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ABSTRACT: Corrosion is a very complicated phenomenon in the field of science and engineering. Over the 
years, several numerical models have been developed to predict the damage caused by the corrosion process. 
The use of the artificial neural network in modeling corrosion has gained popularity in recent years. Many of 
the factors affecting corrosion are difficult to control. Thus, the artificial neural network may be a better 
technique to consider due to its ability to tolerate relatively imprecise, noisy or incomplete data, less 
vulnerability to outliers, filtering capacity and adaptability. This study aims to generate a corrosion current 
density prediction model using the artificial neural network approach. Microcell corrosion current density is 
defined as the rate of corrosion expressed in electric current per unit area of cross-section. Several variables 
were considered as input variables namely: age, water to cement ratio, cement content, compressive strength, 
type of mixing water, corrosion potential, solution resistance, and polarization resistance. These variables were 
entered into the neural network architecture and simulated in MATLAB. The feedforward backpropagation 
technique was used to generate the best model for the corrosion current density. The best neural network 
architecture consists of 8 input variable, 8 neurons in the hidden layer and one output variable. The resulting 
neural network model satisfactorily predicted the corrosion current density with a coefficient of correlation 
values of 0.96536, 0.80817, and 0.7662 for training, validation and testing phases, respectively. 
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1. INTRODUCTION 
 

Concrete is probably the most widely used 
building material in the world. It is a composite 
material made of cement, aggregates, water, and 
some admixtures. The durability of concrete may be 
compromised through processes like alkali-
aggregate reaction, sulfate attacks, freeze-thaw 
cycles, and corrosion, among others. Among all 
these, corrosion of the reinforcing steel in concrete 
has become a great concern as this may result in 
sudden failure of structures. Thus, developments in 
the design, construction, and maintenance of 
concrete structures are encouraged to mitigate huge 
economic, social, health, safety, and environmental 
impacts.  

Corrosion of steel is one of the main causes of 
failure in concrete structures. Theoretical and 
empirical models help determine its behavior over 
time and therefore engineers can decide on 
maintenance and repairs needed to prolong the 
service life of a structure. Moreover, it is a very 
complicated phenomenon in the field of science and 
engineering. Over the years, several numerical 
models have been developed to predict the damage 
caused by the corrosion process. Numerical 
methods can be classified as deterministic and 
probabilistic. Deterministic models helped to 

understand the mechanisms of localized corrosion 
but were not really practical for actual prediction [1]. 
On the other hand, probabilistic (stochastic) 
approaches presented high-level statistics and other 
mathematical methods in processing field data and 
were found to predict local corrosion phenomena 
successfully [1]. Examples of modeling techniques 
are the multiple linear regression, finite element 
method (FEM), Bayesian updating and artificial 
neural network (ANN). 

FEM has been applied in previous studies [2], 
[3] [4], [5] and [6]; while a  Bayesian updating 
approach of an existing steel loss model based on 
monitored data was proposed in [7].  

The use of ANN in modeling corrosion has 
gained popularity in recent years. The technique can 
be applied to complex problems and is independent 
of the physical processes involved but rather the 
relationships present in a set of data [8]. Many of 
the factors affecting corrosion are difficult to 
control. Thus, ANN may be a better technique to 
consider due to its ability to tolerate relatively 
imprecise, noisy or incomplete data, less 
vulnerability to outliers, filtering capacity and 
adaptability. 

Therefore, a model that can predict such 
corrosion behavior of steel reinforcement will help 
design engineers in developing better design 
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practices for corrosion management, i.e., repair and 
rehabilitation procedures, thus extending the 
service life of structures and saving costs. Modeling 
is a useful tool in the quantitative understanding of 
key elements in concrete and their interactions. This 
can be accomplished by considering time-
dependency of transport properties of concrete, 
repair or replacement of concrete cover, corrosion 
propagation, chloride penetration mechanisms other 
than diffusion, structure geometry, environmental 
humidity and temperature fluctuations and decay of 
structures under combined physical, chemical and 
mechanical deterioration processes as summarized 
by [9]. Therefore, improvements on existing models 
can be made to better simulate the corrosion 
behavior of reinforced concrete structures, 
especially those mixed with non-conventional 
materials like seawater and fly ash. Additionally, 
their performance in the chloride-laden 
environment through time can be assessed. 

Corrosion may occur as either microcell or 
macrocell. Microcell corrosion is characterized by 
continuous and uniform corrosion along the steel 
bar while macrocell is often local, particularly for 
chloride-induced corrosion [10]. Microcell 
corrosion of reinforcements must normally co-exist 
with that of macrocell [11, 12].  In microcell 
corrosion, the anode and cathode are located 
adjacent to each other resulting to a uniform iron 
dissolution over the whole surface [13]. This type 
of corrosion produces uniform removal of steel and 
contains anodic and cathodic sites that are 
microscopic in size [14]. Microcell corrosion is the 
major corrosion mechanism for steel in concrete 
after more than 3 years of testing [15]. This type of 
corrosion is normally present in laboratory tests on 
small samples of reinforced concrete [11]. This type 
of corrosion produces accumulated rust in a 
relatively small region on the bar surface [2].  

This study aims to generate a microcell 
corrosion current density prediction model using 
the ANN approach. Corrosion current density is 
defined as the rate of corrosion expressed in electric 
current per unit area of cross-section. It can be 
obtained from polarization resistance 
measurements of a steel bar. Referring to Fig. 1, the 
microcell corrosion current density for steel 
element is given by Eq. (1). 

 

   
i

i Rp
Kb =                     (1) 

Where: bi = microcell corrosion current density 
of steel element i (A/cm2); Rpi = polarization 
resistance of steel component i (ohm･cm2), and K = 
0.0209 (V).  

 

 
Fig. 1 Microcell corrosion measurement [16] 
 
Several factors such as age, concrete cover, 

surface chloride content, water to cement ratio, 
carbonation depth, moisture content, cement 
content,  compressive strength, and solution pH 
were considered as input variables in previous 
research. In this study, the factors used as input 
variables were:  age, water to cement ratio, cement 
content, compressive strength, type of mixing water, 
corrosion potential, solution resistance, and 
polarization resistance.  

This paper is organized as follows: The 
introduction is followed by some literature on ANN 
modeling of corrosion; followed by the 
methodology highlighting the data collection, 
identification of the input and output variables, and 
building the ANN models;  and then results and 
discussion; finally, conclusions of the research are 
presented. 

 
2. ANN MODELLING FOR CORROSION 
 

With the development of new technology and 
computer software, mathematical modeling and 
computation became easier and faster. In this 
proposed study, regression and artificial neural 
network (ANN) modeling are the initial modeling 
techniques being considered. 

ANNs mimic the learning process of the human 
brain.  They generalize mathematical models by 
processing information at elements called neurons. 
Signals are passed between neurons over 
connections links. A weight is assigned to each link 
which multiplies the signal transmitted. The output 
is obtained by applying an activation function to the 
net input. A neural network is characterized by its 
architecture, training or learning algorithm and 
activation function. Network architecture is the 
arrangement of neurons into layers and the 
connection patterns within and between layers. 
Neural networks are further classified as single or 
multilayer and are therefore feedforward networks.  
Training is the method for setting the values of the 
weights. An activation function is applied to the 
sum of the weighted input signal. Typical activation 
functions are a unit step, linear, sigmoid and 
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hyperbolic tangent. Neural networks are used to 
find the solutions to constrained optimization 
problems and can be applied for storing, recalling 
classifying and mapping data or patterns  [16]. 

Some ANN models related to measuring steel 
corrosion in concrete are found in [8], [17], [18], 
[19], [20] and [21]. 
 
3. METHODOLOGY 
 
3.1 Data Collection and Identification of Input 
Variables  

 
Input data were obtained from the experimental 

quantities and equipment test results in [22]. 
Rectangular mortar prism specimens (40 mm x 40 
mm x 160 mm) with steel reinforcements of 10 mm 
in diameter and 100 mm length were cast. Ordinary 
Portland cement (OPC) was the main binder used 
and replaced with fly ash. The fly ash content in the 
specimens was varied from 0% to 50% at 10% 
interval, while the water to cement (w/c) ratios were 
held at 0.35, 0.40, 0.45, 0.55, 0.65.  

A 5 mm cover was applied from the top surface 
of the prism specimen. Insulated copper wires were 
soldered at both ends of the steel and then covered 
with epoxy. These wires were necessary for the 
corrosion monitoring equipment (CT-7) in 
measuring the potential and polarization resistance.  

In this study, several input variables as used in 
the previous literature were considered in 
determining the best ANN model. A total of eight 
(8) input variables were entered namely: age (days), 
w/c, cement content (%), compressive strength 
(MPa), type of mixing water (freshwater or 
seawater), corrosion potential (mV), solution 
resistance (Ω) and polarization resistance (Ω). The 
corrosion potential, solution resistance, and 
polarization resistance were measured from the 
corrosion monitoring equipment. On the other hand, 
the output variable is the microcell corrosion 
current density defined as the rate of corrosion 
expressed in electric current per unit area of cross-
section. 

 
3.2 Structuring the ANN Models 
 

The Neural Network Toolbox in MATLAB 
R2018a was used in constructing the ANN 
corrosion current density model estimation. Data 
were divided into three sets: 60% for training the 
neural network, 20% for validation and 20% for 
testing. These sets were randomly selected in 
MATLAB. The feedforward backpropagation 
technique was used to generate the best model.  This 
algorithm gradually reduces the error between the 
model output and the target output by minimizing 
the mean square error (MSE) over a set of training 
set [23]. The MSE is a good overall measure of the 

success of the training process [24], [25]. The 
weights and a bias value, on the other hand, were 
updated according to the Levenberg-Marquardt 
network training function. This is often the fastest 
backpropagation algorithm and highly 
recommended, though it requires more memory that 
other algorithms [26]. A two-layer feed-forward 
network with sigmoid hidden neurons and linear 
output neurons was used. This can fit multi-
dimensional mapping problems arbitrarily well, 
given consistent data and enough neurons in its 
hidden layer [26]. 
 

3.3 Trial ANN Model Architectures 
 

The best ANN model to estimate the microcell 
corrosion current density was determined by 
defining the number of neurons (nodes) in the input 
and output layers, a number of hidden layers and the 
number of neurons in each hidden layer.  The model 
generated utilized the 8 input variables. There is no 
specific rule in determining the number of hidden 
layers and the number of neurons in each hidden 
layer [27]. In this study, one hidden layer was used 
and the following rules were employed to determine 
the optimum number of neurons:  (a) a network with 
n-input and m-output units requires a hidden layer 
with at most 2n+1 units, (b) should be between the 
average and the sum of nodes on the input and 
output layers; (c) seventy-five percent (75%) of the 
input nodes [28].  Thus, the simulation was done in 
the range of 5-17 neurons in the hidden layer. 

 
4. RESULTS AND DISCUSSION  
 

After several simulations, ANN Structure 8-8-1 
(8-input variables, 8-nodes in the hidden layer, 1-
output) was found to be the best model to estimate 
the microcell corrosion current density.  Figure 2 
shows the ANN Structure 8-8-1. ANN Structure 8-
8-8 obtained a satisfactorily acceptable correlation 
coefficient, R, values of 0.96536, 0.80817, and 
0.7662 for training, validation and testing phases, 
respectively. A correlation coefficient of 0.85983 
was achieved considering all data points. Figure 3 
presents the regression line while Fig. 4 shows the 
training performance for ANN Structure 8-8-1.  

The resulting MSEs for each phase are seen in 
Table 1.  

 
Table 1 MSE for different training phases 
 

Phase Samples MSE 
Training 85 0.0062789 

Validation 28 0.0471508 
Testing 28 0.1299260 
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Fig. 2 ANN structure 8-8-1 
 
 

 
 
Fig. 3 Regression lines for ANN structure 8-8-1 
 
 

 
 
Fig. 4 Training performance of ANN structure    
8-8-1 

 
5. CONCLUSION 
 

This paper presents an artificial neural network 
model for estimating the microcell current density 
of steel in mortar mixed with seawater. This value 
is necessary for computing the corrosion rate of 
steel, which is one of the main causes of failure in 
structures. Several input variables were considered 

in constructing the ANN model namely: age, water 
to cement ratio, cement content, compressive 
strength, type of mixing water, corrosion potential, 
solution resistance, and polarization resistance. 

From several trials, ANN Structure 8-8-1 was 
chosen as the best architecture having the highest 
correlation coefficient values of 0.96536, 0.80817, 
and 0.7662 for training, validation and testing 
phases, respectively, in a range of 5-17 neurons in 
the hidden layer. The resulting MSE in the training 
phase is 0.0062789. The best validation 
performance is 0.047151 and occurred at epoch 13. 
The test set and validation set errors to have 
relatively similar characteristics. 

Finally, it can be concluded that the neural 
network technique provided good predicting ability 
despite the non-uniform distribution and 
incompleteness of the data set. Expanded data set 
may improve the results. Sensitivity analysis and 
relative importance of the input variables can be 
conducted to enhance the reliability and validity of 
the results.  
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