necessary to match the requirements formulated
earlier[6] .
2.1 Btree Index:

BTree is a well-organized structure as a tree,
so the information retrieval will be easier; a
BTree index is based on either one column or
more (composite BTree index).

The BTree contains many nodes, the highest
node called root node, the descendent node called
child node. Each node that have a child called
internal node and the node that has no child called
leaf node. Each node have k keys; we suppose
that the root node has two keys n and m, the right
child keys must be lower than n, the left child
keys must be higher than m and the middle child
node keys must be between n and m.

We distinguish between two major types of
BTree, B+Tree discussed by David Taniar[7] and
B*Tree discussed by Chakraoui Mohamed[8].
The Figure 1. Describes a part of tree structure.

Fig. 1. A part of our B*Tree index structure

2.2 Bitmap Index

The bitmap index is also based on one or more
columns; it is based on the bit masks for the
separate values on the indexed column or columns.

This type of index is useful when the indexed
column contains many distinct values and when
the predicate in the query is an equal operation[9].

3. PARALLELISM

Resources such as memory space or CPU time
used for buffering messages or temporal data can
be released once a given query has consumed its
quantum, being necessary to keep only the partial
results calculated until that moment and the query
state data used to enable its next quantum in the
next super step. Thus processing a given query
completely can take one or more super steps. In
the case of asynchronous mode of parallel
computing, the round-robin principle is emulated
by performing proper thread scheduling at each
processor to grant each active query its respective
quantum of execution[10] .

With the arriving of big data, the classical
index takes an important portion of the main
memory and execution time; it is not match
reduced on a given query. Then researchers
migrate to parallelism as a good way to reduce
this execution time, following the number of
processors available on a given machine.
Parallelism allows executing one query by more
than one processor.

We take the following tables as a running
example:

International Journal of GEOMATE, Aug., 2016, Vol. 11, Issue 24, pp.2267-2274

2269

CLIENTS (noclient number not null, name
varchar2(50) not null, city varchar2(50), country
varchar2(25)).

CMD (nocmd number not null, noclient#
number, datecmd date, etatcmd char(1)).

LINECMD (noline number not nul, nocmd#
number not null, productId number not nul,
quantity number not null, amount number not
null).
3.1 Partitioning by Range

We divide the table CLIENTS by range into
three partitions. We give to the first partition the
range [0, 40], to the second partition the range] 40,
80] and to the third partition the rest] 80, +1000].

The Figure 2 describes the partitioning bounds
of the underlying table by range.

Fig. 2. Part of partitioning B*Tree index by range

3.2 Partitioning by List

In this case, the index is based on a varchar
column and then the partitioning can perform as
follows: if the second letter of name (partitioning
column) is a consonant, we place the record in the
first partition. If the second letter of name is a
vowel of a letter a or e, the record go to partition
two and finally if the second letter of the name is
a vowel of letter i, o or u the record went to the
third partition[7].

The following tables illustrate the partitioning
of our running example of index B*Tree.

TAB. 2 – Part 1of index partitioning by list

Partition 1

NOCLIENT NAME

25 Khalid

50 Charif

78 Bridge

80 Fransis

81 Brolin

83 Clark

87 Phillipp
e

TAB. 3 – Part 2 of index partitioning by list
Partition 2

NOCLIENT NAME
3 Hamid
32 Salah
39 Karim
46 Jalal
55 Jamali
70 Bernar
76 Mak
85 Favreau
88 Nakai

TAB. 4 – Part 3 of index partitioning by list

Partition 3
NOCLIENT NAME

1 Mohamed
43 Houdi
66 Gill
67 Will

3.3 Global Parallel Index

Global parallel index (GPI) is a BTree
structure made on the underlying table globally,
GPI do not like to partition the underlying table.
However, it could do so; but partitioning methods
and intervals on global index and partitioning
methods and intervals on the underlying table
could differ. One of the disadvantages of global
index is when a data on the underlying table is
moved or removed, all partitions of a global index
are affected, and the index must be completely
rebuilt[11].

3.4 Local Parallel Index

Local index is a BTree structure that can be
partitioned. The partition methods, intervals and
bounds must be respectively the same of the
partition methods, intervals and bounds on the
underlying table. LPI is one of the most useful
indexes, among their advantages, the simplicity
and the fact that the bounds of their partitions are
the same of table partitions[9] and it is very
dependent to the underlying table.

3.5 Composite Parallel Index (CPI)

Composite parallel index is a BTree index, it
can be a global or local parallel index; it is based
on two or more columns. Composite index can be
useful when the predicate on the query is a logical
and between two values on two columns.
Parallelism can be exploited by partitioning one
or more underlying attributes at the underlying
table.

4. INTERFERENCE BETWEEN LOCAL
AND GLOBAL PARALLEL INDEXES

International Journal of GEOMATE, Aug., 2016, Vol. 11, Issue 24, pp.2267-2274

2270

 For an efficient execution of the continuous

location-dependent queries, incremental search
algorithms are required, thus avoiding solving
each search problem independently from
scratch[12]. Incremental search implies reusing
information from previous researches for each
query, to obtain the current result without having
to recomputing everything each time[13].

4.1 Simple Select Query (SSQ)

For search queries, the RDBMS cannot lock
any partition, because the select query does not
change any underlying data. We take the
following query as a running example:

SELECT city FROM CLIENTS where
noclient = 39 and name = ‘jack’; The execution
time is described in Figure 3.

4.2 Select Join Query (SJQ)

The same reasoning for the previous section,
initially, we partition the table CLIENTS by list
following the column ‘name’ as described before;
then we create a local parallel index based on the
same column ‘name’, and we partition it too
following the underlying table partitioning.
Secondly, we create a global index based on the
table CMD, we take the following query as a
testing example. SELECT datecommande FROM
CMD, CLIENTS WHERE CLIENTS.noclient =
CMD.noclient AND CLIENTS.name in
‘mohamed’; The execution time for this type of
interference is described in Figure 3.

4.3 Simple Update Query (SUQ)

Optimizing update query based on a single
table is simple; we analyze the index interferences
in this type of query by taking two predicates on
the same running query each one is based on an
index; then compare between obtained results; the
following query is as a running example:

UPDATE CLIENTS SET name = ‘ALI’
WHERE noclient = 30;

Following the partitioning methods, if three
processors try to send requests to the current table,
three cases are possible. The first is when the
range of the clause where belongs to one partition
for example, the last will be locked by the first
request; but others partitions remain unlocked,
and accessible for other processors. Secondly, if
the clause where of our update query is extended
to two ranges (partitions), for example the
partition [0, 40] and the partition] 80, 1000], these
ranges will be locked, but the range] 40, 80]
remains unlocked; then it behaves like two tables.
Nevertheless, if the clause where is based on three
ranges, it proceeds like three tables. The
following query illustrates this case treatment:

UPDATE CLIENTS SET city = ‘paris’
WHERE noclient = 45 or noclient = 10 or
noclient = 120; Taking x in milliseconds (ms)
the execution time cost; the table CLIENTS
behavior seems heavy, but when we partition it as
described in this section, the execution time
becomes: x/3 (ms) + interference (ms); with an
interference ≈ x/9 and x ∈ ℝ + . Due to the
parallelism, the RDBMS can handle more than
one request in the same time, following the
number of processors that we have.

4.4 Join Update Query on Local and Global
Index

Join Update Query (JUQ) throws many
problems, as concurrent access when the query is
based on more than one partition. We take the
following query as testing example:

UPDATE CLIENTS SET name = ‘thomas’
WHERE CLIENTS.noclient IN (select noclient
from CMD where CLIENTS.noclient =
CMD.noclient);

We create an index LPI on CLIENTS and an
index GPI on CMD. Local parallel index allows
the same partitioning rules as the CLIENTS table;
then LPI partition the table CLIENTS. However,
global parallel index did not partition the
underlying table; then the table CMD remains
non-partitioned. The execution time is described
in Figure 3.

Fig. 3. Number of consistent gets for different
query interferences between LPI and GPI

5. INTERFERENCES BETWEEN
COMPOSITE PARALLEL INDEX AND
OTHER PARALLEL INDEX ON COMPLEX
QUERIES

5.1 Interference between composite parallel
index and local parallel index

This type of query interference is rarely used,
the execution time following the number of
operations have to be performed by the RDBMS
in the clause where:

International Journal of GEOMATE, Aug., 2016, Vol. 11, Issue 24, pp.2267-2274

2271

UPDATE CLIENTS SET nom = 'simon'
where ville = 'paris' AND pays= 'france';

The execution time is described in Figure 4.

Fig. 4. Number of consistent gets of different

index interferences

5.2 Interference between global parallel index
and composite index:

This type of query is slightly close to the last
cited interference on term of syntax, but different
on term of execution time, following the number
of operations have to be performed by the
RDBMS in the clause where.

UPDATE CMD SET nocmd = 1234567890
WHERE datecmd = to_date('08-10-2013', 'dd-
mm-yyyy') AND etatcmd = 'C';

The execution time is described in Figure 5.

Fig. 5. Number of consistent gets of different

types of queries between GPI and CPI

5.3 Interference between complex aggregate
queries with LPI and with GPI

Complex aggregate query is a query with
several query blocks (views or sub-queries)
correlated together with a multiple joins[14].

To compare the performance of complex
aggregate queries between LPI, GPI and CPI, we
use the following two views attended by one
query with our running example:

CREATE VIEW V1_AGG as SELECT noline,
average = AVG (amount)
FROM LINECMD GROUP BY noline;

CREATE VIEW V2_AGG AS SELECT
noline, maximum = MAX (average)
FROM V1_AGG GROUP BY noline;

SELECT V1_AGG.noline,
V2_AGG.maximum
FROM V1_AGG, V1_AGG

WHERE V1_AGG.noline = V2_AGG.noline
AND V2_1GG.maximum = V1_AGG.average;

The results obtained using this query with our
running examples are presented in the Figure 8.

6. INTERFERENCE BETWEEN BITMAP
LOCAL PARALLEL INDEX AND BITMAP
GLOBAL PARALLEL INDEX

Bitmap index is the bit masks for distinct

values of indexed columns: the binary AND and
OR can make the equality tests.

For bitmap index, we do not prefer the global
index because it cannot partition the table, but we
use the bitmap local parallel index. We take the
following as running query:

SELECT name FROM CLIENTS WHERE
city = ‘paris’ AND country = ‘france’;

The column city is indexed by bitmap local
parallel index; however, the column country is
indexed by bitmap global parallel index. The local
index has partition the underlying table, but
global bitmap index did not partition it, then the
local bitmap parallel index is most suitable in this
case.

6.1 Sub-Query and Index Partitioning

Sub-query is a select query embedded in a
clause of another SQL statement. We distinguish
between two statements, the outer query or outer
statement and the inner query or inner statement.
Then we say that the sub-query is nested within
the outer query; there are two strategies to
executing sub-queries: serial and parallel
execution scheduling strategies. When a sub-
query is being processed, parallelization
techniques must be applied[15]. One of the
highlights of sub-queries is via query
parallelization and data partitioning, a query can
be segmented to multiple sub-queries; each of
them, which contains joins on partitioned data
sets and pre-aggregation. The final results are
obtained by applying a final aggregation over the
results of sub-queries [16].

[17] presents four other optimization methods
for indexes that we use its interferences with sub-
queries in this paper. Continuous index tuning,
periodic index tuning, triggered index tuning and
hybrid index tuning. The sub-query reconstruction
mechanism consists of reconstructing the set of
original queries before dispatching them to the
data sources and computing the answers to the
original queries based on answers to the

International Journal of GEOMATE, Aug., 2016, Vol. 11, Issue 24, pp.2267-2274

2272

reconstructed queries [16].

6.2 Sub-query and global parallel index
In this section, we take the same global index

used above with the following sub-query:
SELECT datecmd FROM CMD WHERE

noclient IN (SELECT noclient FROM CLIENTS
WHERE name = 'alain');

The results obtained are showed in Figure 6.

Fig.6. Number of consistent gets of different

index interferences

6.3 Sub-query and local index
In this case, we use the same sub-query used

in section A, with our local parallel index; then
we get the results of Figure 7.

Fig.7. Number of consistent gets in sub-query

with different indexes

6.4 Sub-query and composite index
With the last sub-query used in section A,

indexed by composite parallel index, we get the
results of Figure 8.

6.5 Complex sub-query with many types of
index

Tables can reference the same table under a
different correlation names. Adding two attributes
to our table CLIENTS and considering a query to
find all the clients who are younger than the
oldest client of their gender[18]:

Fig.8. Number of consistent gets in complex
aggregate queries with different indexes

SELECT S1.noclient, S1.name, S1.sex, S1.

age
FROM CLIENTS AS S1 WHERE age <
(SELECT MAX(age)
FROM CLIENTS AS S2 WHERE S1.sex =
S2.sex);

We can also demonstrate the efficiency of
inline views with the following sub-query:

SELECT C.noclient, M.name, CMD.datecmd
FROM CLIENTS C, (SELECT LC.amount,
CMD.noclient, MCD.nocmd FROM CMD,
(SELECT LC.nocmd, amount, quantity FROM
linecmd) LC WHERE CMD.nocmd = LC.nocmd)
M WHERE M. noclient = G. noclient;

The results of two last queries are described in
Figure 9 and Figure 10.

Fig.9. Number of consistent gets in complex

sub-queries with different indexes

7. RESULTS AND ANALYSIS

Our experiments are performed on Intel (R)

Pentium(R) Dual CPU T3200 @2.00 GHz
machine with 3 GB of main memory running a
Windows 7 Integral Edition operating system.
All queries are performed on an oracle 11g
release 2.

International Journal of GEOMATE, Aug., 2016, Vol. 11, Issue 24, pp.2267-2274

2273

Fig.10. Number of consistent gets in complex

sub-queries written on inline views with different
indexes

The total cost of a parallel synchronous query

program is the cumulative sum of the costs of its
super steps and the cost of each superstep is the
sum of the following three quantities, the
maximum of the computations performed by each
processor (CPU cost), the maximum of the
messages sent/received by each processor (I/O
CPU)[10]. Then we can minimize the cost of a
query by minimizing the CPU cost and the
number of I/O disk, these costs are the subject of
this paper. Analyzing the results obtained, we can
get the following explanations:
• SJQ: Following the Figure 3, the interference

between local and global index, the number
of input output decreases when the number of
records increases, once the number of records
on the underlying tables outgrew, the number
of input output becomes stable and less than
2000.

• SUQ: Following the Figure 3, initially the
number of consistent gets was around 2000;
then it starts to decrease slightly and then
stabilizes when the number of data in the
underlying tables becomes too big. SUQ
consumes less input output than SJQ.

• L & G: Following the Figure 4, this
interference causes many inputs outputs bloc.

• L & C: Following the Figure 4, interference
between local and composite allows many
and stable input output gets.

• G & C: Following the Figure 6, interference
between global and composite index is
slightly close to the L & C.

• JUQ: Following Figure 3 and Figure 5,
interference between local and global index,
join update query increases the number of
input-output gets with the increase of the data
of the underlying tables.

• Sub-query and different indexes: following
the Figure 7, for the small table, the global
index and the composite index are the most

suitable with sub-query; however when the
underlying table is so big, the most suitable
index is local parallel index followed by
global index with sub-query.

• Complex query and complex sub-query, with
different indexes: the results obtained in
Figures 9, and Figure 10, by executing
complex query, and complex sub-query
successively, demonstrate that all time the
LPI causes less consistent gets followed by
CPI, itself followed by GPI.

7.1 Comparative analysis:

As there are different kinds of interferences

between different indexes, it is important to
analyze the efficiency of each case of interference
scheme discussed above.

When it is a join query, is not recommended to
use both of local parallel index and global parallel
index, each one on a table; but in this case it is
advisable to use either a global parallel index or a
local parallel index and not both of them.

In the case of a single table, we can use either
local parallel index, or global parallel index, or
both of them following the type of query; but the
number of consistent gets remains close for each
case.

The use of global or local parallel index on
join query with composite index is useful,
according to the schemes 4 and 5. Generally, the
use of different indexes is useful when the
number of data in tables is big.

We can explain the efficiency of LPI by the
consistency, between the partitioning of attribute,
and the underlying table partitioning; the same
reasoning of CPI, thing is not realized for GPI. In
many past researches, GPI was the most whished
index, but these researches partition just the index,
but not both of index and underling table. Finally,
we are in favor on our proposed partitioning
method for the LPI as the most efficient and
optimized index, followed by CPI and finally GPI.

Using sub-query also prefers the local parallel
index as best optimization result.

8. CONCLUSION AND FUTURE WORK

On the first part of this paper, we introduce

different parallel indexes, and a taxonomy of
various parallel indexes, and their interferences.

Interferences between different parallel
indexes mean that we can use more than one type
of parallel index in the same query. Different
queries are made in the current paper to conclude
the most desirable combinations of
indexes.Following different queries and analysis,
we can conclude that the most useful interference
is the local parallel index with the composite

International Journal of GEOMATE, Aug., 2016, Vol. 11, Issue 24, pp.2267-2274

2274

parallel index, and the global parallel index with
the composite parallel index. These interferences
between different indexes and data structures,
allows us to propose the optimized model for the
use of both multiple indexes.

The second part of this paper studies the uses
of sub-queries with different indexes used in the
first part, the results obtained are in favor of the
uses of the sub-queries with the LPI. For our
future works, we plan to incorporate these
methods in the backgrounds of a noncommercial
RDBMS like PostgreSQL.

9. REFERENCES

1. Jingren Zhou, N.B., Ming-ChuanWu, Per-

Ake Larson, Ronnie Chaiken, Darren Shakib,
SCOPE: parallel databases meet
MapReduce. Springer, 2012.

2. Xiaoqing Niu , X.J., Jing Han, Haihong E,
and Xiaosu Zhan, A Cache-Sensitive Hash
Indexing Structure for Main Memory
Database. Springer, 2013.

3. Ihm, S.-Y., A partitioned layer-based index
for efficient processing top-k queries.
ELSEVIER, 2014.

4. Rimma V. Nehme , K.W., Chuan Lei, Elke
A. Rundensteiner, Elisa Bertino, Multi-route
query processing and optimization. Journal
of Computer and System Sciences, 2013.

5. Codd, E.F., A relational model of data for
large shared data banks,. 1970.

6. Wiet Mazairac, J.B., BIMQL – An open
query language for building information
models. Advanced Engineering Informatics,
2013.

7. Taniar, D. and J. Wenny Rahayu, Global
parallel index for multi-processors database
systems. Information Sciences, 2004. 165(1-
2): p. 103-127.

8. Mohamed CHAKRAOUI, A.E.K., Naoual
MOUHNI, Local Parallel Index in
Databases System. The 4th International
Conference on Multimedia computing and
systems (ICMCS'14), 2014.

9. Navarro, L., Optimisation des Bases de
Donnees. Pearson, 2010.

10. Veronica Gil-Costa, M.M., Nora Reyes,
Parallel query processing on distributed
clustering indexes. Journal of Discrete
Algorithms, 2009.

11. Lilian Hobbs, S.H., Shilpa Lawande, Pete
Smith, Oracle_10g_Data_Warehousing.
Elsevier Digital Press, 2005.

12. Sun X , Y.W., Koenig S, Efficient
incremental search for moving target search.
IJCAI International Joint Conference on
Artificial Intelligence, 2009.

13. Imad Afyouni, C.R., Sergio Ilarri,
Christophe Claramunt, A PostgreSQL
extension for continuous path and range
queries in indoor mobile environments.
Pervasive and Mobile Computing, 2013.

14. Damianos Chatziantoniou, K.A.R.,
Partitioned optimization of complex queries.
Information Systems, 2005.

15. David Taniar, C.H.C.L., Query execution
scheduling in parallel object-oriented
databases. Information and Software
Technology, 1999.

16. Feng Chen, R.L., Xiaodong Zhang, Essential
Roles of Exploiting Internal Parallelism of
Flash Memory based Solid State Drives in
High-Speed Data Processing. IEEE, 2011.

17. Karen Works, E.A.R., Emmanuel Agu,
Optimizing adaptive multi-route query
processing via time-partitioned indices.
Journal of Computer and System Sciences,
2013.

18. Celko, J., Advanced SQL Programming.
ScienceDirect, 2011.

International Journal of GEOMATE, Aug., 2016,
Vol. 11, Issue 24, pp. 2267-2274
MS No. 5127j received on August 21, 2015 and
reviewed under GEOMATE publication policies.
Copyright © 2016, Int. J. of GEOMATE. All rights
reserved, including the making of copies unless
permission is obtained from the copyright
proprietors. Pertinent discussion including authors’
closure, if any, will be published in April 2017 if
the discussion is received by Oct. 2016.
Corresponding Author: Mohamed Chakraoui

	TUNING DIFFERENT TYPES OF COMPLEX QUERIES USING THE APPROPRIATE INDEXES IN PARALLEL/DISTRIBUTED DATABASE SYSTEMS
	1. Introduction
	2. Related Works
	3. Parallelism
	4. Interference between Local and Global Parallel Indexes
	5. InterferenceS between Composite parallel Index and other Parallel Index on Complex Queries
	6. Interference between Bitmap Local Parallel Index and Bitmap Global Parallel Index
	7. Results and Analysis
	8. CONCLUSION AND FUTURE WORK
	9. References

