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NUMERICAL ANALYSIS ON THE OCCURRENCE OF THERMAL 
CONVECTION IN FLOWING SHALLOW GROUNDWATER 

Junichiro Takeuchi, Makoto Kawabata and Masayuki Fujihara 

Graduate School of Agriculture, Kyoto University, Japan 

ABSTRACT: The occurrence of thermal convection in groundwater could significantly change groundwater 
flows, and this phenomena could also alter solute transport. In the case of a shallow groundwater, thermal 
convection might affect the surface water quality because it directly interacts with surface waters such as lakes 
and marshes. Hence, understanding the conditions that induce thermal convection is important for groundwater 
management. In this study, the conditions for the onset and decay of thermal convection in a flowing shallow 
groundwater are investigated by conducting numerical experiments. Through the computational analysis using 
the attractor reconstruction technique, three flow regime types were found, showing that not only the Rayleigh 
number, which is a well-known influential factor, but also the groundwater flow rate affects the flow regime.  
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1. INTRODUCTION

In the field of geothermal dynamics, large-scale 
spatial and temporal phenomena in groundwater 
such as thermal convection and circulation rooted in 
magmatic heat sources have been a primary area of 
research interest. Typically, the objective domain 
ranges from a few kilometers to tens of kilometers, 
and the time scale ranges from hundreds to 
thousands of years [1], [2]. Recently, the thermal 
dynamics in relatively shallow groundwater has 
been actively investigated for several reasons. One 
reason is that the temperature distribution in 
shallow groundwater could be an important clue for 
understanding the subsurface structure and 
groundwater flow [3]. Another reason is that 
geothermal heat pump technology has received 
attention as one possible alternative for clean 
energy [4]. Generally, thermal convection is rarely 
considered in shallow groundwater except for cases 
around heat sources such as hot springs. However, 
thermal convection on the scale of weeks or months 
could occur under some conditions such as 
groundwater under snow coverage and the intrusion 
of snowmelt water into groundwater [5]. Tortuous 
groundwater flows by density-driven flow could 
drastically change the solute and heat transport, so 
it is essential to understand the onset, growth, and 
decay of the density-driven flow for groundwater 
management. When a certain physical condition 
varies continuously, the occurrence of such 
qualitative changes in the groundwater flow regime 
is considered a bifurcation in the nonlinear 
dynamics [6], and hydrodynamic stability has been 
one of the central problems of fluid mechanics [7].  

In this study, two cases that could cause thermal 
convection are targeted: snow coverage and cold 
water intrusion. This study is aimed at identifying 

conditions for the occurrence of thermal convection 
under those two situations through systematic 
numerical experiments and subsequent analyses.  

2. MODEL DESCRIPTION
2.1 Governing Equations 

A vertical two-dimensional coordinate system, 
where x  and z  are the horizontal and vertically 
upward directions, respectively, is used in this study. 
To reduce the number of parameters included in the 
governing equations, a dimensionless version is 
employed. The majority of the dimensionless 
equation derivations for groundwater flow and 
thermal transport are based on Holzbecher [6] and 
Kawabata et al. [8]. 

The final version of the governing equation for 
groundwater flow with variable water density is 
described with the stream function under the 
following assumptions: the incompressibility of 
water, rigidity of the aquifer, and absence of sources 
or sinks. The Boussinesq approximation is also 
employed.  
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Here, X  and Z  are the dimensionless coordinates 
for x  and z , respectively; Ψ  is the 
dimensionless stream function; Ra  is the Rayleigh 
number; ρ  is the water density, which is assumed 
to be proportional to the dimensionless temperature 
θ ; µ  is the viscosity of water; rµ is a relative 
value based on the representative viscosity 0µ ; xκ
and zκ  are the intrinsic permeability in the x  and 
z  directions, respectively; r

xκ  and r
zκ  are relative 

values based on the representative intrinsic 
permeability 0κ ; H  is the representative length, 
which is the height of the objective domain in this 
study; g  is gravitational acceleration; γ  is the 
ratio between water and bulk thermal capacities; D  
is the thermal diffusivity; U  and W  are 
dimensionless velocities in the X  and Z  
directions, respectively; T  is the temperature; and 

maxT  and minT  are the maximum and minimum 
temperatures in the domain, respectively. 

The dimensionless version of the governing 
equation for thermal transport is described as 
follows:  

U W
X X Z Z X Z

θ θ θ θ θ
τ
∂ ∂ ∂ ∂ ∂ ∂ ∂     = + − +     ∂ ∂ ∂ ∂ ∂ ∂ ∂     

 (9) 

where τ  is dimensionless time. 
In addition to the governing equations (1) and 

(9), auxiliary boundary and initial conditions are 
imposed for the dimensionless stream function and 
temperature. In this study, a rectangular domain in 
which groundwater flows horizontally in the 
absence of thermal convections is considered. Cold 
water intrudes into the aquifer from part of the top 
of the domain 2Γ  as illustrated in Fig. 1. For both 
the stream function and temperature, Dirichlet-type 
boundary conditions are given to the top and bottom 
of the domain, and Neumann-type boundary 
conditions in which / 0Ψ∂ ∂ =v  and / 0θ∂ ∂ =v , 
where ν  is the outward normal unit vector to the 
boundary, are given to the sides of the domain (Fig. 
1). The values of the stream function topΨ  and 

top entΨ Ψ+  are constant on 1Γ  and 3Γ , 
respectively, except for the cold water intruding 
zone 2Γ , where the value changes linearly from 

topΨ  to top entΨ Ψ+ . With respect to the temperature, 
entθ  is given to the water intruding zone 2Γ , and 
topθ  is given to 1Γ  and 3Γ . Constant values of 

btmΨ  and btmθ  are given to the stream function and 
temperature, respectively, at the bottom boundary 

0Γ . 
For the stream function’s initial condition, a 

horizontal flow condition is given where the stream 
function changes linearly from btmΨ  to topΨ . 
Regarding the temperature, the initial conditions 
linearly change from btmθ  to topθ  with some 

perturbation, as illustrated in Fig. 2. When the 
Rayleigh number is smaller than 24π , which is the 
critical number for the onset of the Benard 
convection [5], a relatively large perturbation is 
given to confirm convergence to a stable fixed point. 
On the other hand, when the Rayleigh number is 
greater than or equal to 24π , a relatively small 
perturbation is given to avoid persistence to an 
unstable fixed point.  

2.2 Numerical Model 

The standard Galerkin finite element method is 
employed for spatial discretization of governing 
equations (1) and (9), and the Crank-Nicolson 
method is used for the time evolution of governing 
equation (9), in which the lumped mass matrix 
approximation is used. The validity of the 
numerical model was confirmed [8] by the Benard 
convection and by the Henry and Elder problems, 
which are standard benchmark problems for 
density-driven flow [9]. When the flow velocity is 
large compared with the diffusivity, finer 
computational meshes are used to limit the 
maximum local Peclet number in the domain to 
unity.  

3. NUMERICAL EXPERIMENTS
3.1 Computational Settings 

To investigate the onset of instability and the 
subsequent growth and decay, numerical 
experiments are conducted under various physical 
conditions regarding the Rayleigh number and basal 

Fig. 1  Objective domain
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groundwater flow velocity. Here, two cases are 
considered: groundwater flow without cold water 
intrusion, which is referred to as Case 1, and cold 
water intrusion, which is referred to as Case 2. Case 
1 represents snow coverage on saturated ground, 
and Case 2 represents waterlogging for soil 
puddling in spring. The Rayleigh number Ra
ranges from 0 to 100, and topΨ  ranges from 0 to 20. 
As the combination of these two variables varies, 
simulations are conducted to investigate whether 
instabilities such as thermal convection and 
fluctuation occur. For Case 1, entΨ  is set to 0; and 

btmθ , topθ , and entθ  are set to 1.0, 0.0, and 0.0, 
respectively. For Case 2, entΨ  is set to 2; and btmθ , 

topθ , and entθ  are set to 1.0, 0.5, and 0.0, respectively. 
The domain is assumed to be homogeneous and 

isotropic, so the relative values r
xκ  and r

zκ  for the 
intrinsic permeability are unity. The relative value 

rµ  for the viscosity is determined from the 
following functional relationship to temperature in 
Kelvin [5]:  

( ){ }3( ) 10 1 0.015512 293.15T Tµ −= + − . (10) 

3.2 Analysis on Computed Solutions 

To quantitatively evaluate whether the stream 
function and/or the temperature at a certain point 
fluctuate, moving variance is calculated on each 
node in the two sampling zones, the cold water 
intrusion zone and groundwater outflow zone (Fig. 
1). The number of time steps used to obtain the 
variance is 400, which is sufficiently long compared 
with the cycle length obtained from our preliminary 
simulations. When the solution converges to a 
steady state, the variance decreases, and 
asympotically becomes zero. In contrast, if the 
solution fluctuates, the variance does not converge 
to zero.  

In addition to the moving variance, the 
behaviors of the stream function and temperature in 
a node are analyzed with the attractor reconstruction, 
which is a non-linear-data analysis technique, and 
the time series data is transformed to a trajectory in 
2-D phase space [10]. In attractor reconstruction, 
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the coordinates of each point in the trajectory are 
generated from time series data as 
( )D( ), ( )χ τ χ τ τ+  with time delay Dτ , where 

( )χ τ  is the time series data of the stream function 
or temperature in the node. If the time series data 
oscillates sinusoidally, the trajectory becomes 
circular when the time delay is one-quarter cycle.  

3.3 Computed Results 

First, the computed results for Case 1 are 
discussed. The temperature distributions for 4τ =  
are shown in Fig. 3, and the corresponding stream 
functions are shown in Fig. 4. For the condition in 
which 0topΨ =  corresponds to that for the Benard 
convection, thermal convection occurs if the 
Rayleigh number is greater than 24π , or 40 and 50 
in this case. As shown in Fig. 4, weak circulations 
occur even in the condition where 30Ra =  and 

0topΨ = . The obtained result is considered to be 
converging to the steady state. For a horizontal 
groundwater flow, the waves caused by thermal 
convection are carried by the horizontal flow, and 
new waves continually arise at the upstream end. A 
larger Rayleigh number is required to maintain 
thermal convection as the basal groundwater flow 
( topΨ ) increases. Figure 5 shows the trajectories of 
the temperature on the node where the moving 
variance is maximal in the groundwater outflow 
zone under each condition. Three trajectory types 
are found: convergence to a point without a spiral, 
e.g., the case where 50Ra =  and 0topΨ = ; 
convergence to a point with a spiral, e.g., the case 
where 50Ra =  and 16topΨ = ; and asymptotic 
approach to a limit cycle with a spiral, e.g., the case 
where 50Ra =  and 8topΨ = . These three flow 
regimes are referred to as Type1, Type 2, and Type 
3, respectively. Figure 6 shows the temporal change 

Fig. 6  Temporal changes of temperature in Case 1
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Fig. 5  Trajectories of temperature in phase space in Case 1
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of temperatures of the three above cases. The 
temporally fluctuating graphs of 8topΨ =  and 

16topΨ = correspond to the spirals in Fig. 5. These 
qualitative trajectory transformations imply 
bifurcations. In the 30Ra =  case, which is under 
the critical value 24π , the stable fixed point in 

0topΨ =  transforms to a stable spiral when topΨ  is 
non-zero. For the 40Ra =  and 50 cases, which are 
over the critical value, the stable fixed point 
transforms to an unstable spiral, and a limit cycle is 
formed when topΨ  has a small non-zero value that 
does not exceed a threshold. If topΨ  has a value 
beyond the threshold the unstable spiral transforms 
to a stable spiral, and the limit cycle disappears. The 
threshold depends on the Rayleigh number. Figure 
7 shows the classification of each computed 
condition into these three types.  

Second, the obtained results of Case 2, cold 
water intrusion into flowing groundwater, are 
discussed in the same way as Case 1. Figures 8 and 
9 show the temperature and stream function 
distributions of typical patterns after a sufficient 
time in Case 2, respectively. From these figures, 
two flow regime patterns are found: steady and 
unsteady flow regimes. The steady regimes are 
found when the Rayleigh number is smaller than or 
equal to 40, or when the basal groundwater flow is 
large, even with higher Rayleigh numbers. Under 
such conditions, Fig. 10 shows trajectories 

converging to a point without a spiral (Type 1) and 
with a spiral (Type 2). The unsteady flow regimes 
in which waves are carried by the basal groundwater 
flow are found in the remaining conditions. In 
addition, different fluctuation types are found in the 
cold water intrusion zone and the groundwater 
outflow zone as shown in Figs. 10 and 11. For 
instance, in the cases of 50Ra =  and 8topΨ = , the 
trajectory approaches a single loop, which is traced 
in the cold water intrusion zone (Fig. 10 (a)), while 
the trajectory traces a double loop in the 
groundwater outflow zone (Fig. 10 (b)). Figure 11 
also shows that the temporal change in the cold 
water intrusion zone is a periodic function that has 
a single peak in one cycle and that the groundwater 
outflow zone is a periodic function that has two 
peaks in one cycle. The classification of the 
computed conditions is shown in Fig. 12. The flow 
regimes are found to have changed from Type 3 to 
Type 2 as topΨ  increased, which is similar to Case 
1.  

4. CONCLUSION

In this study, the conditions for the onset and 
decay of thermal convection induced by temperature
differences between the top and bottom of the 
domain and cold water intrusion from the ground 
surface in shallow groundwater were investigated 
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Fig. 11  Temporal changes of temperature in Case 2
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through numerical experiments. The computed 
results were analyzed with attractor reconstruction, 
which visualizes the time series data in a 2-D phase 
space as a trajectory. From the obtained trajectories, 
three types of behavioral patterns were found: 
convergence to a point without a spiral, 
convergence to a point with a spiral, and 
asymptotical approach toward a loop. These 
correspond to a stable fixed point, a stable spiral, 
and a limit cycle, respectively, and the 
transformation from one state to another 
corresponds to a bifurcation when some parameter 
(condition) varies continuously. In this study, the 
flow regime changes from a stable spiral to a limit 
cycle when the Rayleigh number increases, and it 
changes from a limit cycle to a stable spiral when 
the basal groundwater flow rate increases. From 
these results, we can conclude that groundwater 
flow rate is an important factor that determines the 
flow regime as well as the Rayleigh number.  
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