
149

 DEFECT-DRIVEN DEVELOPMENT: A NEW SOFTWARE

DEVELOPMENT MODEL FOR BEGINNERS

* Wacharapong Nachiengmai1,2, Sakgasit Ramingwong3, Kenneth Cosh3,

Lachana Ramingwong3, and Narissara Eiamkanitchat3

1,3 Department of Computer Engineering, Faculty of Engineering, Chiang Mai University, Thailand;
2 Graduate School, Chiang Mai University;

*Corresponding Author, Received: 30 Oct. 2018, Revised: 24 Dec. 2018, Accepted: 23 Jan. 2019

ABSTRACT: Software development is challenging. It is normal for software developers to find some

problems with their software design, especially during their beginner days. This usually involves simple and

repetitious defects which subtly hamper their overall productivity. Defect-driven development (DDD) is a

concept proposed to tackle such problems. DDD utilizes the benefits of software defect knowledge base by

collecting defects data from experienced programmers and teach beginners to avoid these problems. In this

way, the beginners can proactively prevent the defects and subsequently produce more high-quality software.

DDD concept can be efficiently adapted to either traditional software development such as the Waterfall and

Spiral model, or the more modern concepts such as Scrum or Test-driven Development. This research

implemented the DDD concept on undergraduate students and compared their performance with the generic

personal software process. A total of seventy-seven undergraduate students from information technology

departments participated in this experiment. The experiment was organized in 3 batches in order to minimize

potential discrepancies in the results. The result unanimously reveals that the students who implemented DDD

had a significantly higher yield on defect removal. Although the time spent to finish each project in the DDD

group were higher as expected, they were surprisingly not statistically different from the students who

implemented a generic process. This suggests that DDD is a promising concept of software development.

Keywords: Defect-driven development, Software development model, Quality software development, Personal

software process, Personal process improvement.

1. INTRODUCTION

In academic, during the beginning of general

software development programs, students take

courses to increase their comprehension of how the

software works in real-world situations [1].

Gradually, they keep on practicing to gain more

understanding of the discipline. As their experience

grows, they learn how to prioritize tasks, complete

their job and, simultaneously, learn how to avoid

causing software defects.

The software quality process focuses on

controlling product quality and aims to produce

non-defective or less-defective products. In real

situations, defects can be created at every stage of

software process [2]. For example, the defects could

be originated by stakeholders, the product owner, or

the software development team since the

requirement engineering phase. Moreover, different

environments could be the cause of errors, e.g.,

hardware specification, platform and the social

environment, including culture and tradition, etc.

The general software process consists of 5 steps

as follows: requirement analysis, design,

construction, test, and delivery and maintenance.

Research in 1992 [2] reported that the defects can

occur in every phase of the software process. Those

software defects could be avoided with increasing

the experience of software developers. With a

sufficient level of cautiousness and experience,

engineers are more likely to develop their code

without repeating their old mistakes.

As mentioned earlier, inexperienced software

developers tend to create more simple defects than

experienced ones. In addition, such defects may be

caused by the changes in the development

environment. The defect format normally occurs in

the repetitious and similar format [2]. So, this

research focuses on whether the beginner software

developers can use the defect knowledge from

experienced software developers to decrease

defects in their projects.

This research attempts to introduce a new

approach which facilitates the software process for

software developers, especially the beginners. Its

objective is to decrease potential errors of the

products produced by novice developers. Several

tools such as software defect pattern are used in this

concept.

1.1 The Concept of Defect-driven Development

The concept of “Defect-driven Development

(DDD)” that uses the knowledge of software defects

International Journal of GEOMATE, Sept., 2019 Vol.17, Issue 61, pp. 149 - 155
ISSN: 2186-2982 (P), 2186-2990 (O), Japan, DOI: https://doi.org/10.21660/2019.61.8220

Special Issue on Science, Engineering & Environment

International Journal of GEOMATE, Sept., 2019 Vol.17, Issue 61, pp. 149 - 155

150

to preventively drive the software process. The

knowledge base of software defects is collected

from every step of the software process by

experienced software developers. Then it is

normalized to a standard format and rearranged as

the software defects pattern for beginners.

The principle of the Defect-driven Development

(DDD) focuses on proactive activities to check the

design and types of error that it might lead to and

how to avoid them before coding. This is done by

referencing software defect knowledge that was

previously collected from experienced software

developers. Software developers can use defect

information in the design phase to decide either to

deal with those defects or redesign that software to

avoid problems. DDD's objective is similar to those

of Test-driven Development (TDD) hoping that

developers foresee the potential problems before

the coding stage. The difference is TDD involves a

design of unit tests before coding which may not be

a natural process for beginners; while DDD more

subtly adds a defect checklist during the design.

This arguably makes a slight but important change

in the process and is likely to be more comfortable

for beginners. Yet, both concepts can be

implemented simultaneously.

This idea proposes the benefits of using the

software defect knowledge from the expertise for

producing a framework for beginner software

developers. Moreover, this can provide some basic

suggestions on how to solve common problems and

beginners could learn how to develop software

together with software defect management. These

would entail the quality software developers in the

future.

Each symbol in detail-design is mapped to the

category of a software defect in the knowledge of

software defect. Then, the system would show

defect information that is related to the function in

the designed format for example in a checklist or

table, etc.

2. RELATED WORK

2.1 Test-driven Development

“Test-driven development (TDD)” [3] or “Test-

first development” is one of the techniques that is

proposed in “Extreme Programming Model” [4]. It

has different steps from general software processes.

Developers who implement TDD will create unit

tests before the program coding stage. This method

will drive programmers to be conscious about

software defects first. So, this concept proposes to

decrease the error of the products.

The research from IBM Corporation and North

Carolina State University reported that projects

which applied TDD can reduce defects by 40%

when compared with others that use the general

process [5]. The research claimed that TDD

decreases the quantity of defect and it also

influences a proper design of software. In addition,

TDD improves communication among the

development team and business as well [6].

Another research reports that TDD is less

efficient in terms of defect detection compared to

code inspection technique. TDD is chosen for the

reason of budget because it can save costs compared

with code inspection [7]. Lastly, a study reported

that TDD is not different from traditional software

development in 3 indexes including (i)

programming speed, (ii) program reliability, and

(iii) program understanding measured as proper

reuse of existing methods [8].

2.2 Software Defect Taxonomy

Controlling defects is one of the most important

aspects of software quality management. There are

many researchers that study on the nature of the

software defects, particularly in defect

classification. One group of researchers [2] present

their idea for classifying software defect by using

cause-effect analysis. They collect feedbacks on

defects from the software developers. This includes

the phase of defects injection, the cause of the defect

and the effect of those defects.

The result of this study demonstrates 7 classes

of defect including, Function, Interface, Checking,

Assignment, Timing/Serialization, Documentation

and Algorithm [2]. They are distributed in all of the

stages of a software process. It is defined as

“Orthogonal Defect Classification (ODC)”

ODC was used to implement in many studies of

software engineering areas, i.e., to classify software

defect in a specific phase of software process or

using for software defects prediction, etc. [2]. The

example of studies that use ODC to implement in

their research is the research in 2010 [9], which

illustrates the new concept of defect classification

for black-box testing. In addition, it demonstrates

that the ODC is not applicable to black-box defects

which resulted in accumulating the defects from the

step of black-box testing. It is the appropriate

process for their work. In the result, they represent

this concept as “Orthogonal Defect Classification

for Black-box Defect (ODC-BD)” [9].

2.3 Software Defect Pattern

Software defect pattern collects of software

defects from the real work with an aim to reduce

repetitive defects. Defects are recorded and

categorized by the cause of that error, the phase of

International Journal of GEOMATE, Sept., 2019 Vol.17, Issue 61, pp. 149 - 155

151

injection, the effect of that defects and how to

remove it. Another important information from the

pattern is the knowledge that can guide developers

on how to prevent defects.

A study in 2009 investigated implementation of

software defect pattern in the software process. The

purpose of that research was to increase the

reliability of software design [10].

This research implements this set of defect

classification in the Knowledge of Software Defect

(KSD). It could identify the defect information in

the right stage of the software process. The detail of

KSD in this experiment is reported in the research

design section.

2.4 Personal Software Process

Personal Software Process (PSP) is a tool for

investigating and improving personal performance

in software development [11],[12]. PSP collects and

shows the statistics that are calculated from the data

that engineers record. These results can be used to

analyze the strength and weakness of an individual.

Thus, engineers can continually improve

themselves.

PSP can be applied in various areas of software

engineering. There is no limitation of computer

language or software process model. It can be

implemented in pair programming [13] and M-V-C

frameworks [14]. Researchers reported that PSP can

improve the personal performance of students in

both solo and team programming styles.

Research in 2015 presented an experiment of

MVC-PSP to increase the reliability of defect

logging [15]. Two activities including Defect

Detection Capability Test (DDCT) and Defect

Standard Table (DST). DDCT is a test for

calculating the engineers defect detection

capability. DST is a review of the team to generate

and update the standard of defect detection. Based

on the results, it is concluded that the defect

standard table has higher reliability. As a result, this

research proposes that the defect standard table can

be effective for defect logging.

3. RESEARCH DESIGNS

3.1 Participants

This research was implemented in 3 batches

during 3 undergraduate courses on Mobile

Application Development. There were 18, 21 and

38 students who studied in the department of

software engineering, department of information

technology, department of computer engineering

and department of business computer. These

students have different programming experiences.

In each batch of the experiment, students were

organized into 2 groups based on the result of the

Defect Detection Capability Test. The better

performance group of the student was assigned to

group A as the control group and the lower group

was assigned to group B. The DDD’s methods were

implemented in only group B.

3.2 Duration

Each batch of experiments took 6 weeks to

complete. It involved 6 programming exercises.

Detail of the exercises is described in the following

section. This research took 4 months to complete all

experiments.

The experiments were designed to provide

feedback to each other. The result of the first

experiment had been used as input data for the

second one and later. The result of the second

experiment was also input data for the third

experiment.

3.3 Exercises in the Experiment

There are 6 exercises in this experiment shown

in Table 1 The structure of these exercises follows

the official PSP training scheme. The first exercise

is easy so that the participants adjust their working

process to get used to the PSP framework. Only

working process, time spent on each step, errors

occurred in the working process are recorded. The

second exercise develops an Android application

which calculates geometric shapes. It introduces

resource estimation in PSP framework.

The third to fifth exercise is related to general

calculations with the addition of the decision

process. Full PSP process, including reviewing of

design and code, are included in these exercises.

The last exercise is the only exercise of this research

study that must be connected to a database.

4. METHODOLOGY

4.1 Workshop Iteration

Each batch of the workshop involved 6

exercises. Control Group students were instructed

to build projects based on their normal procedures.

At the same time, DDD Group who displayed less

capability of error detection during the test

implemented DDD’s activities. These activities

help students to detect defects that should occur in

their projects according to their design prior to the

step of coding. KSD has displayed the information

about those defects, how to prevent or debug that

error. Finally, they could choose to implement the

project with this problem or re-designing procedure.

International Journal of GEOMATE, Sept., 2019 Vol.17, Issue 61, pp. 149 - 155

152

When students of DDD group found defects

during their coding, they can search the KSD for

debugging guidelines. They can continuously add

new information of software defect solving to KSD

too. Fig.1 displayed the experiment processes.

Fig. 1. The research processes.

5. RESEARCH RESULTS

After the students finished all 3 batches, their

development data were compared. There are 4

indexes for investigating as follows: (i) Defect

Density, (ii) Yield%, (iii) Time used and (iv)

Productivity. All of those indexes can project the

efficiency of DDD in this experiment. Other

indexes also contribute supplement information to

conclude this research.

The Defect density illustrates the intensity of

defect in software building processes. It is

calculated by the number of defects by the total line

of code written in the project. The lower value of

defect density represents the fewer defects in

software. The average value of defect density of

DDD group students is expected to be less than the

Control group.

Yield% shows the capability of defect detection

before the compile phase. The higher value of

yield% means the developer detected more errors.

That value of DDD group is expected to be greater

than the Control group.

The DDD group may take more time to

complete than those of Control group as they must

complete more activities. Nevertheless, it is

expected that the time spent by DDD group should

not be significantly different than the control group

as it would affect projects with limited time frames.

Lastly, productivity is the value showing the

overall efficiency of the personal process,

calculated by code size and the total time spent in

completing all work. The DDD students are

hypothetically expected to yield less productivity

than the control group due to more activities.

5.1 The Defect Capability Test Result

Fig 2 shows the defect capability test result of

all 3 batches. The defect capability test result

projected the Java programming skill of all students.

Students of the second batch scored 52.05 on

average. It showed that they have the least skill in

error detection in Java. The first batch’ students had

the highest skill with the score of 68.19 on average.

This is not surprising since they were third-year

software engineering students. The last batch had

the most variety of programming skills because they

Table 1. Workshop Exercises
Ex.# Android

Application

PSP

Level.

Data Collection Difficulty

Level/Expected

Development Time

(min.)

Skill Needed

1 Simple Calculator 0 1, 2 1/115 Simple Calculation

2 Areas of Geometric

Shapes Calculator

1.0 1, 2, 3,4, 5, 6 1/135 Simple Calculation

 Class and Object

3 Body mass index

(BMI) Calculator

2.0 1, 2, 3, 4, 5, 6, 7, 8 2/175 Complex Calculation

 Class and Object

 Defensive Programming

4 Mini Horoscope 2.1 1, 2, 3, 4, 5, 6, 7, 8 2/110 Complex Calculation

 Class and Object

 Defensive Programming

 Logic and Decision

5 Taekwondo point

calculator

2.1 1, 2, 3, 4, 5, 6, 7, 8 2/130 Complex Calculation

 Class and Object

 Defensive Programming

 Logic and Decision

6 To Do Listing 2.1 1, 2, 3, 4, 5, 6, 7, 8 3/220 Class and Object

 Defensive Programming

 Logic and Decision

 Database Programming

Note: • 1: Time, 2: Defect, 3: Time Estimation, 4: Size Estimation, 5: Actual Time, 6: Actual Size, 7: Design Review,

 8: Code Review

International Journal of GEOMATE, Sept., 2019 Vol.17, Issue 61, pp. 149 - 155

153

consist of students from 3 study program who had a

different experience in computer programming. So,

the standard deviation value of this group is the

highest and their average score was 57.55.

Fig. 2. The defect capability test result

5.2 Exercise Result

The results from the study are displayed in Table

2. The software’ size is not different because all

batches used the same set of exercises. However,

the time used is different. As mentioned above, the

second batch’ students had the least programming

skill in Java, so they used the longest time to finish

the exercises more than others.

The average value of defects amount is not

different. But the sixth exercise was different

because it is the biggest size of the code. The

function of this project had to connect to the

database engine with the Android platform. The

student had to spend part of the time to manage the

database structure. This exercise is not only the

most time consuming but also led to the most

defects.

5.3 All Batch’s Result

The experiment result of all batches is shown in

Fig 3. The average value of defect density of

students in DDD group is significantly less than the

Control group in every exercise. The average value

of yield% of DDD group is significantly greater

than the Control group in every project too. It is

noted that the yield% value is calculated from the

4th exercise since the essential data was not

previously collected because the earlier exercises

used the lower level of PSP that appropriates with

the easy projects.

Note: * Defect density can be calculated from the 2nd exercise.

* Productivity can be calculated from the 2nd exercise.

 * Yield% can be calculated from the 4th exercise.

Fig. 3. The result of all batch’s experiment

For the time used to complete workshops, the

students of the DDD group spent the additional time

for DDD’s activities. So, they used more time than

the Control group members with the same size of

the program code. Then, the productivity of the

Control group is higher than the DDD group in

every exercise excluding the first one as expected.

5.4 The Result Comparison of Students in DDD’s

Group

Fig 4 shows the result that compares DDD group

students with the other three batches. It illustrates

the evolution of the DDD model and the KSD. This

result shows that students who implemented the

DDD model in software projects tended to reduce

their defects. It is referenced from the downward

Table 2. Exercise result

Ex. Average size

(SD)

Average time used

(SD)

Average defects

(SD)

Batch 1 Batch 2 Batch 3 Batch 1 Batch 2 Batch 3 Batch 1 Batch 2 Batch 3

 A B A B A B A B A B A B A B A B A B

1 - - - - - -
113.57

(5.26)

134.82

(5.95)

145.40

(2.33)

148.36

(3.11)

94.79

(1.32)

114.11

(2.73)

4.29

(1.39)

6.82

(1.53)

6.40

(1.28)

6.55

(1.62)

7.05

(1.76)

6.00

(1.38)

2
93.43

(1.40)

110.64

(7.04)

111.10

(1.37)

111.09

(1.88)

112.00

(1.65)

112.26

(1.65)

152.14

(2.36)

158.64

(3.31)

204.30

(1.55)

207.09

(1.56)

146.32

(1.69)

166.79

(2.40)

6.00

(1.07)

5.36

(1.82)

6.40

(1.36)

5.27

(1.66)

5.42

(1.31)

4.89

(1.02)

3
112.86

(4.58)

118.91

(3.53)

120.40

(1.28)

120.45

(1.88)

119.26

(0.91)

119.05

(0.89)

129.86

(1.64)

138.18

(3.95)

195.20

(1.17)

212.91

(1.88)

115.68

(3.01)

155.16

(4.26)

6.57

(1.05)

6.45

(1.62)

5.90

(1.97)

5.55

(2.39)

6.95

(2.76)

5.00

(1.59)

4
97.14

(2.70)

105.09

(4.21)

107.80

(2.96)

107.91

(3.26)

110.47

(1.43)

108.58

(1.31)

115.29

(4.37)

123.36

(4.60)

226.20

(1.25)

236.09

(1.16)

146.63

(2.18)

161.32

(3.37)

5.29

(1.48)

4.91

(1.44)

5.80

(2.40)

4.82

(0.83)

6.58

(1.43)

4.26

(1.02)

5
137.71

(1.67)

136.73

(1.35)

140.50

(0.81)

140.27

(1.21)

140.32

(1.30)

139.68

(1.08)

107.43

(2.06)

122.82

(6.45)

163.29

(1.45)

190.09

(5.37)

130.89

(2.27)

147.26

(1.94)

5.43

(1.29)

5.18

(1.19)

6.14

(1.42)

5.55

(1.29)

5.74

(1.41)

5.05

(1.05)

6
310.00

(6.57)

312.64

(4.07)

316.20

(1.72)

315.73

(2.38)

321.89

(2.34)

321.11

(1.74)

167.14

(3.83)

174.36

(3.47)

204.60

(6.20)

227.45

(2.78)

185.05

(2.86)

211.21

(4.16)

12.00

(3.30)

12.73

(2.53)

16.00

(1.41)

15.00

(0.74)

13.37

(3.01)

11.74

(2.51)

International Journal of GEOMATE, Sept., 2019 Vol.17, Issue 61, pp. 149 - 155

154

trend of defect density value. While the yield%

tenor is increased similarly with the value of time

used.

Fig.4. The result comparison of students in DDD’s

group

5.5 The Statistics Significant Test by ANOVA

A one-way between groups ANOVA is

conducted to compare the groups for the value of

defect density. There is a significant different at the

p<.05 level [F (1, 28) = 4.883, p = 0.035] that shows

in Table 3.

Table 4 displays the result of ANOVA to

comparing the group for the value of yield%. It

shows that is a significant different at the p<.05

level [F (1, 16) = 5.199, p = 0.037].

6. CONCLUSION

Defect-Driven Development (DDD) is a novel

concept of the software development process which

utilizes the benefit of the Knowledge of Software

Defect (KSD), which collects defect data from

experienced practitioners, to proactively mitigate

defects in new software development. Novice

developers can learn from the expert knowledge and

thus effectively prevent defects, especially in the

early phase of software development.

The result of the experiment shows that students

who implemented the DDD concept injected

significantly fewer defects than others who applied

the general personal software processes. It can be

measured by two main indicators including, I)

defect density and II) yield%. However, the data

suggest that implementing DDD may result in

longer development time which is spent on extra

preventive activities. This causes the productivity of

DDD subjects to be slightly lower than traditional

implementation.

7. REFERENCES

[1] P. Letouze, J. I. M. de Souza, and V. M. Da

Silva, “Generating Software Engineers by

Developing Web Systems: A Project-Based

Learning Case Study,” 2016 IEEE 29th Int.

Conf. Softw. Eng. Educ. Train., pp. 194–203,

2016. http://doi.org/10.1109/CSEET.2016.11

[2] R. Chillarege et al., “Orthogonal Defect

Classification-A Concept for In-Process

Measurements,” IEEE Trans. Softw. Eng., vol.

18,no.11,1992.http://doi.org/10.1109/32.1773

64

[3] K. Beck, Test Driven Development: By

Example, 1st ed. Addison-Wesley Professional,

2002.

[4] K. Beck, Extreme Programming Explained:

Embrace Change. Addison-Wesley

Professional, 2004.

[5] L. Williams, E. M. Maximilien, and M. Vouk,

“Test-driven development as a defect-

Table 3. The result of ANOVA analysis for Defect Density

Source of Variation Sum of Squares Degree of freedom Mean Square F Sig.

Between Groups 766.538 1.000 766.538 4.883 0.035

Within Groups 4,395.079 28.000 156.967

Total 5,161.617 29.000

*note: Sig. = Significance

Table 4. The result of ANOVA analysis for Yield%

Source of Variation Sum of Squares Degree of freedom Mean Square F Sig.

Between Groups 991.643 1.000 991.643 5.199 0.037

Within Groups 3,051.804 16.000 190.738

Total 4,043.447 17.000

*Note: Sig. = Significance

International Journal of GEOMATE, Sept., 2019 Vol.17, Issue 61, pp. 149 - 155

155

reduction practice,” 14th Int. Symp. Softw.

Reliab. Eng. 2003. ISSRE 2003., pp. 1–12,

2003.

http://doi.org/10.1109/ISSRE.2003.1251029

[6] L. Crispin, “Driving software quality: How

test-driven development impacts software

quality,” IEEE Softw., vol. 23, no. 6, pp. 70–

71, 2006. http://doi.org/10.1109/MS.2006.157

[7] J. W. Wilkerson, J. F. Nunamaker, and R.

Mercer, “Comparing the defect reduction

benefits of code inspection and test-driven

development,” IEEE Trans. Softw. Eng., vol.

38, no. 3, pp. 547–560, 2012.

http://doi.org/10.1109/TSE.2011.46

[8] M. M. Müller and O. Hagner, “Experiment

about test-first programming,” IEE Proc. -

Softw., vol. 149, no. 5, p. 131, 2002.

http://doi.org/10.1049/ip-sen:20020540

[9] N. Li, Z. Li, and X. Sun, “Classification of

software defect detected by black-box testing:

An empirical study,” Proc. - 2010 2nd WRI

World Congr. Softw. Eng. WCSE 2010, vol. 2,

pp. 234–240, 2010.

http://doi.org/10.1109/WCSE.2010.28

[10] F. Zeng, A. Chen, and X. Tao, “Study on

software reliability design criteria based on

defect patterns,” Reliab. Maintainab. Safety,

2009. ICRMS 2009. 8th Int. Conf., pp. 723–

727,2009.http://doi.org/10.1109/ICRMS.2009.

5270095

[11] W. S. Humphrey, PSP(sm): A Self-

Improvement Process for Software Engineers,

1st ed. Addison-Wesley Professional, 2005.

[12] W. S. Humphrey, “The personal process in

software engineering,” in Proceedings of the

Third International Conference on the Software

Process. Applying the Software Process, 1994,

no. c, pp. 69–77.

http://doi.org/10.1109/SPCON.1994.344422

[13] G. Rong, H. Zhang, M. Xie, and D. Shao,

“Improving PSP education by pairing: An

empirical study,” Proc. - Int. Conf. Softw. Eng.,

pp. 1245–1254, 2012.

http://doi.org/10.1109/ICSE.2012.6227018

[14] W. Nachiengmai and S. Ramingwong,

“Implementing Personal Software Process in

Undergraduate Course to Improve Model-

View-Controller Software Construction,” in

Lecture Notes in Electrical Engineering, vol.

339, 2015, pp. 949–956. http://doi.org/

10.1007/978-3-662-46578-3_113

[15] W. Nachiengmai and S. Ramingwong,

“Improving Reliability of Defects Logging in

MVC-PSP,” in 2015 2nd International

Conference on Information Science and

Security (ICISS), 2015, pp. 1–4. http://doi.org/

10.1109/ICISSEC.2015.7371007

[16] S. Thisuk and S. Ramingwong, “WBPS: A new

web-based tool for Personal Software Process,”

in 2014 11th International Conference on

Electrical Engineering/Electronics, Computer,

Telecommunications and Information

Technology (ECTI-CON), 2014, pp. 1–6.

http://doi.org/

10.1109/ECTICon.2014.6839821

[17] C. Larman and V. R. Basili, “Iterative and

incremental developments. a brief history,”

Computer (Long. Beach. Calif)., vol. 36, no. 6,

pp. 47–56, Jun. 2003. http://doi.org/

10.1109/MC.2003.1204375

[18] D. Liu, S. Xu, and W. Du, “Case study on

incremental software development,” Proc. -

2011 9th Int. Conf. Softw. Eng. Res. Manag.

Appl. SERA 2011, pp. 227–234, 2011.

http://doi.org/ 10.1109/SERA.2011.43

[19] K. Schwaber and M. Beedle, Agile Software

Development with Scrum, 1st ed. Pearson,

2001.

[20] Y. Zhang and S. Patel, “Agile model-driven

development in practice,” IEEE Softw., vol. 28,

no. 2, pp. 84–91, 2011. http://doi.org/

10.1109/MS.2010.85

Copyright © Int. J. of GEOMATE. All rights reserved,

including the making of copies unless permission is

obtained from the copyright proprietors.

