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ABSTRACT: The evaluation and remediation of contaminated aquifers require accurate delineation of 

contamination plumes. Ideally a large number of observed concentration data are required to achieve an accurate 

delineation of the contamination plume. However, in practice due to the budgetary constraints, the contamination 

in groundwater resources is detected by limited number of arbitrary located or predesigned contamination 
monitoring wells. Therefore, a technique is required to estimate the boundaries of the plume using the available 

sparse observation data. In this work, Local Singularity Mapping Technique is used for plume delineation. The 

singularity mapping technique is based on the multifractal concept. In fractal geometry a local feature is similar to 

the whole in terms of shape and structure. Generalized self-similarity is characterized by a power-law relationship. 

Using this method, singularity indices are estimated for the entire study area using sampled concentration data. 

According to these indices the mapped area (study area) is classified into subsets including contaminated and clean 

areas. The boundaries between these two subset areas can be identified as the contamination plume edge. The 

performance of this method is evaluated in an illustrative contaminated study area to demonstrate the potential 

applicability of the proposed methodology. The singularity indices can be utilized to locate potential contamination 

sources as well as plume boundaries. These evaluation results demonstrated that the contamination plumes can be 

relatively accurately delineated using the fractal geometry. 
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1. INTRODUCTION 

 

Groundwater is the major potable, agricultural 

and industrial source of water. Due to industrial 

revolution together with the lack of appreciation of 

chemicals and their potential impact on the land and 

water bodies, groundwater is subjected to various 

sources of contamination. Often, effective 

groundwater pollution management and remediation 
relies on accurate delineation of the contamination 

plume. This paper focuses on a new method based on 

the fractal singularity mapping method to delineate 

the contaminant plume in the groundwater aquifers. 

The contaminants move and spread into the 

groundwater aquifers primarily controlled by the 

hydraulic gradient. The size, shape and boundary 

conditions of the polluted area in addition to the 

geological, hydrogeological and geochemical 

properties, have substantial effect on the transport of 

contaminants. However, the investigation of 

contamination is complex and difficult as the result of 
the inherent uncertainty in definition of the 

groundwater systems in addition to lack of 

information and possible sources of error in available 

information. On the other hand, the groundwater flow 

and solute transport processes are very complex and 

generally are defined by partial differential equations 

[1]. Therefore, the delineation and the estimation of 

contaminant plume in the groundwater systems is a 

challenging task. 

The presence of contamination in groundwater 

poses significant challenges to its delineation and 

quantification. Leakage from chemical and 

petrochemical distribution infrastructures, e.g. 

pipelines, as well as from waste water collection 

systems such as septic tanks and urban sewage 

channels and pipelines are a few sources of 

subsurface contamination. Further, products of 

mining activities and industrial complexes, which are 
stored on or underground without any provision to 

control the seepage into the ground, are two of the 

most common sources of groundwater contamination. 

Various approaches were developed for 

delineation of contamination in the groundwater 

systems. The first approach is based on the 

identification of the contamination sources. The 

contamination sources should be identified in terms 

of location, activity duration and release fluxes. By 

knowing the characteristics of contamination sources, 

the plume can be delineated at any time by simulating 

the contaminant movement using flow and transport 
simulation models.  

One of the effective contamination source 

identification methodologies is the linked simulation- 

optimization approach [2-4]. In this method the 

optimization models are linked with the flow and 

transport simulation models [4-10]. The optimal 

source characteristics are achieved when the 

difference between estimated and observed 

contaminant concentrations at monitoring locations is 
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minimized. The effectiveness and accuracy of this 

method relies on the available observed contaminant 

concentrations collected at monitoring locations. 

Therefore, many researchers focused on optimally 

design monitoring networks which would result in 

better characterization of contamination sources. 

Some of the previous works using various methods 

for monitoring network design include integer 

programming [3, 11], Genetic Algorithm [12], 

Simulated Annealing [13, 14] , Mixed integer 

programming [15], Data interpolation techniques [12, 
14], Plume detection [16], Redundancy reduction 

[17], Genetic Programming [14, 18], and Dynamic 

Time Wrapping Distance method [13]. The accuracy 

of identified contamination source characteristics can 

be improved by using optimally designed monitoring 

networks with appropriate objectives. The efficiency 

of using measurement data from such designed 

monitoring networks can be enhanced by utilizing 

sequential and feedback based monitoring network 

designs. In this method, the contamination source 

characteristics identified using available observed 
concentrations are utilized to design a new 

monitoring network. Then the new selected 

monitoring locations are used sequentially to improve 

the accuracy of identified source characteristics [3, 

14, 19-21]. 

Accurate estimation of contaminant source 

characteristics are essential to delineate the 

contamination plume based on simulation of the flow 

and transport processes. The other approach involves 

directly delineating the contamination plume using 

available observed concentrations. The interpolation 
techniques such as Kriging [14, 16, 22], and Inverse 

Distance Weighting method [23, 24] are two of these 

methods. The accuracy of the interpolation methods 

depends on the values selected for the interpolation 

parameters. For instance, in the Kriging interpolation 

technique the effectiveness of the method depends on 

the accuracy of selected model variogram. As an 

alternative, in this study the Fractal Singularity 

Mapping technique is utilized to delineate the 

contamination plume using available observed 

contaminant concentrations. The accuracy and 

effectiveness of this method does not rely on the 
accuracy of parameter selection. 

In environmental geochemistry, the term 

“baseline” often indicates the actual content of an 

element, irrespectively of its origin, in the 

environment at a given point in time as opposed to the 

term “background” that indicates the content 

depending on natural factors like lithology or climate 

[25]. Background, as represented in the 

environmental field, is the borderline between 

concentrations of a chemical element and component 

that naturally occurs in a media, compared to the 
concentrations present as a result of anthropogenic 

activities. In groundwater contamination problems, 

generally the background borderline represents the 

boundaries of the contamination plume in the 

groundwater aquifer. To evaluate the background 

values, there are two basic approaches: statistical 

frequency analysis and spatial analysis. Statistical 

frequency analysis uses techniques for characterizing 

the frequency distribution based on the assumption 

that point data from different locations may originate 

from different sources and present different 

populations [26]. The spatial analysis refers to 

methods dealing with spatial distribution of values on 

a 2-D map where geochemical point data are 
generally interpolated. Frequency based methods do 

not incorporate spatial variance of geochemical 

fields, which are important aspects of geochemical 

data. Methods of spatial data analysis such as 

geostatistics and fractal analysis are becoming more 

widely used frequency-space-based methods to 

quantify and model, spatial variances of geochemical 

data [27]. 

Fractals and multifractal are two important 

branches of nonlinear and complexity sciences. The 

analysis methods based on the fractal and multifractal 
concepts, have been used in many areas of natural 

sciences, including earthquake [28], flooding [29], 

rain and clouds [30], and geoscience [31]. Fractal 

models such as Number-Size model (N-S), 

Concentration-Area model (C-A) [32], Spectrum-

Area model (S-A) [33, 34], Concentration-Distance 

model (C-D) [36], singularity index [37], and 

Concentration-Volume model (C-V) [35] have been 

developed for geochemical data analysis [27].  

The Singularity theory was developed by Cheng 

[37] to quantify the geo-anomalies according to the 
invariant properties between fractal measure and 

scale. In this paper the local singularity mapping 

technique is used to characterize the groundwater 

contamination plume by specifying the “baseline” as 

the contamination plume boundaries. First, the 

methodology is explained. It is followed by the 

illustrative application of the singularity mapping 

technique in a contaminated study area. Then, the 

solution results representing the performance of the 

approach in terms of the efficiency of contaminant 

delineation are evaluated and discussed. 

 

2. THE SINGULARITY MAPPING 

TECHNIQUE METHOLOGY  

 

Generalized fractal self-similarity is often 

characterized by a power-law relationship in the 

spatial or frequency domain [31]. In the singularity 

mapping technique, the C-A model is used. In this 

context, the singularity in 2D map data is describe as 

a power-law relationship between area A in a sampled 

region, and the total amount of a certain physical 

quantity µ(A) as Eq. (1). 
a/ 2( A) cA                                          (1) 

Here  denotes the statistical expectation, α is the 

Holder exponent or singularity index, and c is a 
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constant. The areal density value of µ(A) in the area 

A is defined by concentration ρ(A) as Eq. (2). 
a/ 2 1( A) ( A) / A cA                                            (2) 

 

2.1 The singularity mapping technique 

 

Singularity is an index representation the scaling 

dependency from a multifractal point of view, and it 
characterizes how statistical behaviors change as the 

scale of geochemical values changes. In the 

singularity mapping technique the indices are 

estimated using the window-based procedure. The 

improved window-based procedure [31] is conducted 

as per the following steps. 

1- Define a set of square windows A(ri) with 

variable window sizes 
min 1 2 i maxr r r .... r r    

for a given sampling point on the map. 

2- Calculate concentration  iA r  
  . In the 

improved method, the minimum vale  min is 

subtracted from all concentration values in 

each window.  
3- Eq. (3) is defined by taking logarithm of Eq. 

(2). 

 i iA( r ) ( 2 )log r C                                        (3) 

Therefore the singularity index (α) can be 

calculated based on the slope of the log-log plot of Eq. 

(2). Based on the distribution of α, the 2D mapped 

area is classified into subsets of fractals and can be 

divided into following three cases. 

1- If an anomaly [37] is convex, then ρ(A) is 

decreasing function of A and α<2 it indicates 
high density and positive singularity. 

2- If an anomaly is concave, then ρ(A) is 

increasing function of A and α>2 it indicates 

high density and negative singularity. 

3- If an anomaly is constant, then ρ(A) is a 

constant only and α=2 indicates a non-

singular of linear behavior. 

This idea can be used for detection of edges and 

boundaries of different bodies. In the groundwater 

contamination problems, this concept can be used to 

detect the edges of the contamination plume, as 
proposed here. For the purpose of boundary detection, 

the maximum horizontal gradient is located nearly 

over edges, which corresponds to the inflection point 

of the anomaly. Around the inflection point, the value 

of ρ(A) estimated by the window-based method, does 

not change with respect to the change of Area A. 

Therefore, near the plume edge, the third case is valid. 

This indicates that the singularity index 2   detects 

the edges, and α<2 and α>2 specify the inside and 

outside of the boundary, respectively 

 

3. APPLICATION AND PERFORMANCE 

EVALUATION 

 

In this section, the local singularity mapping method 

is utilized to delineate the contamination plume in a 

polluted groundwater aquifer. In order to conduct a 

systematic performance evaluation of the proposed 

methodology, an illustrative study area is considered. 

It facilitates the evaluation of the methodology 

without having to consider the unknown reliability of 

field data. This is necessary only for evaluation 

purposes. Different scenarios regarding the shape and 

complexity of the contamination plume are defined 

and the accuracy of the proposed methodology is 

evaluated for the case of complex groundwater 

contamination scenarios. 

 

3.1 Study Area  

 

Figure 1 shows the plan view of the illustrative 3-

dimentional study area measuring 2100m × 2500m × 

50m and the top and bottom boundaries are specific 

head boundaries and the ones to the right and left are 
head dependent flux boundaries. The average 

recharge due to rainfall is applied to the whole study 

area. Eight water extraction wells are included in the 

model (shown by filled circles in Fig. 1). The natural 

gradient is from top to the bottom of the study area. 

A snap shot of the head contours are shown in Fig. 1. 

The study period is 8300 days. For the flow and 

transport simulation purposes, the area is discretized 

into 42×50 cells. MODFLOW-2000 [39] and 

MT3DMS [40] are utilized as the flow and 

contaminant transport simulation models, 

respectively. Both simulation models are computer 
programs that numerically solve the three-

dimensional transient ground water flow and 

contaminant transport partial differential equation. 

The field hydro-geological parameter values are 

given in Table 1. 

 

3.2 Groundwater Contamination Scenarios 

 

The performance of the developed methodology is 

evaluated for two different scenarios. These scenarios 

represent various degrees of complexity in terms of 
location and number of pollution sources. The 

delineation of the contamination plume becomes 

more complex as the number and proximity of 

contaminant sources increase. 

 

3.2.1 Scenario 1 

In scenario 1, two actual sources of pollutants are 

present. In this case, the sources are relatively far 

from each other; therefore, very limited overlapping 

of pollutant plumes resulting from the individual 

sources occurs. In Fig. 1, numbers 1 and 2, show the 

location of these sources. The flow and transport 

simulation models are utilized to simulate the 

transport of pollutant released from these two sources. 

The resulting simulated concentrations corresponding 

to 2000 and 3000 days after the activation of sources 
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Fig. 1 The head contours in the study area, unit is 

m. 
 

 

 

Table 1 Hydrogeologic parameters for the study 

area.  

 

Parameter Unit Value 

Number of Cells in x-direction - 42 

Number of Cells in y-direction - 50 

Number of Cells in z-direction - 1 

Horizontal Hydraulic 

Conductivity 

m/d 15 

Porosity - 0.3 
Longitudinal Dispersivity m 20 

Initial contaminant concentration ppm 0 

Diffusion Coefficient - 0 

Recharge mm/day 0.5 

 

are recorded. These two sets of concentrations are 

utilized to find the distribution of the singularity 

indices using the window based procedure. Figures 2-

(a) and 2-(b) present the estimated singularity indices 

corresponding to 2000 and 3000 days after the release 

of contaminants, respectively. 

 

3.2.2 Scenario 2 

In this scenario, four actual sources of pollutants 

are present. In this case, the sources are relatively 

close to each other; therefore, substantial overlapping 
of pollutant plumes resulting from individual sources 

would happen. 

 In Fig. 1, numbers 1,2, 3, and 4, show the location 

of these sources. The flow and transport simulation 

models are utilized to simulate the transport of 

pollutant released from these four sources. 

 

 (a) 

 

 
(b) 

 

Fig. 2 The Singularity Index contours for scenario 

1 after (a) 2000 days and (b) 3000 days of 

pollutant release activation. 

 

The resulting simulated concentrations 

corresponding to 7300 and 8300 days after the 

activation of sources are recorded. These two sets of 

concentrations are utilized to find the distribution of 

the singularity indices using the window based 

procedure. Figures 3-(a) and 3-(b) present the 

estimated singularity indices corresponding to 7300 

and 8300 days after the release of contaminants, 

respectively. 

 

4. RESULTS AND DISCUSSION 

 

The fractal singularity mapping method was 

used to delineate the contamination plume in two 

pollutant release scenarios. In the first scenario, two 

contaminant sources are active which are relatively 

far from each other. Therefore, the contamination 

plume is relatively simple, since there is very limited 

overlapping of the pollutant plumes. Figure 2-(a) and 

2-(b) show the singularity index contours. Values 

more than 2, show the regions out of the plumes. The 

plume’s inside regions are specified by values less 

than 2. Contour related to singularity index two is the 

1 
2 

3 

4 

N 
N 

N 



International Journal of GEOMATE, Sept., 2016, Vol. 11, Issue 25, pp. 2435-2441 

2439 

 

representative of the plume boundaries. Since the 

sources are relatively far from each other in scenario 

1, there are two distinct contamination plumes 

identified in each figures 2-(a) and 2-(b) related to 

each source.  

 

 

(a) 

 

 

(b) 

Fig. 3 The Singularity Index contours for scenario 

2 after (a) 7300 days and (b) 8300 days of 

pollutant release activation. 

 

In scenario 2, four pollutant sources are active and 

since they are situated relatively close to each other, 

overlapping of the pollutant plumes released from 

individual sources is expected. Therefore, in scenario 

2, the plume delineation is largely more complex than 

scenario 1. Figures 3-(a) and 3-(b) show the 

singularity index contours for 7300 and 8300 days 

after the start of contaminant release at sources. 

Similar to scenario 1, singularity indices more than 

two and less than two are associated with the areas 

outside and inside the pollutant plume, respectively. 

The plume boundaries are specified by singularity 

index two. As shown in Fig. 1, source 4 is relatively 

far from other three sources. Therefore, in Figs. 3-(a) 

and 3-(b), a separated contour related to singularity 

index 2 shows the contaminant plume release from 

this source. However, the other three sources are 

relatively close. As a result of overlapping, in Figs. 3-

(a) and 3-(b), one contour related to singularity index 

2 shows the contaminant plume boundary resulting 

from these three sources. In Figs 2 and 3, the 

singularity index contours depict approximate 

location of pollutant sources. Therefore the 

singularity indices using the window based procedure 

has the potential to be used for identifying the 

unknown location of contamination sources using 

available observed concentrations.  

 

5. CONCLUSION 

 

The fractal Singularity Index Mapping 

Technique gained substantial attention in many areas 

of science especially geology, however, the 

contamination plume delineation is a new application 

for this method. In this study, the window based 

singularity mapping technique is utilized in an 

illustrative contaminated site. The singularity indices 

is used to divide the study area into contaminated and 

clean characterization by assigning singularity 

indices smaller and larger than 2, respectively. 

Therefore, contours corresponding to singularity 

index two are used to delineate the contamination 

plume boundaries. The performance of the proposed 

methodology is evaluated for two scenarios with 

different degrees of contamination plume complexity. 

The contamination plume delineation becomes 

complex when the contamination sources are located 

relatively close to each other and overlapping of 

plumes resulting from individual sources is expected. 

The illustrative application of the proposed 

methodology demonstrates potential applicability of 

this methodology for fairly accurate delineation of 

contamination plumes for different contamination 

scenarios. These illustrative applications show that 

this methodology performs satisfactorily for both 

simple and complex groundwater contamination 

scenarios. The potential for utilizing fractal analysis 

of contaminant plumes for effective management of 

contaminated aquifers is demonstrated through this 

exploratory study.  
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