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ABSTRACT: The stability analysis of columns is a complex problem that includes not only first order 
effects but also second order ones. The solution depends on a number of parameters and comes from non-
polynomial equations which make the resolution tedious and needs the use of computer programs or abacuses. 
The objective of this paper is to establish a new model to determine the critical load for reinforced concrete 
rectangular columns subjected to compression in accordance with the Eurocode 2. The tools presented in this 
paper will enable engineers to design a broad spectrum of compressed columns or verify their stability 
without the use of a computer or design charts. It will also help them to design columns in an economic way 
as it evaluates the critical buckling load by taking into account the influence of each parameter on the 
stability of the element. 
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1. INTRODUCTION 
 

Civil engineers often opt for structures 
constituted of beams and columns. Therefore, due 
to the importance of compression in columns for 
the stability of the structure, the design codes 
require that second order effects be considered.  

When these columns are subjected to axial 
compression, the buckling phenomenon happens 
earlier and it is necessary to perform a complete 
nonlinear analysis which requires the use of 
numerical methods.  

In the previous article [1], we have computed 
the critical buckling load using the general method 
[2] and have proposed design charts to verify 
columns stability. In this article, we will write a 
model that allows designers to estimate the critical 
load of reinforced concrete rectangular columns 
subjected to compression without the use of 
computers or design charts. 

 
2. PROBLEM PRESENTATION 
 

The buckling phenomenon is characterized by a 
sudden sideways deflection of axially loaded 
structural members when they are slender. This 
phenomenon has been highlighted by Euler who 
determined the expression of the critical load  Pc =
π².E.I
l²

 , at which an ideal element will buckle. 
In reinforced concrete, stability analysis 

consists of proving that there is a deflection of the 
element that equilibrates the design solicitations 
while taking into account second-order effects [3], 
[4]. 

The BAEL code and the Eurocode 2 admit that 
for usual structures, regardless of the end 
conditions, the study of a compressed column 
under an axial load 𝐍𝐍𝐮𝐮can be brought to the case of 
a double articulated column of length 𝐥𝐥𝐟𝐟 well 
known as model column [4], [5], [6], [7]. 

The advantage of the model column is to rally 
the buckling problem into the study of one cross-
section at the ultimate limit state. It is sufficient to 
verify, in the middle cross-section, that there is an 
equilibrium between internal and external loads. 

The fundamental assumption of the model 
column is that the deformation is sinusoidal. The 
maximum deflection f and the curvature 1

r
 are 

therefore tied by the following equation:  

𝒇𝒇 =  𝟏𝟏
𝐫𝐫

× 𝐥𝐥𝐟𝐟
𝟐𝟐

𝛑𝛑²
 

The external eccentricity or the eccentricity of 
the axial load Nu  in the middle cross section is, 
therefore: 

eext = e1 + 1
r

× lf
2

π²
    

e1 = ec + ea where ec  is the structural 
eccentricity and ea  is the accidental eccentricity 
due to execution imperfections. 

 
Furthermore, in the middle cross-section, each 

state of deformation defined by its curvature 1
r
  and 

the strain ℇ in a particular point of the cross-
section (ℇbc for the most compressed fiber for 
example) leads to the equilibrium equations. 
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(6) 

The stresses are functions of the strains, thus 
they depend on the curvature 1

r
 according to the 

compatibility relations. So, by setting the states of 
deformation of the cross-section by the 
couple�εbc , 1

r
� the internal loads Ni �εbc , 1

r
� and 

Mi �εbc , 1
r
�  can be calculated, and the internal 

eccentricity deduced: 
 

eint =  Mi
Ni

      
 

In the �1
r

, e�  plane (Fig.1), the geometrical 
equation (2) is represented by a straight line and 
the mechanical equation (3) is represented by blue 
network curves parameterized by Ni = constant. 

The critical load 𝑵𝑵𝒖𝒖𝒖𝒖corresponds to the curve Ni 
that is tangent to the straight line: 

 

eext = e1 + 1
r

× lf
2

π²
 

 

 
Fig. 1: Network curves for several values of  Ni 
 
3. GEOMETRIC IMPERFECTION EFFECT 

 
According to Eurocode 2, the perfectly centered 

loading does not exist [2], there will always be an 
eccentricity due to geometric defects. For isolated 
columns, the geometrical imperfections may be 
taken into account as an additional eccentricity 𝐞𝐞𝐚𝐚 
given by:  

𝒆𝒆𝒂𝒂 = 𝒂𝒂𝒉𝒉𝒂𝒂𝒎𝒎𝒍𝒍𝒇𝒇
𝟒𝟒𝟒𝟒𝟒𝟒

 

with 𝒂𝒂𝒉𝒉 = 𝟐𝟐
√𝒍𝒍

 with 𝟐𝟐
𝟑𝟑
≤ 𝒂𝒂𝒉𝒉 ≤

𝟏𝟏𝒂𝒂𝒎𝒎 = �𝟒𝟒.𝟓𝟓(𝟏𝟏 + 𝟏𝟏
𝒎𝒎

) 

 m=1 for an isolated column 
  l= column's length 

 
Note: For cross sections loaded by the 

compression force with symmetrical 
reinforcements, the Eurocode2 recommends to 
assume the minimum eccentricity e0 =

max � h
30

 , 20mm�  where  h is the depth of the 
cross-section. 
 
4. NUMERICAL BUCKLING ANALYSIS 

 
4.1 The nonlinear buckling analysis method 

 
To assess most precisely the buckling resistance 

of columns, the general method analysis has been 
used. It is based on a nonlinear analysis including: 
- Geometric nonlinearity (second order effects), 
- Nonlinear mechanical behavior of materials. 
 
4.2 Analysis of the middle cross section 

 
According to the position of the neutral axis, 

there are two cases (Fig.2): 
- The cross-section is entirely compressed, 
- The cross-section is partially compressed. 

 
Let's consider a linear deformation represented 

by a couple of parameters(εsup, εinf) . For each 
value of this couple parameters one can evaluate: 
- the resisting solicitations 𝐍𝐍𝐢𝐢,𝐌𝐌𝐢𝐢 
- the corresponding deformation of the section at 

the middle span.  

 
 

Fig. 2: Strains and stresses diagrams 
 

The curvature of the middle cross section is 1
𝑟𝑟

=
2𝜀𝜀𝑚𝑚
ℎ

.   
Therefore: 

𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆 = 𝒂𝒂𝒉𝒉.𝒍𝒍𝒇𝒇
𝟒𝟒𝟒𝟒𝟒𝟒

+ 𝟐𝟐𝜺𝜺𝒎𝒎
𝒉𝒉

×
𝒍𝒍𝒇𝒇
𝟐𝟐

𝝅𝝅𝟐𝟐
 

 
The concrete resistant solicitations can be 

computed by the following formula: 
 

𝑁𝑁𝑐𝑐 = ∫𝑑𝑑𝑁𝑁𝑐𝑐with𝑑𝑑𝑁𝑁𝑐𝑐 = b.𝜎𝜎.𝑑𝑑𝑑𝑑  
𝑀𝑀𝑐𝑐 = ∫𝑑𝑑𝑀𝑀𝑐𝑐  with  𝑑𝑑𝑀𝑀𝑐𝑐 = b.𝜎𝜎.𝑑𝑑.𝑑𝑑𝑑𝑑 

 
The internal solicitations are, then, given by:  
 
𝑁𝑁𝑖𝑖 = 𝑁𝑁𝑐𝑐 + 𝐴𝐴𝑠𝑠1𝜎𝜎𝑠𝑠1 + 𝐴𝐴𝑠𝑠2𝜎𝜎𝑠𝑠2 

𝑀𝑀𝑖𝑖 = 𝑀𝑀𝑐𝑐 + 𝐴𝐴𝑠𝑠2𝜎𝜎𝑠𝑠2 �
ℎ
2
− 𝑑𝑑′� − 𝐴𝐴𝑠𝑠1𝜎𝜎𝑠𝑠1(𝑑𝑑 −

ℎ
2

) 

(5) 

(4) 

(3) 
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with𝜎𝜎𝑠𝑠 < 0 if  tension  
 

Hence: 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑀𝑀𝑖𝑖
𝑁𝑁𝑖𝑖

    
 
If the equation eint = eext  has a solution then 

the column will be stable, else it will buckle. To 
determine the critical normal load, the 
initialization of the normal effort should be at a 
suitable N0 value, then the stability of the column 
is checked. Next to the value of Nuis incremented 
until the column is no longer stable. The maximum 
normal load supported without instability is the 
sought critical normal load, named Nmax. 

 
In the previous article [1], the critical normal 

load  Nmax  was computed with an application 
created in the mathematical program Matlab 
simulink. 

 
5. HYPOTHESIS AND MATERIALS 
PROPRIETIES 
 
5.1 Hypothesis 
 
- The column is isolated and simply supported at 

both ends. 
 
- The cross-section of the columns is rectangular. 

b = cross section width, 

h  = cross-section height in the buckling 
plane(in most casesh < 𝑏𝑏) 

lf The = effective length of the column, 
 
- The section contains bars put 

symmetrically:As1 = As2 = A
2
 

𝐴𝐴is the total area of the steel reinforcements 
 

5.2 Properties of steel bars 
 
The design diagram used is the horizontal top 

branch one presented in the article 3.2.7 of EC2 [1], 
[2]. 

𝐸𝐸𝑠𝑠 = 200GPa : modulus of elasticity 

𝑓𝑓yk = 500MPa: characteristic yield strength 
 

5.3 Concrete stress-strain relationship 
 

To compute a design value of the ultimate load, 
the stress-strain relation used is shown in the 
article 5.8.6(3) of the EC2 [1] [2]. 

 
5.4 Effect of the load's duration 
 

The creep may be taken into account by 
multiplying all strain values in the concrete stress-
strain diagram with a factor (1 + φef) where φef is 
the effective creep ratio given by: 

 
φ𝑒𝑒𝑒𝑒 = 𝜑𝜑(∞, 𝑡𝑡0)𝑀𝑀0𝐸𝐸𝐸𝐸𝐸𝐸

𝑀𝑀0𝐸𝐸𝐸𝐸
 

   
φ(∞, t0) is the final value of creep coefficient,  
M0Eqp is the first order bending moment in quasi-
permanent load combination (SLS), 
M0Ed is the first order bending moment in design 
load combination (ULS). 
 
5.5 Notations 
 
p =

A.fyd
b.h.fcd

 : mechanical percentage of 
reinforcement 

ν = Nu
b.h.fcd

:  relative normal load 

νmaxis the critical relative normal load. 

𝑓𝑓ydis the design yield strength of reinforcement 

𝑓𝑓cd is the design value of concrete compressive 
strength.  

𝒇𝒇𝐜𝐜𝐜𝐜 = 𝒇𝒇𝐜𝐜𝐜𝐜 γ𝐜𝐜⁄  with γ𝐜𝐜 = 𝟏𝟏.𝟓𝟓 

and 𝒇𝒇𝐜𝐜𝐜𝐜 = 𝟐𝟐𝟓𝟓 𝑴𝑴𝑴𝑴𝒂𝒂 
 
6. INFLUENCE ON ν𝒎𝒎𝒂𝒂𝒆𝒆  OF DIFFERENT 
PARAMETERS 
 
6.1 Influence of the slenderness𝐥𝐥𝐟𝐟 𝐡𝐡⁄  
 
The plot of νmax  versus the slenderness lf h⁄  
forφef = 0; 1 and 2and for different values of p  
shows that the curves are exponential. Fig.3 is an 
example of these curves for φef = 1. 
 

(7) 

(8) 
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Fig. 4: Influence of the length of the column.  
 

 
 
6.2 Influence of the column length 
 

We try, then, to see if there is an influence of 
the length of the column (with equal slenderness) 
on the results.  

 
We, therefore, vary the length of the column 

while keeping the slenderness constant; we obtain 
hence the results represented in fig.4. 

 
By drawing the line minimizing the deviations, 

we obtain the most representative line of the 
experimental point cloud. It has for the equation: 

 

 

 

 

 

ν𝑚𝑚𝑚𝑚𝑚𝑚�𝑙𝑙𝑓𝑓�
ν𝑚𝑚𝑚𝑚𝑚𝑚(20)

=  −2.74 × 10−3𝑙𝑙𝑓𝑓 + 1.04 

 
6.3 Effect of the mechanical percentage of 

reinforcements 
 
The plot of νmax versus p for φef = 0; 1 and 2 and 
for different values of the slenderness lf h⁄  shows 
that the curves νmax  over p are practically linear. 
Fig.5 is an example of these curves for φef = 2. 

  
 

Fig. 3: νmax  versus the slenderness lf h⁄  for φef = 1 
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6.4 Influence of the concrete compressive 

strength 
 

We search then the influence of fck thus we plot 
on νmaxversus  fck  (Fig.6) 

 
The most representative line of the experimental 

points cloud has for the equation: 
 

ν𝑚𝑚𝑚𝑚𝑚𝑚(f𝑐𝑐𝑐𝑐)
ν𝑚𝑚𝑚𝑚𝑚𝑚(25)

=  −1.98 × 10−3fck + 1.08 

 
The influence of the concrete strength on νmax 

is lower when it is less than 80 MPa. Thus we can 
neglect it. 

 

 

 
 
 
 
 
7. SEARCH FOR AN ADEQUATE 
MATHEMATICAL MODEL 

 
We propose, then, to look for a mathematical 

model giving the buckling critical load. So we will 
first proceed to an identification routine on curves 
obtained in fig.3. 

 
We choose a theoretical curve that closes to the 
real curve (fig.7) and then we calculate the 
correlation coefficient R². 

 
  

 
 

 

Fig. 5:νmax versus p φef = 2 

Fig. 6: Influence of  fck. 
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When φef = 0 and p=1.4 we find that the 

equation νmax = 4.00e−3.94×10−2×lf/h best 
approximates the experimental curve with a high 
correlation coefficient   R² = 0.99 

 
When φef = 0  and p = 0 we find that the 

equation νmax = 1.47e−3.94×10−2×lf/h  best 
approximates the experimental curve with a high 
correlation coefficient   R² = 0.99 

 
Furthermore, we have noted (fig.4) that the 

curves νmax  over p are practically linear. We can 
then make a linear interpolation with respect to p.  
 
For  φef = 0 we obtain: 
 

νmax = (1.806p + 1.468)e−3.94×10−2×lf/h 
 
Then we want to find a valid model for all 

values of  φef. Thus we will exploit the following 
8 points (Table 1), taken from the previous 
abacuses. 
 
Table 1 

𝛗𝛗𝐞𝐞𝐟𝐟 p 𝒍𝒍𝒇𝒇 𝒉𝒉⁄  𝛎𝛎𝐦𝐦𝐚𝐚𝐦𝐦 

0 
0 

20 0.67 

50 0.23 

1.4 
20 1.72 
50 0.55 

2 

0 
20 0.56 
50 0.20 

1.4 
20 1.62 

50 0.51 

 
 
 
We deduce that: 
for p=0 and  𝑙𝑙𝑓𝑓 h⁄ = 20 then  νmax(2)

νmax(0)
= 0,84 

 
for p=0 and  𝑙𝑙𝑓𝑓 h⁄ = 50 then νmax(2)

νmax(0)
= 0,87 

 
for p=1.4 and  𝑙𝑙𝑓𝑓 h⁄ = 20 thenν𝑚𝑚𝑚𝑚𝑚𝑚(2)

ν𝑚𝑚𝑚𝑚𝑚𝑚(0)
= 0,94 

 
for p=1.4 and  𝑙𝑙𝑓𝑓 h⁄ = 50 then  ν𝑚𝑚𝑚𝑚𝑚𝑚(2)

ν𝑚𝑚𝑚𝑚𝑚𝑚(0)
= 0,94 

 
By security we take: 
 

νmax(2)
νmax(0)

= 0,84for    p=0 
 
and ν𝑚𝑚𝑚𝑚𝑚𝑚(2)

ν𝑚𝑚𝑚𝑚𝑚𝑚(0)
= 0,94for   p= 1.4 

 
This gives the following equation by linear 
interpolation: 
 

ν𝑚𝑚𝑚𝑚𝑚𝑚(2)
ν𝑚𝑚𝑚𝑚𝑚𝑚(0)

= 0,84 +
𝑝𝑝

14
 

 
By linear interpolation in the function of φef  we 
obtain: 
 

ν𝑚𝑚𝑚𝑚𝑚𝑚 �φ𝑒𝑒𝑓𝑓�

ν𝑚𝑚𝑚𝑚𝑚𝑚(0)
= 1 − �0.08 −

p
28
�φef = γφ 

 
The influence of creep on the buckling resistance 
will, therefore, be quantified by γφ . The model 
becomes then:  

νmax = γφ(1.806p + 1.468)e−
0.04lf
h  

 
 

Fig. 7: Identification curves 
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Fig. 8: Theoretical curves versus real curves 
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γφ = 1 − �0.08 −
p

28
�φef 

 
Finally, the identification shows that the following 
equation is the best model to calculate the critical 
load: 
 

𝜈𝜈𝑚𝑚𝑚𝑚𝑚𝑚 = 𝛾𝛾𝜑𝜑𝛾𝛾𝑙𝑙(1.806𝑝𝑝 + 1.468)𝑒𝑒−
0.04𝑙𝑙𝑓𝑓
ℎ  

 
𝛾𝛾𝜑𝜑 = 1 − �0.08 −

𝑝𝑝
28
�𝜑𝜑𝑒𝑒𝑒𝑒  

 
𝛾𝛾𝑙𝑙 = 1.04 − 2.74 × 10−3𝑙𝑙𝑒𝑒 

 
8. VALIDATION OF THE MODEL 
 

In order to validate the model, we have plotted 
(Fig.8) the real curves (in color) superimposed on 
the curves given by the theoretical model (dashed 
line). We note that the theoretical and real curves 
are very close to each other, which validates the 
previous model.  
 
9. CONCLUSION 
 

A new model has been produced in this article 
for the determination of buckling critical load of 
rectangular columns under uniaxial loading. It is 
congruent to the prescriptions of Eurocode 2 and 
applies to rectangular columns with symmetrical 
reinforcements and slenderness up to 50. In other 
cases, conventional methods must be used. 

This model can be used to determine the 
buckling resistance of these columns and verify 
their stability without having to use computer 
programs or abacuses. It can also be used to design 
economically the column so that it doesn't face 
instability. 
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