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ABSTRACT: Moving average (MA) is one of the mathematical models that is often used to model data in various 

fields. Noise in the MA model is often assumed to be normally distributed. In application, it is often found that 

noise is exponentially distributed. The parameter of the MA model includes order, coefficient, and noise variance. 

This paper proposes a procedure to estimate the MA model parameter which contains noise with a normal and 

exponential distribution where the order is unknown. The estimation of parameters of the MA model parameter is 

carried out in a hierarchical Bayesian framework. Prior distribution for the parameter is selected. The likelihood 

function for data is combined with prior distribution for the parameter to get posterior distribution for the 

parameter. The parameter dimension is a combination of several different dimensional spaces so that the posterior 

distribution for a parameter has a complex form and the Bayes estimator cannot be determined explicitly. The 

reversible jump Markov Chain Monte Carlo (MCMC) method is proposed to determine the Bayes estimator of the 

MA model parameter. The performance of the method is tested using a simulation study. The simulation result 

shows that the reversible jump MCMC method estimates the MA model parameter well. The reversible jump 

MCMC method can calculate the MA model parameter simultaneously and produce an invertible MA model.   
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1. INTRODUCTION 

 

The autoregressive (AR) model is a time series 

model used to model data in different areas of life. 

The AR model with normally distributed noise has 

been extensively studied by various researchers. 

Also, the AR model with exponential noise has been 

investigated by various researchers. A genetic 

algorithm is used to estimate the exponential AR 

model [1]. An AR(1) model whose noise is 

exponentially distributed is studied in [2]. A robust 

Bayesian method is used to obtain the optimal Bayes 

estimator for AR models whose noise is exponentially 

distributed [3]. In the above studies, the order of the 

AR model is assumed to be known. An AR model 

whose error is exponential distributed but the model 

order is unknown is studied in [4].  

Moving average (MA) model is a time series 

model that is similar to the AR model. The MA model 

is also used to model data in different areas of life. An 

MA model is used as a continuous quality control 

analysis for routine chemical tests [5]. The MA 

procedure is optimized using the MA bias detection 

simulation procedure. An MA filter is used to 

accelerate the acceleration signal and determine the 

location of the damaged steel beam [6].  

In various studies, the noise in the MA model is 

often assumed to be normally distributed, for example 

[7]-[11]. While the noise of the MA model with 

exponential distribution has not been widely 

investigated by researchers. In the studies above, the 

order of the MA model is assumed to be known. But 

in the application of the MA model, the MA model 

order is unknown. 

Reversible jump Markov Chain Monte Carlo 

(MCMC) [12] has been applied in many areas 

including in signal processing and in time series data 

analysis. The reversible jump MCMC algorithm is 

used for model selection. The reversible jump 

MCMC algorithm is used to select a piecewise AR 

model that has a normally distributed noise [13]. The 

reversible jump MCMC is used for species selection 

[14]. The reversible jump MCMC is used for the 

selection of the number and locations of the pseudo 

points [15]. The reversible jump MCMC is used to 

select the instrument calibration model [16]. The 

reversible jump MCMC is used for the selection of 

variables in regression [17], [18]. The reversible jump 

MCMC is used to select non-linear models in the 

Volterra system [19]. The reversible jump MCMC is 

used to estimate AR model order [4]. 

This study proposes the reversible jump MCMC 

method to estimate MA model parameters where the 

order is unknown. This study discusses parameter 

estimation of MA models that have normal or 

exponential noise. The parameters of the MA model 

include the order of the MA model, MA model 

coefficient, and noise variance. 

 

2. METHOD  

 

The parameter estimation is done in a Bayesian 

framework. Bayesian estimation requires a prior 

distribution and likelihood function. The prior 
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distribution and likelihood function are combined to 

obtain a posterior distribution. Under the quadratic 

loss function, the Bayes estimator is obtained by 

calculating the mean of the posterior distribution. 

Because the posterior distribution has a complex form, 

the Bayes estimator cannot be determined 

analytically. An MCMC is used to determine the 

Bayes estimator by creating a Markov chain whose 

limit distribution is close to the posterior distribution. 

This Markov chain is used to determine the Bayes 

estimator. In this study, the order of the MA model is 

also a parameter that is estimated based on the data. 

This makes the dimensions of the Markov chain a 

combination of several different dimensioned spaces. 

So MCMC cannot be used directly. Therefore the 

reversible jump MCMC is used to solve the problem. 

The estimation procedure is shown in Figure 1 

 

 
Fig. 1 Estimation Procedure 

First, determining the likelihood function. Second, 

the selection of the prior distribution. Third, 

determining posterior distribution. The fourth 

determination of the Bayes estimator by using the 

reversible jump MCMC. 

 

3. RESULTS AND DISCUSSION 

 

The Bayesian method is used to estimate the 

parameters. Bayesian estimation requires a likelihood 

function and prior distribution.  

 

3.1 Likelihood Function  

 

Let 𝑥1, ⋯ , 𝑥𝑛 be n data following the MA model: 

𝑥𝑡 = ∑ 𝜃𝑗𝑧𝑡−𝑗 + 𝑧𝑡

𝑞

𝑗=1
 

(1) 

Here, q is model order, 𝑡 = 1,2, … , 𝑛  and 𝜃(𝑞) =

(𝜃1, … , 𝜃𝑞) is the coefficient vector. Table 1 shows 

the relationship between orders and the number of 

coefficients of the MA model. A relationship between 

order and coefficient of the MA model is illustrated 

in Table 1. 

 

Table 1: Relationship between order and 

coefficient of the MA model. 

Order q Coefficient 𝜃(𝑞) 

1 (𝜃1) 

2 (𝜃1, 𝜃2) 

3 (𝜃1, 𝜃2, 𝜃3) 
4 (𝜃1, 𝜃2, 𝜃3, 𝜃4) 

… … 

q (𝜃1, 𝜃2, 𝜃3, … , 𝜃𝑞) 
 

 

3.1.1 First case: exponential noise 

Random variable 𝑧𝑡 
is the independent variable and 

the exponential distribution with parameter 𝜆 . For 

example, for 𝑛 = 250 , 𝑞 = 2 , 𝜃1 = −1.34 , 𝜃2 =
0.36 , and  𝜆 = 2  then the value 𝑥𝑡  is presented in 

Figure 2. 

 
 Fig. 2 MA model data with exponential noise. 

The probability function 𝑧𝑡 is 

𝑓(𝑧𝑡|𝜆) = 𝜆𝑒𝑥𝑝 − 𝜆𝑧𝑡 (2) 

The variable transformation is used to transform from 

variable z do variable x. So 𝑧𝑡 = 𝑥𝑡 − ∑ 𝜃𝑗𝑧𝑡−𝑗
𝑞
𝑗=1  

and  
𝑑𝑧𝑡

𝑑𝑥𝑡
= 1.   

Therefore, the probability function of 𝑥𝑡 is 

𝑓(𝑥𝑡|𝜆) = 𝜆𝑒𝑥𝑝 − 𝜆 (𝑥𝑡 − ∑ 𝜃𝑗𝑧𝑡−𝑗

𝑞

𝑗=1
) 

(3) 

Suppose that 𝑥 = (𝑥𝑞+1, … , 𝑥𝑛). By taking 𝑧1 =

⋯ = 𝑧𝑞 = 0, the likelihood function of 𝑥1, ⋯ , 𝑥𝑛 

can be approximated by : 

𝐿(𝑥|𝑞, 𝜃(𝑞), 𝜆)  

= ∏ 𝑓(𝑥𝑡|𝜆)
𝑛

𝑡=𝑞+1
 

 

= 𝜆𝑛−𝑞𝑒𝑥𝑝 − 𝜆 ∑ (𝑥𝑡

𝑛

𝑡=𝑞+1

− ∑ 𝜃𝑗𝑧𝑡−𝑗

𝑞

𝑗=1
) 

(4) 

Let 𝐼𝑞  is the invertibility region and 𝜌(𝑞) =

Likelihood Function

Prior Distribution

Posterior Distribution

Reversible Jump MCMC

Bayes Estimation
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(𝜌1, … , 𝜌𝑞) is the sample inverse partial 

autocorrelation vector. By using the transformation 

𝐺: 𝜃(𝑞) ∈ 𝐼𝑞 → 𝜌(𝑞) ∈ (−1,1)𝑞 

An 𝑀𝐴 model with order q  is invertible if and only if  

𝜌(𝑞) ∈ (−1,1)𝑞 . Finally, the approximate likelihood 

function of x can be written by :  

𝐿(𝑥|𝑞, 𝜌(𝑞), 𝜆)  

= 𝜆𝑛−𝑞𝑒𝑥𝑝 − 𝜆 ∑ (𝑥𝑡

𝑛

𝑡=𝑞+1

− ∑ 𝐺−1(𝜌𝑗)𝑧𝑡−𝑗

𝑞

𝑗=1
) 

(5) 

where  𝐺−1  is the inverse transformation of the 

transformation G. 

 

3.1.2 Second case: normal noise 

The random variable 𝑧𝑡  is a mutually independent 

variable and is normally distributed with mean 0 and 

variance 𝜎2.  For example, if 𝑛 = 250, 𝑞 = 2, 𝜃1 =
−1.34, 𝜃2 = 0.36, and 𝜎2 = 2 then the value 𝑥𝑡  is 

presented in Figure 3. 

 
Fig. 3 MA model data with normal noise. 

The probability function of  𝑧𝑡 is 

𝑓(𝑧𝑡|𝜎2) =
1

√2𝜋𝜎2
𝑒𝑥𝑝 −

1

2𝜎2
𝑧𝑡

2 
(6) 

The variable transformation is used to transform from 

variable z do variable x. So 𝑧𝑡 = 𝑥𝑡 − ∑ 𝜃𝑗𝑧𝑡−𝑗
𝑞
𝑗=1  

and  
𝑑𝑧𝑡

𝑑𝑥𝑡
= 1.  Therefore, The probability function of 

𝑥𝑡 is 

𝑓(𝑥𝑡|𝜎2) =
1

√2𝜋𝜎2
𝑒𝑥𝑝 

                       −
1

2𝜎2
(𝑥𝑡 − ∑ 𝜃𝑗𝑧𝑡−𝑗

𝑞

𝑗=1
)

2

 

(7) 

Suppose that 𝑥 = (𝑥𝑞+1, … , 𝑥𝑛). By taking the values 

𝑧1 = ⋯ = 𝑧𝑞 = 0 , The likelihood function of 

𝑥1, ⋯ , 𝑥𝑛 can be approximated by: 

𝐿(𝑥|𝑞, 𝜃(𝑞), 𝜎2)  

= (2𝜋𝜎2)
𝑛−𝑞

2 exp      

     −
1

2𝜎2
∑ (𝑥𝑡 − ∑ 𝜃𝑗𝑧𝑡−𝑗

𝑞

𝑗=1
)

2𝑛

𝑡=𝑞+1
 

(8) 

 

3.2 Bayesian 

 

Before obtaining a posterior distribution, the 

prior distribution is selected.  

 

3.2.1 First case: exponential noise 

 

The prior distribution is taken as follows. The 

binomial distribution is chosen as the distribution for 

the order q  (𝑞 = 1, … , 𝑞𝑚𝑎𝑥) 

𝜋(𝑞|𝜇) = 𝐶𝑞
𝑞𝑚𝑎𝑥𝜇𝑞(1 − 𝜇)1−𝑞 (9) 

where 𝑞𝑚𝑎𝑥 is the maximum for q and 𝜇 (0 < 𝜇 < 1) 

is a hyperparameter. The uniform distribution is 

chosen as the distribution for the vector coefficient 

𝜌(𝑞) 

𝜋(𝜌(𝑞)|𝑞) = 𝑈(−1,1)𝑞 (10) 

Also, the Jeffrey distribution is selected as the 

distribution for parameter 𝜆 

𝜋(𝜆) ∝
1

𝜆
 

Then, the hyperprior distribution for 𝜇
 
 is a uniform 

distribution at an interval (0,1). 

Let 𝜋(𝑞, 𝜌(𝑞), 𝜆, 𝜇) be the prior distribution for  

(𝑞, 𝜌(𝑞), 𝜆, 𝜇). Because of the conditional distribution 

of the parameter (𝑞, 𝜌(𝑞), 𝜆)  is given the 

hyperparameter 𝜇 is 

𝜋(𝑞, 𝜌(𝑞), 𝜆|𝜇) =
𝜋(𝑞,𝜌(𝑞),𝜆,𝜇)

𝜋(𝜇)
, 

(11) 

The prior distribution for (𝑞, 𝜌(𝑞), 𝜆, 𝜇) can be written 

as: 

𝜋(𝑞, 𝜌(𝑞), 𝜆, 𝜇) = 𝜋(𝑞, 𝜌(𝑞), 𝜆|𝜇)𝜋(𝜇) (12) 

Let 𝜋(𝑞, 𝜌(𝑞), 𝜆, 𝜇|𝑥) be the posterior distribution 

for (𝑞, 𝜌(𝑞), 𝜆, 𝜇).  According to Bayes theorem, the 

posterior distribution for  (𝑞, 𝜌(𝑞), 𝜆, 𝜇)  is given as 

follows 

𝜋(𝑞, 𝜌(𝑞), 𝜆, 𝜇|𝑥) 

∝ 𝐿(𝑥|𝑞, 𝜌(𝑞), 𝜆)𝜋(𝑞, 𝜌(𝑞), 𝜆, 𝜇)
 

∝ 𝐿(𝑥|𝑞, 𝜌(𝑞), 𝜆)𝜋(𝑞, 𝜌(𝑞), 𝜆|𝜇)𝜋(𝜇) 

However, the Bayes estimator cannot be 

determined analytically because of the posterior 

distribution of the parameter (𝑞, 𝜌(𝑞), 𝜆, 𝜇)  has a 
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complex form. To solve this problem, the reversible 

jump MCMC algorithm is used. 

 

3.2.2 Second case: normal noise 

The distribution of priors for order q given 𝜇 is a 

binomial distribution. The prior distribution for the 

coefficient vector 𝜌(𝑞)  is a uniform distribution. 

Whereas the prior distribution for parameter 𝜎2 is an 

inverse gamma distribution with parameters 𝑎/2 and 

𝑏/2: 

𝜋(𝜎2|𝑎, 𝑏) =
(

𝑏
2

)

𝑎
2

Γ (
𝑎
2

)
(𝜎2)−(1+

𝑎
2

)𝑒𝑥𝑝 −
𝑏/2

𝜎2
 

(13) 

Here, a = 2 and the prior distribution for b is Jeffrey's 

distribution. Furthermore, the prior distribution for μ 

is a uniform distribution at the interval (0,1). 

Let 𝜋(𝑞, 𝜌(𝑞), 𝜎2, 𝜇, 𝑏) be a prior distribution for 

(𝑞, 𝜌(𝑞), 𝜎2, 𝜇, 𝑏).  A prior distribution for 

(𝑞, 𝜌(𝑞), 𝜆, 𝜇) can be written as follows: 

𝜋(𝑞, 𝜌(𝑞), 𝜎2, 𝜇, 𝑏)

= 𝜋(𝑞|𝜇)𝜋(𝜌(𝑞)|𝑞)𝜋(𝜎2|𝑏)𝜋(𝜇)𝜋(𝑏) 

(14) 

Let 𝜋(𝑞, 𝜌(𝑞), 𝜎2, 𝜇, 𝑏|𝑥)  be a posterior 

distribution for (𝑞, 𝜌(𝑞), 𝜎2, 𝜇, 𝑏).  According to the 

Bayes theorem, the posterior distribution for 

(𝑞, 𝜌(𝑞), 𝜎2, 𝜇, 𝑏) is given as follows:  

𝜋(𝑞, 𝜌(𝑞), 𝜎2, 𝜇, 𝑏|𝑥) 

∝ 𝐿(𝑥|𝑞, 𝜌(𝑞), 𝜎2)𝜋(𝑞, 𝜌(𝑞), 𝜎2, 𝜇, 𝑏)
 

∝ 𝐿(𝑥|𝑞, 𝜌(𝑞), 𝜎2) 

     𝜋(𝑞|𝜇)𝜋(𝜌(𝑞)|𝑞)𝜋(𝜎2|𝑏)𝜋(𝜇)𝜋(𝑏) 

Also, the Bayesian estimator cannot be 

determined analytically because of the posterior 

distribution of the parameters (𝑞, 𝜌(𝑞), 𝜎2, 𝜇, 𝑏) has a 

complex form. Like in exponential noise case, a 

reversible jump MCMC algorithm is used to solve 

this problem. 

 

3.3 Reversible Jump MCMC 

 

3.3.1 First case: exponential noise 

Suppose that 𝑀 = (𝑞, 𝜌(𝑞), 𝜆, 𝜇).  The MCMC 

method for simulating the distribution  

𝜋(𝑞, 𝜌(𝑞), 𝜆, 𝜇|𝑥) is a method that produces ergodic 

Markov chain 𝑀1, … , 𝑀𝑚  which has a stationary 

distribution 𝜋(𝑞, 𝜌(𝑞), 𝜆, 𝜇|𝑥).  The Markov chain 

𝑀1, … , 𝑀𝑚  which has a stationary distribution 

 𝜋(𝑞, 𝜌(𝑞), 𝜆, 𝜇|𝑥). Furthermore, Markov chain 

𝑀1, … , 𝑀𝑚  is used to estimate the parameter M. To 

realize this, the Gibbs algorithm is adopted. The 

simulation of distribution 𝜋(𝑞, 𝜌(𝑞), 𝜆, 𝜇|𝑥)  consists 

of three steps: First, simulate 𝜇~𝐵(𝑞 + 1, 𝑞𝑚𝑎𝑥 −
𝑞 + 1).  Second, simulate 𝜆~𝐺(𝛼, 𝛽) where 𝛼 = 𝑛 −

𝑞 + 1  and 𝛽 = (∑ (𝑥𝑡 −𝑛
𝑡=𝑞+1

∑ 𝐺−1(𝜌𝑗)𝑧𝑡−𝑗
𝑞
𝑗=1 ))

−1
. Third, simulate  𝜋(𝑞, 𝜌(𝑞)|𝑥). 

The distribution 𝜋(𝑞, 𝜌(𝑞)|𝑥)  has a complex for so 

that simulation of the distribution of 𝜋(𝑞, 𝜌(𝑞)|𝑥) 

cannot be done exactly. The value of q is unknown, 

the MCMC algorithm cannot be used to simulate the 

distribution  𝜋(𝑞, 𝜌(𝑞)|𝑥). Here, the reversible jump 

MCMC [12] is adopted. 

Let 𝜉 = (𝑞, 𝜌(𝑞))  be the actual point of the 

Markov chain. There are 3 types of transformation 

used: order birth, order death and, coefficient change. 

Next, let 𝑁𝑞 be the probability of transformation from 

q to q + 1, let 𝐷𝑞   be the probability of transformation 

from q + 1 to q, and let 𝐶𝑞  be the probability of 

transformation from q to q. 

The transformation of the birth of order will 

change the MA model coefficient, from q to q + 1. Let 

𝜉 = (𝑞, 𝜌(𝑞))  be the actual point and  𝜉∗ = (𝑞 +

1, 𝜌(𝑞+1))
 
is the new point. The birth of order from 

𝜉 = (𝑞, 𝜌(𝑞))  to 𝜉∗ = (𝑞 + 1, 𝜌∗(𝑞+1))  is defined in 

the following way.   Select random point 

𝑣 ~ 𝑈(−1,1) . Then, create a new point 𝜉∗ = (𝑞 +

1, 𝜌∗(𝑞+1))  with 𝜌(𝑞+1) = {𝜌1
∗ = 𝜌1. , … , 𝜌𝑞

∗ =

𝜌𝑞 , 𝜌𝑞+1
∗ = 𝑣} 

Conversely, the transformation of the death of 

order will change the MA model coefficient, from 

q+1 to q.  Let 𝜉 = (𝑞 + 1, 𝜌(𝑞+1)) be the actual point 

and 𝜉∗ = (𝑞, 𝜌∗(𝑞))  is the new point. The death of 

order from 𝜉 = (𝑞 + 1, 𝜌(𝑞+1))  to 𝜉∗ = (𝑞, 𝜌∗(𝑞))  is 

defined in the following way. Create a new point 

𝜉∗ = (𝑞, 𝜌(𝑞)) with 𝜌(𝑞) = {𝜌1
∗ = 𝜌1, … , 𝜌𝑞

∗ = 𝜌𝑞}. 

Suppose that 𝑃𝑛(𝜉, 𝜉∗)  and 𝑃𝑑(𝜉, 𝜉∗) are 

respective the acceptance probability for the birth of 

order and the acceptance probability for the death of 

order. The acceptance probability for the birth of 

order is as follows: 

𝑃𝑛(𝜉, 𝜉∗)

= 𝑚𝑖𝑛 {1,
(𝛽∗)𝑛−𝑞

𝛽𝑛−𝑞+1

1

𝑛 − 𝑞

𝑞 + 1

𝑞𝑚𝑎𝑥 − 𝑞
} 

(15) 

The acceptance probability for the death of order 

is as follows: 

𝑃𝑑(𝜉, 𝜉∗) 

= 𝑚𝑖𝑛 {1,
(𝛽∗)𝑛−𝑞+1

𝛽𝑛−𝑞
(𝑛 − 𝑞)

𝑞𝑚𝑎𝑥 − 𝑞

𝑞 + 1
} 

(16) 

Transformation of the change of the coefficient 

will not change the order. This transformation only 

will change the MA coefficient. Let  𝜉 = (𝑞, 𝜌(𝑞)) be 
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the actual point and 𝜉∗ = (𝑞, 𝜌∗(𝑞)) is the new point. 

The change of coefficient from 𝜉 = (𝑞, 𝜌(𝑞)) to 𝜉∗ =

(𝑞, 𝜌∗(𝑞)) is defined in the following way. Select an 

index randomly  𝑗 ∈ {1, … , 𝑞} , and select a point 

randomly 𝑢 ~ 𝑈(−1,1) . Then a new point 𝜉∗ =

(𝑞, 𝜌∗(𝑞))  is created with 𝜌∗(𝑞) = {𝜌1
∗ =

𝜌1, … , 𝜌𝑗−1
∗ = 𝜌𝑗−1, 𝜌𝑗

∗ = 𝑢, 𝜌𝑗+1
∗ = 𝜌𝐽+1  … , 𝜌𝑞

∗ =

𝜌𝑞}.  Let 𝑃𝑐(𝜉, 𝜉∗)  be the acceptance probability for 

the change of coefficient. The acceptance probability 

for the change of coefficient is as follows: 

𝑃𝑐(𝜉, 𝜉∗) = 𝑚𝑖𝑛 {1, (
𝛽∗

𝛽
)

𝛼

} 
(17) 

 

3.3.2 Second case: normal noise 

Let 𝑁 = (𝑞, 𝜌(𝑞), 𝜎2, 𝜇, 𝑏) be the actual point of 

the Markov chain. The MCMC method for simulating 

the distribution 𝜋(𝑞, 𝜌(𝑞), 𝜎2, 𝜇, 𝑏|𝑥) is a method that 

produces ergodic Markov chain 𝑁1, … , 𝑁𝑚 which has 

a stationary distribution 𝜋(𝑞, 𝜌(𝑞), 𝜎2, 𝜇, 𝑏|𝑥).  The 

Markov chain 𝑁1, … , 𝑁𝑚  can be considered as a 

random variable having a distribution 

 𝜋(𝑞, 𝜌(𝑞), 𝜎2, 𝜇, 𝑏|𝑥).  Furthermore, Markov chain 

𝑁1, … , 𝑁𝑚  is used to estimate the parameter N. To 

realize this,  the Gibbs algorithm is adopted. The 

simulation of distribution 𝜋(𝑞, 𝜌(𝑞), 𝜎2, 𝜇, 𝑏|𝑥) 

consists of 4 steps: First, simulate 𝜇~𝐵(𝑞 +

1, 𝑞𝑚𝑎𝑥 − 𝑞 + 1) . Second, simulate 𝑏~𝐺(
𝛼

2
,

1

2𝜎2) . 

Third, simulate  𝜎2~𝐺(𝛾, 𝛿)  where 𝛾 =
𝑛−𝑝𝑚𝑎𝑥

2
 

and 𝛿 =
𝛽

2
+

1

2
∑ (𝑥𝑡 − ∑ 𝐺−1(𝜌𝑗)𝑧𝑡−𝑗

𝑞
𝑗=1 )

2
.𝑛

𝑡=𝑝𝑚𝑎𝑥+1  

Fourth, simulate 𝜋(𝑞, 𝜌(𝑞)|𝑥) . The distribution 

𝜋(𝑞, 𝜌(𝑞)|𝑥) has a complex form so that simulation of 

the distribution of 𝜋(𝑞, 𝜌(𝑞)|𝑥)  cannot be done 

exactly. Since the value of q is unknown, the MCMC 

algorithm cannot be used to simulate the 

distribution  𝜋(𝑞, 𝜌(𝑞)|𝑥). Here, the reversible jump 

MCMC algorithm  (Green, 1995) is adopted. 

Let 𝜉 = (𝑞, 𝜌(𝑞))  be the actual point of the 

Markov chain. There are 3 types of transformation 

used: order birth, order death and order change. Next, 

let 𝑁𝑞  be the probability of transformation from q to 

q + 1, let 𝐷𝑞  be the probability of transformation from 

q + 1 to q, and let 𝐶𝑞  be the probability of the 

transformation from q to q. 

The transformation of the birth of order will 

change the MA model coefficient, from q to q + 1. Let 

𝜉 = (𝑞, 𝜌(𝑞))  be the actual point and  𝜉∗ = (𝑞 +

1, 𝜌(𝑞+1))
 
is the new point. The birth of order from 

𝜉 = (𝑞, 𝜌(𝑞))  to 𝜉∗ = (𝑞 + 1, 𝜌∗(𝑞+1))  is defined in 

the following way.   Select random point 𝑣 ~ 𝑔(𝜈) 

where 

 

𝑔(𝜈) = {𝜈 + 1 −1 < 𝜈 < 0
1 − 𝜈 0 < 𝜈 < 1

 
(18) 

Then, create a new point 𝜉∗ = (𝑞 + 1, 𝜌∗(𝑞+1)) with 

𝜌(𝑞+1) = {𝜌1
∗ = 𝜌1. , … , 𝜌𝑞

∗ = 𝜌𝑞 , 𝜌𝑞+1
∗ = 𝑣}. 

Conversely, the transformation of the death of 

order will change the MA coefficient, from q+1 to q.  

Let 𝜉 = (𝑞 + 1, 𝜌(𝑞+1)) be the actual point and 𝜉∗ =

(𝑞, 𝜌∗(𝑞)) is the new point. The death of order from 

𝜉 = (𝑞 + 1, 𝜌(𝑞+1))  to 𝜉∗ = (𝑞, 𝜌∗(𝑞))  is defined in 

the following way. Create a new 𝜉∗ = (𝑞, 𝜌(𝑞)) with 

𝜌(𝑞) = {𝜌1
∗ = 𝜌1, … , 𝜌𝑞

∗ = 𝜌𝑞} . Suppose that 

𝑃𝑛(𝜉, 𝜉∗) and 𝑃𝑑(𝜉, 𝜉∗) are respective the acceptance 

probability for the birth of order and the acceptance 

probability for the death of order. The acceptance 

probability for the birth of order is as follows: 

𝑃𝑛(𝜉, 𝜉∗)

= 𝑚𝑖𝑛 {1, (
𝛿∗

𝛿
)

−𝛾 𝑞𝑚𝑎𝑥−𝑞

𝑞 + 1

𝜇

1 − 𝜇

1

2
} 

(19) 

The acceptance probability for the death of order is as 

follows: 

𝑃𝑑(𝜉, 𝜉∗)

= 𝑚𝑖𝑛 {1, (
𝛿∗

𝛿
)

−𝛾 𝑞 + 1

𝑞𝑚𝑎𝑥 − 𝑞

1 − 𝜇

𝜇
2} 

(20) 

Transformation of the change of the coefficient 

will not change the order. This transformation only 

will change the MA coefficient. Let 𝜉 = (𝑞, 𝜌(𝑞)) be 

the actual point and 𝜉∗ = (𝑞, 𝜌∗(𝑞)) is a new point. 

The change of coefficient from 𝜉 = (𝑞, 𝜌(𝑞)) to 𝜉∗ =

(𝑞, 𝜌∗(𝑞)) is defined in the following way. Select an 

index randomly 𝑗 ∈ {1, … , 𝑞} , and select a point 

𝑢𝑖  ~𝑓(𝑢𝑖) where 

𝑓(𝑢𝑖|𝜌𝑖) =
5

𝜋√1 − 𝑢𝑖

 
(21) 

for 𝑢𝑖 ∈ (sin (𝜌𝑖 −
𝜋

10
) , sin (𝜌𝑖 +

𝜋

10
)). The new 

point 𝜉∗ = (𝑞, 𝜌∗(𝑞))  is created with 𝜌∗(𝑞) = {𝜌1
∗ =

𝜌1, … , 𝜌𝑗−1
∗ = 𝜌𝑗−1, 𝜌𝑗

∗ = 𝑢, 𝜌𝑗+1
∗ = 𝜌𝐽+1  … , 𝜌𝑞

∗ =

𝜌𝑞}. Let 𝑃𝑐(𝜉, 𝜉∗)  be the acceptance probability for 

the change of coefficient. The acceptance probability 

for the change of coefficient is as follows: 

𝑃𝑐(𝜉, 𝜉∗)

= 𝑚𝑖𝑛 {1, (
𝛿∗

𝛿
)

−𝛾

(
1 − 𝜌𝑖

1 + 𝑢𝑖

1 + 𝜌𝑖

1 − 𝑢𝑖

)
1/2

} 

(22) 
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3.4 Simulation 

Simulation studies were carried out to determine 

the performance of the reversible jump MCMC 

algorithm in estimating the parameters of the MA 

model. Table 2 presents the parameter values of the 

MA model. The MA model order is 3. The error is 

assumed to have a normal distribution with mean 0 

and variance 2. 

Table 2: Parameter values of the MA model 

𝑞 𝜃(𝑞) 𝜎2 

3 (0.5348, -0.0391, -0.7460) 2 

Two hundred and fifty synthesis data is made using 

Eq. (1). The synthesis data is presented in Figure 4. 

 
Fig. 4 Data synthesis 

Then, synthesis data is used as input for the reversible 

jump MCMC algorithm to estimate the parameters of 

the MA model. The algorithm is run in 50000 

iterations with 10000 iterations of a burn-in period. 

The output algorithm is as follows. The order 

histogram is presented in Figure 5. 

 
Fig. 5 Histogram of order q 

From Figure 5, it can be seen that the third order 

reaches the highest frequency. This shows that the 

estimated MA model order is 3. Based on the MA 

model (3), then the MA model coefficients and error 

variance are estimated. The results of the MA model 

parameter estimation are presented in Table 3. 

Table 3: Value of parameter estimation of MA 

model 

𝑞̂ 𝜃𝑞̂ 𝜎̂2 

3 (0.5306, -0.0177, -0.7251) 2.2014 

The estimator of the parameters in Table 3 

approaches the true value of the parameter in Table 2. 

This shows that the reversible jump MCMC 

algorithm can properly estimate the parameters of the 

MA model. This algorithm can be used to estimate the 

MA model even though the order is unknown. The 

algorithm produces an invertible MA model. 

 

4. CONCLUSION 

 

This study discusses a new method for 

estimating the parameters of the MA model that is 

normal and exponential if the order is unknown. The 

reversible jump MCMC algorithm is an alternative 

method that can be used to estimate the parameters of 

the MA model even though the order is unknown. The 

advantage of this method is that both the order and 

coefficients of the MA model can be estimated 

simultaneously. Also, the MA model produced is the 

MA model that verifies invertibility region. 
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