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ABSTRACT: Ceramic waste aggregates (CWAs) were made from electric porcelain insulator wastes 
supplied from an electric power company, which were crushed and ground to fine aggregate sizes. The CWA 
mortar as an eco-efficient has been investigated containing ground granulated blast-furnace slag (GGBS). 
The water-to-binder ratio (W/B) of the CWA mortars was varied at 0.4, 0.5, and 0.6. The GGBS, which 
enhances the chloride ingress resistance, was utilized as a supplementary cementitious material. The CWA 
mortars partially replaced by the GGBS at 20% and 40% were immersed into a 5% NaCl solution for 48 and 
96 weeks. The chloride diffusion and the pore size distribution were assessed by using an electron probe 
microanalysis (EPMA) and a mercury intrusion porosimetry at each immersion time. The resistance to the 
chloride ingress of the CWA mortar was effective in proportion to the GGBS replacement level. The 
changing of the apparent chloride diffusion coefficients except for the CWA without the GGBS at the W/B of 
0.6 was small along the immersion time. Moreover, the apparent chloride diffusion coefficient was well 
related to the cumulative pore volume less than 0.1 µm of pore diameter.  
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1. INTRODUCTION 
 

Ceramic wastes discarded worldwide from 
ceramic industries, demolition/construction sites, 
electric power companies, and railway companies 
are one of the materials possibly recyclable as 
aggregates and/or pozzolans. The utilization of the 
ceramic wastes has been investigated by many 
researchers [1]-[15]. In the existing literature [2], 
[3], [9], [10], however, there is a shortage on the 
utilization of ceramic waste aggregates (CWAs) 
recycled from the electric porcelain insulators. 
They have reported that the CWAs in 
concrete/mortar showed no negative influence on 
mechanical and permeation properties. The authors 
have also showed on the compressive strength and 
the resistance to chloride ingress on the CWA 
mortars [16]-[18]. The CWA mortar reduces the 
chloride ion penetration when compared with river 
sand mortar. In the aggressive environment, 
however, the chloride resistance of the CWA 
mortar is still lower.  

It is well-known that a mineral admixture of 
ground granulated blast-furnace slag (GGBS) with 
partial replacement is advantage in the resistance 
to aggressive chemical action. To enhance the 
chloride resistance of the CWA mortars, the 
authors have studied on the CWA mortars 
containing GGBS [19], [20]. In the previous study 
[19], the chloride ingress tests were performed on 
the CWA mortars, which have the water-to-binder 

ratio (W/B) of only 0.5, partially replaced with the 
GGBS at 15, 30, and 45% by mass. The GGBS 
significantly decreased the chloride ion penetration 
and the changing of the apparent chloride diffusion 
coefficients were relatively small along the 
immersion time up to 96 weeks. 

The CWA mortars with further wide range of 
W/B, i.e., 0.4, 0.5, and 0.6 partially replaced with 
the GGBS at 20 and 40% by volume were 
investigated. The mechanical properties and the 
chloride diffusion at 48 weeks immersion in a 5% 
NaCl solution have been presented in [20]. In the 
present study, the chloride diffusion and the pore 
size distribution at 96 weeks immersion were 
reported including the results at 48 weeks 
immersion shown in [20]. 
 
2. EXPERIMENTAL PROGRAMS 
 
2.1 Materials and Mixture Proportions 
 

Electric porcelain insulators were recycled to 
CWAs at a recycle plant of The Kanden L&A Co., 
Ltd., Japan via the processes of crushing and 
grinding. After obtaining the blunt edge CWAs 
through these processes, the particle size ranging 
from 0.075 to 5.0 mm by sieving was used as fine 
aggregate. The specific gravity was 2.40. The 
cement was ordinary Portland cement (OPC) with 
the specific gravity of 3.15 and the specific surface 
area in Blaine of 3360 cm2/g. The GGBS supplied 
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from a slag cement company was used with the 
specific gravity of 2.91 and the specific surface 
area in Blaine of 6230 cm2/g. The chemical and 
physical properties of these materials are given in 
Table 1. 

The mixture proportions of CWA mortars were 
designed by volume as presented in Table 2. The 
W/B was almost 0.4, 0.5, and 0.6 and the cement 
was replaced by the GGBS at 20 and 40% by 
volume. 
 

Table 1 Chemical and physical properties 
 

Properties OPC GGBS CWA 

Chemical compositions (wt.%) 
SiO2 20.68 33.80 70.90 
Al2O3  5.28 15.00 21.10 
Fe2O3 2.91 0.27 0.81 
CaO 64.25 43.10 0.76 
MgO 1.40 5.63 0.24 
SO3 2.10 – – 
Na2O 0.28 0.28 1.47 
K2O 0.40 0.31 3.57 
TiO2 0.28 0.52 0.33 
P2O5 0.25 – – 
MnO 0.09 0.20 – 
SrO 0.06 – – 
S – 0.77 – 
Cl 0.015 0.004 – 
Loss on ignition 1.80 0.05 – 
Specific gravity 3.15 2.91 2.40 
Specific surface area 
(cm2/g) 3360 6.230 – 

 
 

Table 2 Mixture proportions 
 

Mixture W/B 
(%) 

Water 
(kg/m3) 

Cement 
(kg/m3) 

CWA 
(kg/m3) 

GGBS 
(kg/m3) 

CWA40-0 40.0 303 758 1095 0 

CWA40-20 40.6 303 607 1095 140 

CWA40-40 41.2 303 455 1095 280 

CWA50-0 50.0 303 606 1211 0 

CWA50-20 50.8 303 485 1211 112 

CWA50-40 51.5 303 364 1211 224 

CWA60-0 60.0 303 505 1288 0 

CWA60-20 60.8 303 404 1288 94 

CWA60-40 61.8 303 303 1288 187 

 
 
2.2 Specimens 
 

For all mixtures, the CWA mortars were 
prepared in a Hobart mixer of 5 L capacity. The 
mixing process started with the blending of the 
OPC, GGBS and CWA for 1 min and was 
followed the addition of water and further mixing 

for 3 min. Cylindrical specimens of 100 mm 
diameter and 200 mm height were prepared for a 
chloride ingress test at 48 and 96 weeks immersion 
(one specimen at each time) which were employed 
in an electron probe microanalysis (EPMA). After 
casting, all specimens were covered with a plastic 
waterproof sheet for 24 h. Subsequently, they were 
demouled and cured in a water tank at 20±2℃. 
 
2.3 Test Methods 
 
2.3.1 Chloride Ingress 
 

At the age of 7 days, the specimens were cut 
down from 200 mm to 150 mm height with 50 mm 
top end discarded to eliminate the influence of 
segregation. After the specimens were allowed to 
dry in a laboratory condition at 20±2℃ for 24 h, 
they were epoxy coated leaving only one sawn 
surface free of coating and were kept for additional 
24 h to cure the epoxy resin. Then, they were fully 
immersed in a 5% NaCl solution in hermetic tanks 
at 20± 2℃  for 48 and 96 weeks. The NaCl 
solution was changed at each 3 months interval. 
 
2.3.2 EPMA 
 

After the immersion was completed, one 
specimen for each mixture was followed with the 
EPMA. The specimens were cut into 25 mm width 
and 60 mm length. By using the JEOL JXA-8200 
instrument, the resized specimens were scanned to 
identify the amount of chloride ion at tiny single 
spot throughout its surface. The measurement 
conditions were an accelerating voltage of 15 kV, 
a beam current of 0.2 µA, a pixel size of 200 µm, a 
probe diameter of 150 µm, and the number of 
mapping points of 400 × 400 pixels. Subsequently, 
the chloride concentration profiles were obtained. 
The chloride concentration was averaged in the 
paste part along the same penetration depth at 0.2 
mm intervals. 
 
2.3.3 Pore Size Distribution 
 

By using the same CWA mortars of the EPMA, 
the test pieces with 2.5 to 5.0 mm size were 
obtained from the center of cylindrical specimen 
by crushing. The samples of 30 g were collected 
from them and were vacuum-dried for 24 h. The 
pore size distribution test was performed using a 
mercury intrusion porosimetry (Poremaster 60GT, 
Quantachrime). For each mortar, the sample of the 
pore size distribution ranging from 0.007 to about 
200 µm of pore diameter was measured. 
 
3. RESULTS AND DISCUSSION 
 

The compressive strengths at the age of 7, 28,  
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Table 3 Compressive strengths 
 

Specimen 7 days 
(N/mm2) 

28 days 
(N/mm2) 

91 days 
(N/mm2) 

CWA40-0 51.1 63.3 77.1 
CWA40-20 54.8 68.0 82.9 
CWA40-40 52.7 68.1 80.0 
CWA50-0 35.9 48.2 59.0 

CWA50-20 30.8 49.5 65.5 
CWA50-40 35.6 56.1 62.4 
CWA60-0 22.6 35.5 54.6 

CWA60-20 26.2 41.5 57.9 
CWA60-40 22.7 40.5 55.2 

 
 
and 91 days, which were presented in the previous 
study [20], are shown in Table 3. In each W/B, 
except for 7 days curing, the compressive strength 
of the CWA mortars containing the GGBS was 
higher than that without the GGBS. 
 
3.1 Chloride Concentration Profile  

 
The chloride concentration profiles for each 

W/B at 48 and 96 weeks are shown in Fig. 1 and 
Fig. 2, respectively. The chloride concentration 
profiles at 48 weeks were shown in [20]. The 
chloride ion penetration depth was decreased with 
decreasing the W/B and increasing the GGBS 
replacement level at each immersion time. In 
contrast, the chloride concentration near the 
exposed surface decreased at 96 weeks when 
compared with that at 48 weeks. 
 
3.2 Apparent Chloride Diffusion Coefficient 
 

The apparent chloride diffusion coefficient was 
determined by fitting the chloride concentration 
profile shown in Fig. 1 and 2 to the following 
Fick’s second low, 

 

( ) 










⋅
−=

tD
xerfCtxC

a2
1, 0

                                  (1) 

 
where C(x, t) is the chloride concentration (kg/m3) 
at depth x (cm) and exposure time t (year), C0 is 
the surface chloride concentration (kg/m3), Da is 
the apparent chloride diffusion coefficient 
(cm2/year), and erf is the error function. 

In the analysis of the chloride concentration 
profile, for the surface chloride concentration, the 
maximum value obtained from the result of EPMA 
was used and the apparent chloride diffusion 
coefficient was obtained by the curve fitting. The 
apparent chloride diffusion coefficients after 
analyzed are given in Table 4. The relationships 
between the apparent chloride diffusion coefficient 
and the GGBS replacement level for each W/B are  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
(a) W/B= 0.4 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(b) W/B = 0.5 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(c) W/B = 0.6 
 
Fig. 1 Chloride concentration profiles at 48 weeks 
immersion [20] 
 
shown in Fig. 3. The apparent chloride diffusion 
coefficient has a linear trend with the GGBS 
replacement level and the changing of the apparent 
chloride diffusion coefficients except for the CWA  
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(a) W/B = 0.4 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(b) W/B = 0.5 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(c) = W/B = 0.6 
 
Fig. 2 Chloride concentration profiles at 96 weeks 
immersion 
 
 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a) W/B = 0.4 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(b) W/B = 0.5 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(c) = W/B = 0.6 
 
Fig. 3 Relationships between apparent chloride 
diffusion coefficient and GGBS replacement level 
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Table 4 Apparent chloride diffusion coefficients 
 

Specimen 48 weeks 
(cm2/year) 

96 weeks 
(cm2/year) 

Average 
(cm2/year) 

CWA40-0 0.500 0.535 0.518 
CWA40-20 0.233 0.185 0.209 
CWA40-40 0.126 0.119 0.123 
CWA50-0 0.700 0.754 0.727 
CWA50-20 0.351 0.275 0.313 
CWA50-40 0.134 0.094 0.114 
CWA60-0 1.271 0.573 0.922 
CWA60-20 0.333 0.371 0.352 
CWA60-40 0.181 0.267 0.224 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4 Relationship between average apparent 
chloride diffusion coefficient and W/B 
 
without the GGBS at the W/B of 0.6 was relatively 
small along the immersion time. The relationship 
between the average apparent chloride diffusion 
coefficient, which is averaged value of the 
apparent chloride diffusion coefficient at 48 and 96 
weeks immersion shown in Table 4, and W/B is 
shown in Fig. 4. The average apparent chloride 
diffusion coefficient has a linear trend with the 
W/B. This is the same trend presented in the 
standard specifications for concrete structures, 
JSCE [21]. 
 
 3.3 Pore Size Distribution 
 

The pore size distributions ranging from 0.007 
to about 200 µm diameter for each W/B at 48 and 
96 weeks are shown in Fig. 5 and 6, respectively. 
The pore size distributions at 48 weeks were 
shown in [20]. At both immersion times, the pore 
volume was clearly decreased in the region of the 
smaller pore size when the W/B was lower and the 
distribution significantly changed in the smaller 
pore size less than around 0.1-0.2 µm. Furthermore, 
one peak value of the pore volume was observed in  

 
 
 
 
 
 
 
 
 
 
 
 
 

 
(a) W/B = 0.4 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
(b) W/B = 0.5 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
(c) W/B = 0.6 

 
Fig. 5 Pore size distributions at 48 weeks 
immersion [20] 
 
the CWA mortars without and with the GGBS of 
20%. In contrast, in the CWA mortar with the 
GGBS of 40%, no peak value exhibited and the 
smaller pore size mostly occupied the pore volume 
when compared with the other specimens. Moon et 
al. [22] reported that mineral admixtures such as 
GGBS and fly ash reduce large pores in cement-
based material with a diameter exceeding 0.05 mm 
such as macro pore. At 96 weeks, the pore size at 
the peak in the CWA without the GGBS was  
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(a) W/B = 0.4 

 
 
 
 
 
 
 
 
 
 
 
 

 
(b) W/B = 0.5 

 
 
 
 
 
 
 
 
 
 
 
 

 
(c) W/B = 0.6 

 
Fig. 6 Pore size distributions at 96 weeks 
immersion 
 
shifted to smaller pore size when compared with 
that at 48 weeks.  
 
3.4 Relationship between Apparent Chloride 
Diffusion Coefficient and Pore Volume 
 

From the pore size distributions shown in Fig. 
5 and 6, the relationship between the apparent 
chloride diffusion coefficient and the cumulative 
pore volume at 48 and 96 weeks was evaluated. In 
this study, the cumulative pore volume of each  

 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 7 Relationship between apparent chloride 
diffusion coefficient and cumulative pore volume 
 
specimen was considered ranging from 0.007 to 
0.2 µm and from 0.007 to 0.1 µm based on the 
above mentioned properties in the pore size 
distributions. Then, as shown in Fig. 7, the 
cumulative pore volume ranging from 0.007 to 0.1 
µm was better correlation with the apparent 
chloride diffusion coefficient. The GGBS 
contributes to the more refined pore structure of 
the hydrated cementitious material and has the 
binding adsorption capacity [23]. Therefore, 
further investigation for a longer immersion time 
might be needed to understand its relationship.  
 
4. CONCLUSIONS 
 

In this study, the apparent chloride diffusion 
coefficient and the pore size distribution of CWA 
mortars containing the GGBS at 48 and 96 weeks 
immersion were investigated. The following 
conclusions can be drawn. 
(1) Regardless of the chloride immersion period, 

the use of GGBS significantly reduces the 
chloride diffusion in the CWA mortar. The 
reduction of the apparent chloride diffusion 
coefficient is proportional to the GGBS 
replacement level. Except for the CWA mortar 
at the W/B of 0.6 without any GGBS, the 
extended period of chloride immersion from 
48 to 96 weeks has minimal effect on the 
apparent chloride diffusion coefficient. 

(2) Based on the pore size distribution results, the 
pore volume especially in the range of pore 
diameter under 0.1-0.2 µm was clearly 
decreased when the W/B ratio was lowered. In 
addition, when the W/B was decreased, the 
apparent chloride diffusion coefficient was 
reduced. By correlating the cumulative pore 
volume of the pore diameter under 0.1 µm 
with the apparent chloride diffusion 
coefficient, a good correlation was found. 
Therefore, the cumulative pore volume plays 
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an important role to control the chloride 
diffusion. 
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