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ABSTRACT: A displacement based finite element method for analyzing axially loaded pile embedded in 

finite depth of elasto-plastic soil is presented. The investigation herein is conducted on the condition of shape 

function by which exact value may be reproduced at the nodal point regarding to a few number of element. 

The examined shape functions which satisfy the homogeneous governing equations in elastic and plastic soil 

are introduced to obtain the so-celled exact element stiffness matrix via total potential energy principle. 

Numerical examples of elasto-static pile, embedded in elasto-plastic Winkler foundation illustrates the 

accuracy of proposed element compare with conventional finite element shape functions. Axial force and 

displacement solutions show very good agreement with data from the available literature. Then the proposed 

shape functions are also used to conduct free vibration analysis of axially loaded pile embedded in elastic 

soil. The results from finite element modal analysis show fairly accurate compare with analytical solutions. 
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1. INTRODUCTION 

 

Accuracy of a finite element solution depends 

significantly on the extent to which the assumed 

displacement pattern is able to reproduce the actual 

deformation of the structure. For a one-

dimensional problem with single variable, Tong 

[1] proved that the finite element nodal solution 

can be obtained exactly if the assumed shape 

functions satisfy the homogeneous differential 

equation of the problem. Kanok-Nukulchai et al. 

[2] extended Tong’s concept to one-dimensional 

problem with several dependent variables, i.e., 

authors developed an exact two-node deep beam 

element. Ma [3] also applied concept of nodal 

exact shape function to solved axial vibration 

problems of elastic bars, exact solution was 

obtained for undamped harmonic response 

analysis. Force-based formulation of pile-

embedded in elastic soil was proposed in 

Reference [4] and obtained the exact solution for 

problem taken from Li et al. [5]. The 

displacement-based formulation was also proposed 

in Reference [6], the exact nodal-displacements 

and forces was obtained for elastic soil. 

In this study, the nodal exact shape function 

concept suggested by Tong [1] and Buchart [6] is 

employed to solve the elastic bar embedded in 

elasto-plastic soil problem. Two sets of shape 

functions which satisfies the homogeneous 

differential equation will be derived for developing 

a present bar element. The stiffness matrix and 

nodal force vector are expressed based on total 

potential energy principle. Example of elasto-static 

pile embedded in elasto-plastic soil is solved to 

verify the accuracy and efficiency of proposed bar 

element. Free vibration of a pile embedded in 

elastic soil foundation using the consistent mass 

matrix for this pile element is also investigated. 

 

2. MATHEMATICAL FORMULATION  

 

2.1 Problem Definition 

 

The analysis considers a single circular pile, 

with diameter d (cross section A = 0.25πd
2
 and 

perimeter U = πd), embedded into soil deposit (Fig. 

1). The pile has a total length L and is subjected to 

an axial force P0 at the pile head which is flush 

with the ground surface. The soil medium is 

assumed to be elastio-plastic, isotropic and 

homogeneous, with elastic properties described by 

equivalent spring coefficient ks. Once the soil 

displacement go beyond the yielding displacement 

w*, the shear resistance will keeps constant as long 

as the displacement increases. The soil bearing 

capacity at pile’s end is presented by coefficient kb. 

The pile is assumed to behave as an elastic column 

with Young’s modulus E. The Poisson’s ratio of 

the pile material is neglected. Figure 1(a) shows 

the elastic and plastic zone occurred in soil due to 

the axial displacement w0 at top pile head is greater 

than yielding displacement w* occurred at depth z0 

from pile head. Hence, the length of an elastic 

portion in Fig. 1 is denoted by ℓ, the magnitude of 

axial displacement in elastic portion is less than or 

equal to yielding displacement. 
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2.2 Governing Differential Equations 

 

Consider one-dimensional element in Fig. 2, 

the total potential energy of this soil-pile element 

subjected to the axial forces P1 and P2 is defined as  

 

 
 

(a) 

 

 
 

(b) 

 

Fig. 1 Axially loaded pile and soil model 

 

the sum of internal potential energy (strain energy) 

and the external potential energy due to external 

load as follow: 
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where w(z) is the vertical pile displacement at 

depth z. The first and second terms in Eq. (1) 

represent the strain energy in pile and surrounding 

soil, respectively. 

 

 
 

Fig. 2 Axially loaded pile embedded in soil and 

corresponded two-node finite element 

model. 

 

The first variation of Eq. (1) leads to 
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Applying the appropriate Gauss-Green 

theorem to Eq. (2) and setting δП = 0, gives the 

differential equation for equilibrium 

 
2

2
0   fo r  0

s

d w
E A k U w z L

d z

                        (3) 

 

and a set of natural boundary conditions as follows 
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2.3 Shape Functions for An Exact Pile Element 
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Following the concept presented by [1] and [2], 

a pile element is developed with the shape 

functions that satisfy the homogeneous differential 

equation, Eq. (3). Two groups of shape functions 

are derived following elastic and plastic soil 

conditions. 

 

2.3.1 Elastic soil conditions 

 

The field variable w, which satisfy Eq. (3), can 

be represented by the following hyperbolic 

function 

 

     
1 2

co sh sin hw z c z c z                             (5) 

 

where α
2
 = ksU /EA is the characteristic parameter 

of pile. By applying the nodal displacement 

boundary conditions to elastic soil portion (Fig. 1), 

Eq. (5) can now be expressed in terms of nodal 

variables, w1 and w2, as follows 

 

     
1 1 2 2
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where the shape functions can be expressed as 
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with the non-dimensional parameter β = α . 

 

2.3.2 Plastic soil conditions 

 

Consider the plastic soil portion, upper portion 

in Fig. 1, displacement w in second term of 

equilibrium equation (3) have to be replaced by 

yielding displacement w* as follow 
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The field variable w, which satisfy homogeneous 

differential equation part of Eq. (9), can be 

represented by linear function of soil depth. Hence, 

displacement shape function of plastic portion can 

be expressed as a ramp function used in typical 

linear FEM, i.e. 
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2.4 Derivation of Element Stiffness Matrices 

 

Refer to first variation of strain energy terms in 

Eq. (2), due to the arbitrariness of δw (see also [7]), 

the element stiffness matrix for pile and soil can be 

expressed as follows:  
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where the indices i and j are ranged from 1 to 2.  

 

2.4.1 Element stiffness for an elastic soil portion 

 

Substituting shape functions from Eq. (7) and 

(8) into element stiffness formulation in Eq. (12) 

and (13), the component of element stiffness 

matrices for elastic soil portion can be explicitly 

expressed as 
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and 
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2.4.2 Element stiffness for plastic soil portion 

 

Substituting shape functions from Eq. (10) and 

(11) into element stiffness formulation in Eq. (12) 

and (13), the component of element stiffness 

matrices for plastic soil portion can be explicitly 

expressed as 
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2.5 Consistent Mass Matrix 

 

In free vibration analysis, the consistent mass 

matrix has to be constructed. Formula of consistent 

mass matrix is similar with soil stiffness matrix in 

Eq. (15) or (17), except the factor ksU replaced by 

ρA, i.e. 

 

0

L

ij i j
M A N N d z                                              (18) 

 

where ρ = mass density of pile material. An 

explicit expression of this consistent mass matrix 

will be omitted for the sake of simplicity and 

clarity of the presentation. 

 

3. NUMERICAL EXAMPLES 

 

In this section, two numerical examples are 

presented to illustrate the effectiveness of the finite 

element proposed in the previous section. 

Application of this pile element to the free 

vibration analysis is also demonstrated by the 

second example. Analytical solutions of all 

problem tests are available in the literatures [6, 8, 9, 

and 10]. 

 

3.1 Static Analysis 

 

A bored pile was installed in the medium silt 

clay and the end bearing layer is sandstone. The 

pile length is 45 m, and the diameter d = 1 m. The 

elastic modulus of pile shaft E = 2.2 × 10
7
 kPa. 

From soil tests, the values of equivalent soil elastic 

coefficient ks = 12000 kPa/m, the yielding 

displacement of soil w* = 2.6 mm, and end bearing 

stiffness kb = 684000 kPa/m [8]. The value kbA is 

added into the last diagonal member of stiffness 

matrix. 

The numerical test was performed using two 

element assembly to construct three algebraic 

equations. Assuming the value of plastic depth z0, 

the displacement at bottom end was solved from 

third row of algebraic equation. Then, the 

displacement at pile head w0 was obtained from 

second row of algebraic equation, and the value of 

load P0 at pile head was computed. Two cases 

were run to compare the results: (i) proposed 

stiffness, Eqs. (14) and (15) were used to 

constructed element stiffness of bottom part, and 

Eqs. (16) and (17) for upper part, and (ii) two 

conventional linear elements [7] were used to 

constructed the global stiffness matrix. 

The results from two cases are shown in Table 

1. As expect, the present pile element model prove 

to be flawless: finite element solutions of proposed 

element are identical to the exact analytical 

solutions in reference [8]. The conventional linear 

element behaves stiffer than proposed element and 

exact solutions, greater pile head load is required 

to obtain yield displacement at pile head. 

 

Table 1 Calculated loads and settlement of the pile 

at any values of plastic depth. 

 

3.2 Free Vibration Analysis 

 

Natural frequencies and mode shapes of a 

fixed-ended pile is computed with ten pile 

elements. A bored pile was installed in the medium 

clay of length 50 m and diameter d = 1 m. 

Equivalent soil elastic coefficient ks = 34200 

kPa/m. The end bearing stiffness is very large 

(fixed at the bottom). The unit mass is of pile shaft 

is taken as ρ = 2400 kg/m
3
. To perform modal 

analysis, element stiffness and consistent mass 

matrices of proposed element and linear 

conventional element are constructed with 

assumed elastic soil condition. Result of the 

natural frequencies, compared with the exact 

theory [10] is shown in Table 2. Percent error of 

natural frequencies, which are obtained from 

conventional linear element are slightly better than 

present element. The first three mode shapes of 

proposed element are also plotted in Fig. 3 and 

appear to be almost indifferent from the exact ones. 

 

Table 2 Circular frequency of fixed-ended pile 

 

  

Mode 
Circular Frequency (rad/sec) 

Ten piles 
(Present) 

Ten piles 
(Linear) 

Exact 
Theory 

1 153 153 153 
2 313 312 309 
3 504 502 490 
4 712 710 676 
5 938 935 864 
6 1184 1181 1053 
7 1446 1443 1242 
8 1711 1708 1432 
9 1943 1940 1621 
10 2084 2082 1811 

 

z0 

(m) 

Present (Exact) Linear FEM 

P0 (kN) w0 

(mm) 

P0 (kN) w0 

(mm) 

0 2086 2.60 2451 2.60 

9 2951 3.91 3192 4.03 

18 3796 5.64 3931 5.78 

27 4593 7.71 4648 7.80 

36 5291 9.95 5302 9.97 

45 5807 11.98 5807 11.98 
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Fig. 3 Fixed tip pile problem: the first three 

mode shapes from the free vibration analysis of a 

ten-element model. 

 

4. CONCLUSIONS 

 

The new finite element model for pile subjected to 

axial load is proposed. A necessary condition for 

the present finite element model to reproduce the 

exact values at the nodal points is that it has to 

satisfy the homogeneous differential equation of 

the problem. Numerical example for static load 

pile embedded in elasto-plastic soil indicates that 

an exact finite element solution can be obtained 

even with minimum number of element used. In 

addition, the same shape functions can produce 

fairy satisfactory results in free vibration problem 

on three fundamental modes.  
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APPENDIX 

 

A.1 Exact Solution of Pile Static Load Test 

 

Prescribe the boundary conditions (4) into the 

solution of governing equations (3) and (9). The 

load applied to the pile top could be expressed as 

 

 0 * 0
ta n h

s
P w E A z k U      

        (19) 

 

and the displacement at the pile top is therefore 
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The variable γ is the characteristic value of the end 

bearing capacity of soil at pile tip. 

 

 ta n h
b

k

E



                                                (21) 

 

In derivation of Eqs. (19) and (20), the soil of end 

bearing capacity is assumed in the elastic condition. 

Detail derivation of Eqs. (19)–(21) are described in 

reference [8]. 

 
A.2 Free Vibration of Fixed-Ended Pile 

 

The governing equation for free vibration of 

pile is expressed as 
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2 2

2 2
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s

w w
E A k U w A z L

z t

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     (22) 

 

Assume that pile subjected to fixed boundary 

condition at the pile tip w = 0 at z = L. Natural 

circular frequency ω and mode shape ѱ of pile 

embedded in soil can be expressed as 
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where the wave number parameters λn are defined 

as 

 

1
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2
n

n n
L




 
   
 

                      (25) 

 

Note that Eq. (23) always satisfies boundary 

condition at pile tip, i.e. ѱn (L) always equal to 

zero. 

 

 

 

International Journal of GEOMATE, Sept, 2016, 
Vol. 11, Issue 25, pp.2474-2479. 
MS No. 5203 received on Aug. 21, 2015 and 
reviewed under GEOMATE publication policies. 
Copyright © 2016, Int. J. of GEOMATE. All rights 
reserved, including the making of copies unless 
permission is obtained from the copyright 
proprietors. Pertinent discussion including authors’ 
closure, if any, will be published in Sept. 2017 if the 
discussion is received by March 2017. 
Corresponding Author:     C. Buachart 


