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ABSTRACT: Infrastructures including bridges constructed in the period of high economic growth are getting 
older. For the damage detection of truss structures, this study assumes to utilize vibration signals obtained from 
sensors installed into the bridges. By preparing damaged and non-damaged bridge structures, large quantities 
of response data are generated.  AR (Auto-Regressive) model is then applied to the time signals to extract the 
structure’s soundness characteristics.  Here, AR coefficients are values in which damaged structural 
characteristics are reflected. Then, the machine learning technique is applied to the AR coefficients to classify 
the structures into damaged and non-damaged ones.  Results showed that the machine learning method 
successfully detected the damage of truss members. This kind of SHM (Structural Health Monitoring) 
technology is expected to contribute to early damage detection and preventive maintenance of bridges leading 
to increase the accuracy of the damage detection of truss structures with low costs and fewer efforts for 
maintenance. 
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1. INTRODUCTION 
 

In Japan, infrastructures including bridges 
constructed in the period of high economic growth 
are getting older.  Ministry of Land, Infrastructure, 
Transport and Tourism (MLIT) requires bridge 
administrators to make a short-range visual 
inspection of bridges more than once in every 5 
years.  Aged bridges tend to need more maintenance 
which requires additional costs and human labors. 
However, maintenance engineers are insufficient in 
number compared with the numbers of aged bridges.  
One solution to resolve the problem is to use sensors 
and signal processing techniques to detect damaged 
members and their damage level of the structures. 

Our research group is tackling the damage 
detection problem of aged structures on the 
assumption of using sensor data. 

Shimizu et al. conducted eigenvalue analysis to 
fully utilize the sensor data, aiming to find optimum 
sensor arrangement [1]. 

This study assumes to utilize vibration signals 
obtained from sensors installed into the bridges.  
The machine learning algorithm is applied to the 
sensor data to detect damage.  By preparing 
damaged and non-damaged bridge structure models, 
large quantities of response data are generated 
giving random input motion at the base.  AR model 
is then applied to the time signals to extract the 
structure’s characteristics.  Here, AR coefficients 
are values in which damaged structural 
characteristics are reflected. Then, the decision tree 
technique is applied to the AR coefficients to 
classify those structures into damaged and non-
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Fig. 1 Hayakawa Bridge (Hakone Tozan 

Railway)  
 

 
1st mode 3.2065Hz. 

 
2nd mode 10.493Hz 

 
3rd mode 13.821Hz 

 
4th mode 15.569Hz 

 
Fig. 2 The 1st to 4th mode of natural vibration 
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damaged ones.  This kind of SHM (Structural 
Health Monitoring) technology is expected to 
contribute to early damage detection and preventive 
maintenance of bridges [2]. 
 
2. TRUSS BRIDGE TO BE ANALYZED 

 
The bridge structure in this study is Hayakawa 

bridge administrated by Hakone Tozan Railway Co. 
Ltd. shown in Fig.1.  It is a double Warren truss 
bridge which length is approximately 63 meters, 
constructed in 1888.  The truss bridge is a typically 
aged railway bridge in Japan.  Wrought iron was 
used for the material [3]. 

 
3. MODELING AND ANALYSIS 

 
To model the structure, finite element method is 

used.  The model was analyzed by two-dimensional 
finite element method using the software, TDAPIII 
[4]. For the damage detection of structures, this 
study assumes to utilize vibration signals obtained 
from sensors installed into the bridges. By 
preparing damaged and non-damaged truss bridges, 
large quantities of response data are generated. 
Machine learning algorithms are then applied. This 
study referred to the MATLAB Web seminar for the 
application of machine learning algorithms [5], [6]. 

  
4. DYNAMIC ANALYSIS OF THE TRUSS 

STRUCTURE  
 

Parameters that prescribe the Hayakawa bridge 
model are shown in Table 1.  Fig.2 shows 1st to the 
4th mode of the truss structure. 1st mode frequency 
is 3.2065Hz. 2nd mode frequency is 10.493Hz. 3rd 
mode frequency is 13.821Hz. 4th mode frequency 
is 15. 569Hz. Stationary random input motion is 
given to the base of the prepared structures as 
shown in Fig.3 (a), (b).  The duration time is 60 
second and time increment is 0.01 second, hence the 
input motion is consisting of 6000 data. 
Acceleration responses from bottom chord member 
were calculated and accumulated in the database. 
Both damaged and non-damaged structures were 
prepared, ranging the damage level from 10% to 
90% of the reduction of elastic modulus.  Examples 
of the responses for damaged and non-damaged 
structures are shown in Fig.3(c), (d), respectively.  

 
5. AUTOREGRESSIVE MODEL 

 

Autoregressive model (AR model) is then 
applied to the accumulated signals in this study.  As 
shown in Eq (1), the model, depending on its own 
previous values, regresses a value from the time 
signals. The order of the AR model was set as 10th. 

 
𝑋𝑋𝑋𝑋 = 𝑎𝑎0 + ∑ 𝑎𝑎𝑖𝑖𝑋𝑋𝑛𝑛−𝑖𝑖 + 𝜀𝜀𝑡𝑡𝑁𝑁

𝑖𝑖−1                (1)  
 

where a0 is the constant term.  ai is a parameter of 
the model.  𝜀𝜀𝑡𝑡 is white noise. The responses include 
both from damaged and non-damaged truss 
structures. AR coefficients were then calculated for 
both damaged and non-damaged structures, then the 
coefficients were saved for the machine learning 
process. 
 
6. PREPARATION OF DATA FOR THE 

MACHINE LEARNING 
 

As a signal input to the AR model, the portions 
regarded as stationary were extracted and used. As 
shown in Fig.4, a total of 4000 data points out of 
6000 data points were extracted, and they are 
divided into 40 sections. Aforementioned AR 

Table 1 Parameters prescribing the Hayakawa Bridge truss members  
 

Parameter Breadth Height Sectional area Poisson’s ratio Elastic modulus 

Unit 400mm 500mm 20000mm2 0.3 206GPa 
 

 
 
 

 
(a) Input motion given to the bridge 

 
(b) Input motion 

 
(c) Example of response(non-damaged) 

 
(d) Example of response(damaged) 
Fig. 3 Input motion and response 
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model was then applied to the data that includes 
both damaged and non-damaged cases. Then, AR 
coefficients were determined. 

Fig.5 shows the AR coefficients by taking the 
order of the coefficients (up to 10th mode) on the 
horizontal axis. It seems that we may be able to find 
the difference between damaged and non-damaged 
cases by taking the AR coefficients as feature 
quantities. Fig.6 shows the contributions of each 
mode of AR coefficients.  As the order of the modes 
becomes higher, the contributions drastically 
decrease.  Hence, this study focused only on the first 
and second mode. Those determined AR 
coefficients include non-significant coefficients, 
hence, dimension reduction technique (PCA: 
Principal Component Analysis) is utilized here. 

Fig.7 represents the results of the principal 
component analysis (PCA) by looking at the first 
and the second components.  Clearly, we can divide 
the data plots into two groups, therefore, the method 
is capable of discriminating damaged cases from 
non-damaged ones. It is of importance for efficient 
computation to conduct data compression as 
machine learning tend to use enormous data.  The 
dimension of the data was reduced from 10 to 2 by 
PCA in this study as shown in Fig.8. The total data 
is classified into two groups: data to be studied by 
the machine learning algorithms and data to test the 
performance of the machine learning algorithm.   

 
7. MACHINE LEARNING 
 

To discriminate damaged structures from non-
damaged cases, the machine learning algorithm is 
utilized.  As a simple method to achieve the purpose, 
the decision tree method is applied to the data 
shown in Fig.8. The series of the analytical 
procedure including AR, PCA, etc., leading to 
machine learning is commonly used procedures 
(e.g., [7]). 

 
8. RESULTS  

 
 8.1 Detection of damage considering only damage 
to one member 

Shimizu et al. [1] paid attention to the variation 
of the natural frequency of the entire structure due 
to the deterioration of a member. However, natural 
frequencies are not always sensitive to the damage 
considered [1], [8].  Hence, this study attempts to 
perform a different method, i.e., machine learning. 
Fig.9 shows an example of the result of the decision 
tree method.  The numbers are thresholds 
determined by the algorithm. Based on the 

 
 

Fig. 7 Dimensionality reduction 
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Fig. 6 Contribution rate 
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Fig. 4 Example of inputs for an autoregressive 

model 

 
 
Fig. 5 Parallel coordinate plot 
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threshold number, calculated responses are 
classified into damaged and non-damaged 
structures.   

 Table 2-4 shows results obtained by applying 
the decision tree for the upper chord, diagonal and 
bottom chord members, respectively.  Here, Table 3 
is the result corresponding to Fig.9. Fig.10 (a)-(c) 
shows the results of the relation between the first 
and the second principal components for the upper 
chord, diagonal and bottom members, respectively.   
Blue dots stand for damaged cases and red dots non-
damaged cases. It seems that we can distinguish the 
damaged structures from non-damaged structures 
from these figures by setting threshold values 
properly. The applied decision tree method 
automatically determines the threshold values.  
 
Table 2 Upper chord member 

Table 3 Diagonal member 

 
Table 4 Bottom chord member 

 

Items Estimate_ 
damaged 

Estimate_ 
undamaged 

damaged 19 0 
undamaged 0 21 

Items Estimate_ 
damaged 

Estimate_ 
undamaged 

damaged 20 2 
undamaged 2 16 

Items Estimate_ 
damaged 

Estimate_ 
undamaged 

damaged 20 2 
undamaged 2 16 

 
 
Fig. 9 Decision tree 

 
 

  
 
Fig. 8 An example of calculated AR coefficients 

 
(a) Upper chord member 
 

 
(b) Diagonal member 
 

 
(c) Bottom chord member 
 
Fig. 10 Result of detection of damage 

considering only damage to one 
member 
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 8.2 Principal component analysis of the degree of 
damage when specified on an upper chord member 

Fig.11 (a)-(c) show the results of principal 
component analysis when the degree of damage for 
an upper chord member changed. Based on this 
damage, results were obtained as shown in Table 5-
7. Damage classification becomes difficult when 
the damage level decreases. 

 

Table 5 10% damage 

 
Table 6 50% damage 

 
Table 7 90% damage 

 
9. CONCLUSIONS 
 

For the damage detection of truss structures, this 
study assumed to utilize vibration signals obtained 
from sensors installed into the bridges. By 
preparing damaged and non-damaged bridge 
structures, large quantities of response data were 
generated.  AR model was then applied to the time 
signals to extract the structure's soundness 
characteristics.  Here, AR coefficients are values in 
which damaged structural characteristics are 
reflected. Then, as a machine learning technique, 
the decision tree method was applied to the AR 
coefficients to classify the structures into damaged 
and non-damaged ones.  Results showed that the 
decision tree method successfully detected the 
damage of truss members. This method is expected 
to contribute to automatically find deterioration of a 
member for aged truss structures with fewer costs 
and labors. 
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(a) 10% damage 
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Fig. 11 Principal component analysis of 

degree of damage when specified on 
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