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ABSTRACT: The buckling phenomenon of a flat or spherical shell lithosphere (tectonic plate) has been 
investigated in previous research. However, these studies do not give information regarding the curvature 
effect in the buckling phenomenon. Kondo applied Riemannian geometry to the yielding or buckling of 
curved materials. When the Riemannian manifold (𝑉! dimensional manifold) with a nonzero Euler–Schouten 
curvature tensor is manifested in the enveloping manifold (Euclid space: 𝑉! dimensional manifold), the 
included Riemannian manifold (dimension 𝑉!) protrudes into the enveloping manifold (dimension 𝑉!). The 
curvature effect for the buckling phenomenon of materials can be formulated by a force-balance equation 
from mechanics and the Euler–Schouten curvature tensor from differential geometry. In this paper, using the 
Euler–Schouten curvature tensor from differential geometry, the authors derive a formulation for the 
buckling phenomenon with the curvature effect for a spherical shell lithosphere as a buckling equation with 
high-order strain for lithosphere deformation. 
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1. INTRODUCTION 
 

The mechanism of flat or spherical shell 
lithosphere deformation is presented by using 
buckling theory [e.g., 1–4]. Yamaoka et al. [5] 
pointed out the buckling phenomena of the 
subducting lithosphere due to the sphericity of the 
earth. Moreover, Fukao et al. [6] and Yamaoka [7] 
denoted the similarity of lithosphere buckling with 
cylindrical buckling of spherical shells through 
experiments and numerical simulations based on 
the nonlinear finite element method. Kikuchi and 
Nagahama [8] found a new linear relationship 
between the Batdorf parameter and normalized 
hydrostatic pressure along the bottom 
circumferential edge of a hemisphere in spherical 
shell tectonics. The Batdorf parameter for a 
subducting lithosphere is equivalent to the length 
of the slab and is also related to the wavelength 
(length of the island arc) of buckling. However, 
previous research has not revealed the buckling 
equation with high-order strain for the curvature of 
the lithosphere. 

The buckling equation with the high-order 
strain effect has been addressed in the field of 
engineering science [9], in which Riemannian 
geometry has been applied to the yielding and 
buckling of curved material. Kondo used the 
concept of dimension protrusion, in which 
buckling in the two dimensions of a flat plate can 
occur in three-dimensional space (Fig. 1). In 
general, when the Riemannian manifold of 
dimension  𝑉!  with a nonzero Euler–Schouten 
curvature tensor exists in the enveloping manifold 

(Euclid space) of dimension 𝑉!,  the included 
Riemannian manifold of 𝑉!  protrudes into the 
enveloping manifold of dimension 𝑉!. The Euler–
Schouten curvature tensor and force-balance 
equation provide an understanding of material 
science with regard to the curvature effect for the 
buckling phenomenon in terms of differential 
geometry. In this paper, the authors derive the 
buckling phenomenon with the curvature effect for 
a spherical shell lithosphere. The authors can apply 
the Euler–Schouten tensor to the buckling equation 
with high-order strain for lithosphere deformation. 
Using deformation theory based on Riemannian 
space for the buckling system of the flat plate and 
spherical shell, the equation for the lithosphere 
deformation and buckling can be derived from the 
Euler–Schouten curvature tensor. Therefore, this 
curvature tensor is an important tensor for 
lithosphere deformation. This paper is an extended 
paper of the Proceedings of the Seventh 
International Conference on Geotechnique, 
Construction Materials and Environment 
(GEOMATE-Mie 2017) [10]. 

 
 
 
 
 
 
 

Fig. 1 Two-dimensional pre- and post-buckling of 
the flat plate. (a) Pre-buckling of material is in 
two dimensions. (b) Post-buckling of material 
is in three dimensions. 
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2. PREVIOUS BUCKLING THEORY 
 

The authors briefly introduce the previous 
buckling theory used in earth science. The 
mechanism of geological folding (flat crust 
buckling) was described by use of buckling theory 
[1]. First, the authors introduce the balance 
equation of the flat crust as follows (Fig 2): 

 
𝑑𝑉
𝑑𝑥

= −𝑞(𝑥),                            (1) 
 

𝑑𝑀
𝑑𝑥

= 𝑉,                                     (2) 
 

where 𝑉 is the shearing force, 𝑥 is the coordinate 
of the system, 𝑞(𝑥)  is the load, and 𝑀  is the 
moment. Moreover, the authors can derive a 
relationship between the load and moment using 
Eq. (1) and Eq. (2), 
 

𝑑!𝑀
𝑑𝑥!

= −𝑞 𝑥 .                            (3) 
 
Then, the authors can use the proportion of 
curvature to describe the flexure moment and 
curvature equations, 
 

𝐸𝐼𝜅 = 𝑀,                                    (4) 
 

𝜅 = −
𝑑!𝑤
𝑑𝑥!

,                           (5) 
 
where 𝐸  is Young's modulus, 𝐼  is the second 
moment, 𝜅 is curvature, and 𝑤 is deflection. Next, 
from Eqs. (1)–(5),  
 

𝐸𝐼
𝑑!𝑤
𝑑𝑥!

= −𝑀,                                (6) 
 

𝐸𝐼
𝑑!𝑤
𝑑𝑥!

= −𝑉,                                 (7) 
 

𝐸𝐼
𝑑!𝑤
𝑑𝑥!

= 𝑞(𝑥).                               (8) 
 
Eq. (8) is the crust buckling equation. If the crust 
undergoes axial compressive force, the authors can 
write the equation as follows: 
 

𝐸𝐼
𝑑!𝑤
𝑑𝑥!

+ 𝑃
𝑑!𝑤
𝑑𝑥!

= 𝑞 𝑥 ,              (9) 
 
where 𝑃 is the axial compressive force.  

The mechanism of spherical shell lithosphere 
deformation is presented, assuming buckling 
theory [e.g., 2–4]. Turcotte and Schubert [4] 
showed that lithosphere deformation is given by: 

𝐷
𝑑!𝑤
𝑑𝑥!

+ 𝑃
𝑑!𝑤
𝑑𝑥!

+ 𝜌! + 𝜌! 𝑔ℎ𝑤 = 𝑞 𝑥 ,   (10) 
 
where 𝐷 is the shear modulus, 𝜌! is crust density, 
𝜌!  is mantle density, 𝑔  is gravitational 
acceleration, and ℎ  is height (Fig. 3). However, 
previous studies have not demonstrated a high-
order curvature effect in the buckling phenomenon. 

 
Fig. 2 Buckling of flat crust deformation, where 𝑥 

is the coordinate of the system, 𝑞(𝑥) is the load, 
𝑤  is deflection, 𝑀  is moment, 𝑃  is axial 
compressive force, and 𝑉 is shearing force. 

 
 
 
 
 
 
 
 
Fig. 3 Buckling of lithosphere deformation, where 

𝜌! is the crust density, 𝜌! is mantle density, 𝑤 
is deflection, and 𝑞(𝑥)  is the applied load 
[modified from 4]. 

 
3. KONDO THEOREM 
 

In a previous paper [9], Kondo provided 
some important information regarding materials 
science. By using differential geometry in the 
study of the buckling of plate and shell, Kondo [9] 
proceeded as follows: The object was placed in 
Cartesian coordinates and 𝑚 dimensional 
Riemannian space (envelope space 𝑉! ; 𝑖, 𝑗  are 
frames of reference in Fig. 4). 
 
 
 
 
 
 
 
 
 
Fig. 4 Riemannian manifold of dimension 𝑉! with 

a nonzero Euler–Schouten curvature tensor in 
the enveloping manifold (Euclid space) of 𝑉!, 
with coordinates 𝑥(!,!,⋯,!) , and frames of 
reference 𝑖, 𝑗. 𝛼 is the normal vector of 𝑉!. 
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Moreover, the deformation of the normal direction 
𝛼 of the object can be expressed using strain and 
Christoffel symbols 

 
𝑦   ;!;!
! = 𝑂 𝜀 ,                              (11) 

 
𝑘
𝑖 𝑗 = 𝑂 𝜀 ,                              (12) 

 

where 𝑦  is the deflection in 𝑉!  space, 𝑘
𝑖 𝑗  is 

Christoffel symbol of the second kind, and 𝑂(𝜀) is 
order 𝜀 of the Landau symbol. In this case, the 
object deformation is expressed by normal 
direction (𝛼): 

𝑦   ;!
! = 𝑂 𝜀 .                              (13) 

 
Then, the subspace of the enveloping protrusion 
( 𝑉!  to 𝑉!  space protrusion) is defined by the 
Euler–Schouten curvature tensor 𝐻.!"!  [11]: 
 

𝐻.!"! ≡ 𝑦;!;!! =
𝜕!𝑦!

𝜕𝑥!𝜕𝑥!
− 𝑦;!!

𝑘
𝑖 𝑗 .    (14) 

 
The second term of the components of the 
curvature tensor is 𝑂(𝜀!) order. Hence, the authors 
omitted the second term in the small deformation 
theory: 

𝐻.!"! ≈
𝜕!𝑦!

𝜕𝑥!𝜕𝑥!
.                       (15) 

 
The approximate expression is compared to 
expression (11). It is configured by omitting a very 
small amount. Metrics are defined by the 
following: 
 

𝑔!" = 𝛿!" + 𝑂 𝜀 ,                  (16) 
 
where 𝑔!" and 𝛿!" are matrix elements. The authors 
use the equation of equilibrium of forces and 
equations of equilibrium with a small strain, 
 

𝐽 − 𝐹 !  =
𝜕𝛴!"

𝜕𝑥!
,                           (17) 

 

𝐿 − ϱ ! =
𝜕!𝐺!!"

𝜕 𝑥!  𝜕 𝑥!
+ 𝐻.!"! 𝛴!" ,   (18) 

 
where 𝐽 is the tangential force per unit 𝑚 volume, 
𝐹 is the difference in the tangential frictions at the 
upper and lower boundaries, 𝛴!" is the stress 
components in the shell space, 𝐿  is the normal 
force per unit 𝑚 volume, 𝜚 is the difference in the 
tangential frictions at the upper and lower 
boundaries, and 𝐺!!" is the Euler–Schouten 
curvature contravariant tensor. 

The coordinate transformation law is 
expressed by: 

𝐺!
⋅!" = 𝐵!"

⋅⋅!"#$𝐻⋅!"
! ,                   (19) 

𝐺!"# = 𝛼!"𝐺!
⋅!" ,                       (20) 

 
𝐵⋅!
!⋅!"#$ = 𝛼!"𝐵!"

⋅⋅!"#$ ,                   (21) 
where 𝐵 is the contravariant tensor in 𝑛-space and 
𝛽  and 𝑙  are indices. From Eq. (15), the balance 
equations (Eqs. 17–18) and the coordinate 
transformation (Eqs. 19–21), the authors can write: 
 

𝐿 − 𝜚 ! =
𝜕!

𝜕 𝑥!  𝜕 𝑥!
(𝐵 ̇!

!⋅!"#$ 𝜕!𝑦!

𝜕 𝑥! 𝜕 𝑥!
) 

+
𝜕!𝑦!

𝜕 𝑥!  𝜕 𝑥!
𝛴!" .  (22) 

 
Moreover, when the material is isotropic, the 𝐵!"#$ 
tensor can be expressed with the constant 𝐵, 
 

𝐵𝛥𝛥𝑦 + 𝛴!"
𝜕!𝑦

𝜕 𝑥!  𝜕 𝑥!
= 𝐿 − 𝜚.                (23) 

 
4. DISCUSSION 
 

The authors consider the relationship between 
previous research and Kondo theory. DiDonna 
[12] presented the buckling equation for an elastic 
sheet, 
 

𝐸ℎ!

12(1 − 𝜈!)
𝑑!

𝑑𝑥!
 𝑑!𝑤
𝑑𝑥!

−
𝜕
𝜕𝑥

𝜎!"
𝜕𝑤
𝜕𝑥

= 𝑃! , (24) 

 
where h is thickness,  𝜈 is Poisson’s ratio, 𝜎!" is the 
stress, and 𝑃!  is an external pressure field. The 
curvature tensor can be written as the derivative of 
a continuous curvature potential 𝑓 [12] 
 

𝐶!" =
𝜕
𝜕𝑥
𝜕𝑓
𝜕𝑥
,                            (25) 

 
where 𝐶!"  is the curvature tensor. Here, the 
potential 𝑓 is not identical to the local function 𝑤 
used above, but is approximately equal to 𝑤 for 
nearly flat surfaces [12]. The parameter 𝐶!" is the 
Euler–Schouten curvature tensor. Hence, this 
buckling equation for an elastic sheet is a low-
order strain equation. Furthermore, the authors 
write 𝜎!" in terms of the stress potential 𝜒 
 

𝜎!" = 𝜖!"𝜖!"
𝜕
𝜕𝑥

 𝜕𝜒
 𝜕𝑥

,                (26) 
 
where 𝜖!"  and 𝜖!"  are antisymmetric tensors. In 
terms of the potentials 𝜒 and 𝑓, the von Karman 
equations [13] can be expressed by 
 

 𝐷 𝛻! 𝑓 =  [𝜒 , 𝑓]  +  𝑃! ,               (27) 
 

𝛻! 𝜒 =  −
1
2
𝑓, 𝑓 .                    (28) 
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This von Karman equation is a generalized 
buckling equation (23) for low-order strains. Moreover, 
the buckling can be described by a simplification of Eq. 
(9). It is apparent that Eq. (23) is the extended two-
dimensional version equation of Eq. (9) with constant 
vertical forces (i.e., 𝑞 = const.) and without body forces. 
It is also apparent that a two-dimensional version 
equation (e.g., [4]) is included in the kind of equations 
reduced from Eq. (23). Thus, various kinds of geological 
deformations can be described by the simplification of 
the generalized buckling equation. For example, the 
mechanism of geological folding occurs by plate motion. 
In this case, three-dimensional flat plate buckling 
(geological folding) can be described by Eq. (23), the 
buckling equation of the flat plate. 

The buckling phenomena of the subducting 
lithosphere due to the sphericity of the earth have been 
studied in the context of spherical shell tectonics [5–7]. 
The slab length is approximately proportional to the arc 
length, and the lithosphere thickness is related to the 
lithosphere age. Moreover, the length of the deformable 
portion of the shell corresponds to the length of the 
subducting slab. The lithosphere is defined by the length 
of the Wadati–Benioff zone and the thickness of the 
shell which corresponds to the effective elastic thickness 
of the lithosphere. From the dataset of geometrical 
parameters for subducting lithosphere, Kikuchi and 
Nagahama [8] presented a new linear relationship 
between the normalized hydrostatic pressure and the 
Batdorf parameter as the dimension of the shell (i.e., the 
flatness). Therefore, in this case, Eq. (23) becomes the 
buckling equation of the spherical shell lithosphere as a 
three-dimensional Riemannian manifold (𝑉!). 

 
5. CONCLUSIONS 

 
Buckling of the plate and shell in the field of 

materials science is considered, using differential 
geometry [9]. From using the Euler–-Schouten curvature 
tensor of the shell as a Riemannian manifold and the 
force-balance equation for the shell, the authors derived 
a unified theory for buckling of spherical shells. When 
the Riemannian manifold of dimension 𝑉!  with a 
nonzero Euler–Schouten curvature tensor exists in an 
enveloping manifold (Euclid space) of dimension 𝑉! , 
the including Riemannian manifold of 𝑉! protrudes into 
the enveloping manifold of dimension 𝑉! . From the 
Euler–Schouten curvature tensor on the shell as a 
Riemannian manifold and the force-balance equation for 
the shell, the authors derived a unified theory for 
buckling of flat plates or spherical shells in Eq. (23). 
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