

2755

OPTIMIZATION OF LOCAL PARALLEL INDEX (LPI) IN
PARALLEL/DISTRIBUTED DATABASE SYSTEMS

Mohamed Chakraoui and Abderrafiaa El Kalay

Faculty of Sciences and Techniques Marrakech, Cadi Ayyad University, Marrakech, Morocco

ABSTRACT: The widespread growth of data has created many problems for businesses, such as delay
requests; in this paper, we propose several methods of partitioning an index B*Tree in multi-processor
machines in parallel/distributed database systems and collaboration between processors when executing
multi-queries. When optimizing, indexing automatically comes to mind; we distinguish two types of
indexing: B*Tree and Bitmap. Since the advent of multicore computers (multi processors) parallelism
becomes an indispensable part of optimization. Our work will focus on partitioning each table on three parts
following indexing key partitioning; each processor will host a partition of the index, and the first processor
that will finish will immediately take another partition of the index pending according to the priority. The
parallelism will reduce the CPU cost then reduces execution time; collaboration between processors will
further reduce these costs.

Keywords: Tuning indexes, Collaboration between processors, Optimization, B*Tree, Partitioning

1. INTRODUCTION

Tuning databases is an essential task since the
design phase to the maintenance phase of
parallel/distributed database systems. When a
request is sent to the RDBMS, it will be parsed and
translated into RDBMS language, then the RDBMS
establishes several execution plans possible, then
the RDBMS optimizer chooses the most suitable
one; finally, it runs the execution plan chosen. All
RDBMS provide two types of optimizers: Rules
Based Optimizer (RBO) and Cost Based Optimizer
(CBO), all of actual RDBMSs use CBO[1]. The
CBO is an optimizer that is based on the estimated
costs of performing the operations execution plans.
For a given query, the RDBMS creates several
possible execution plans and the RDBMS optimizer
estimates for each one the cost performance and
chooses the lowest.

Many solicited issues in this research field are
about the efficiency, speed and reliability of
database systems. Many papers have discussed
optimization of databases; however, they still
remain insufficient and could not get a top requested
by the researcher community. Our paper comes in
this context to a progressive thread, then provides a
complete theme in parallel databases indexing and
supports it by yielded experimental results never
been established. Asking specialists in this
interesting discussion and provides a solid idea to
RDBMS designers, then asking CPU designers to
take into consideration the collaboration between
processors when accessing the parallel databases
with this method since the results are there.

To estimate the cost of an execution plan the
RDBMS evaluates the cost of resources used to
implement the plan following the priority:

CPU time.
The number of input / output (I/O) disk storage.
The amount of memory (Random Access

Memory) required.
This cost depends not only on the query itself,

but also on the data that it bears. For example, given
a table of 100 records, a single query can be rapid,
but for a request of 1.000.000 records, a simple
query can be very slow and expensive (input/output
disk and CPU utilization). Therefore, the cost
depends on the data of the query and not only on the
query itself; it is the reason why we resort to
indexing.

Data retrieval does cause serious problems when
schemas and indexes are not created properly.
However, inserting data can often causes serious
performance issues as well[2].

Our contribution in this manuscript can be listed
as:

Parallelism is an excellent technique to reduce
the execution time and optimize databases.

Multiple query execution time, partitioning
every query to three parts, and make a waiting line
to every processor to accessing to each part.

Collaboration between processors is a new
technique based on the parallelism and benefits
from sleeping time of each processor.

Table 1 A part of the running table CLIENTS

NCLIEN

NAME CITY COUNTRY
1 Mohame

Marrakech Maroc
3 Hamid Casa Maroc

25 Khalid Fes Maroc
32 Salah Casa Maroc
39 Karim Safi Maroc
43 Houdi Essaouira Maroc

International Journal of GEOMATE, Nov., 2016, Vol. 11, Issue 27, pp. 2755-2762
Geotec., Const. Mat. & Env., ISSN: 2186-2982(Print), 2186-2990(Online), Japan

International Journal of GEOMATE, Nov., 2016, Vol. 11, Issue 27, pp. 2755-2762

2756

46 Jalal Sfaqes Tunisie
50 Charif Casa Maroc
55 Jamali Agadir Maroc
66 Gill Doncaster United

67 Will Arizona USA
70 Bernar Munichen Germany
76 Mak Curitiba Brazil
78 Bridge PointeClai

Canada
80 Fransis Yamagata Japan
81 Brolin Rockford USA
83 Clark Linz Australia
85 Favreau Zagreb Croatia
87 Phillippe Lyon France
88 Nakai New Delhi India

Index B*Tree:

Fig.1 Part of index B*Tree for the Table CLIENTS

2. RELATED WORK

The indexes in databases are like indexes in

books; it addresses directly the desired information,
without going through the whole book. Indexes are
divided into two major types, Bitmap index and
B*Tree index.

Several researches on different indexes and
optimization of relational distributed databases are
discussed before; DAVID Taniar[4] discussed
B+Tree, SERGEY Bereg and all[5] discussed K-
Tree, FM-Index[6], AR-Tree[7], R-Tree[8] and
others. In addition, many studies have been
optimized complex queries in distributed databases
and cloud computing using partitioned databases[9].
Following our investigations there is no approach
like our, making the collaboration between
processors in partitioned databases on multi-cores
and multiprocessors machine[10]. New database
architecture based on batching queries and shared
computation across many concurrent queries in a
shared disk[10].

In B*Tree, internal nodes (non-leaf) can have a
variable number of child nodes within some pre-
defined ranges. When data are inserted or removed
from a node, its number of child nodes changes. In
order to maintain the pre-defined range, internal
nodes may joined or split. Because a range of child
nodes is permitted, B*Trees do not need re-
balancing as frequently as other self-balancing
search trees, but may waste memory space, since

nodes are not entirely full[11].
 Each internal node of a B*Tree will contain a

number of keys. Keys act as separation values,
which divide its node. For example, if an internal
node has three child nodes, then it must have two
keys: a and b. All values in the leftmost node will be
less than a; all values in the middle node will be
between a and b; then all values in the rightmost
node will be greater than b. usually, the number of
pages is the fixed size capable of holding up to 2*k
keys, but pages need only be partially replete.

These trees grow and contract; the nodes can
split into brothers, or two brothers can merge or
"concatenate" into a single node. The splitting and
concatenation processes are initiated at the leaves
only and propagates them to the root. When the root
node splits, a new root must be introduced, and this
is the way in which the height of the tree can
increase[12].

The opposite process occurs if the tree contracts.

Definition: We suppose h >= 0 an integer, k is a

natural number. A directed tree T is in the class
Z(k,h) of B*Trees if T is either empty (h=0) or has
the following properties:

i) Each path from the root to any leaf has

the same length h, also called the
height of T, i.e., h = number of nodes
in path.

ii) Each node except the root and the
leaves have at least k + 1 son. The root
is a leaf or has at least two sons.

iii) Each node has at most 2*k + 1
daughters[13].

3. OPTIMIZING INDEX

Our contribution in this paper is within the scope
of parallel/distributed databases indexing, as this
subject is not discussed since 2004[4]. Following an
investigation into the business and technology
services, we saw a dire need in terms of tuning the
search and update data. Several specialists in the
design of database systems, fails index usages,
strong reasons that push us to propose two strong
methods about database optimization, and report to
researchers that there are still things to do in the
optimization of parallel/distributed database systems.

With the advent of multi-core computers, it is
essential to take advantage of these cores, so we
appeal to the parallelism. This paper presents
different database optimization techniques that can
be employed for parallel/distributed processing. Our
motivation to optimize parallel/distributed database
systems is its importance on rapidity and reliability
of information retrieval. Rapidity has become an
important thing everywhere, then onerous database

http://en.wikipedia.org/wiki/Leaf_node
http://en.wikipedia.org/wiki/Self-balancing_binary_search_tree
http://en.wikipedia.org/wiki/Self-balancing_binary_search_tree
http://en.wikipedia.org/wiki/Subtree

International Journal of GEOMATE, Nov., 2016, Vol. 11, Issue 27, pp. 2755-2762

2757

applications become known as inefficient and
inacceptable.

In the first time, we partition our table by range
(attribute NoClient) into three parts, then we create
and partition a local parallel index (attribute
NoClient) into three parts too, then we attribute
each part to one processor, and so on for each table
that participate to related queries, then we
collaborate between processors.

In the second time, we partition our tables by
list into three parts, then, we create and partition our
local parallel index into three parts by list too and
subsequently we always attribute each part to one
processor, then we collaborate processors.
The table 1 illustrates a simple table with four
attributes client (noclient, name, city, country) as a
testing example.

Finally, we compare between the results
obtained by the two methods.
We would like to note that David Taniar discussed
the Global Parallel index GPI[4]. However, our
proposed method is a combination of new and old
methods and technologies, our contribution
improves the results already obtained, by changing
these principles by ours, and GPI by local parallel
index (LPI) and then, we add a great optimizing
method that consists on the collaboration between
processors.
 We use java 1.7 to programming our test
application,
 We use MySQL 5 and Oracle database 11g
release 2 to execute our methods.
 We use the MPJ (Message Passing Interface for
java) to communicate between processors.

4. GLOBAL PARALLEL INDEX

Global index is a tree structure that can be built

from an attribute or more, of number or varchar type
and not lob or bfile. We can partition it by range, by
hash or by list, and it can be based on a partitioned
or non-partitioned table.

 Global Parallel Index (GPI)[14] can be
partitioned indifferently with the underlying table;
but the problem is harder to maintain when the
based table is partitioned.

5. LOCAL PARALLEL INDEX

To discuss the parallel/distributed databases

automatically we discuss table partitioning. Local
Parallel Index (LPI) has the advantage that the index
and the underlying table partition identically. In this
paper, we propose two types of table partitioning.
The first time is to partition our running tables as
CLIENTS (NOCLIENT, NAME, CITY,
COUNTRY) by RANGE into three parts and we
suggest that we have a multiprocessors computer (3
processors or more). Then we create and partition

our local index by range into 3 parts too, then we
assign each partition to one processor to benefit
from the parallelization, and finally our processors
have to work together I.e. The processor that finish
its work gives help to the next and so on.

When partitioning the table by Hash, the hash
index uses the same hash function to arrange the
RowIDs on different segments in ascendant order.
The optimizer sends the value of each data to the
hash function to build segments of data
elements[15]. The following section presents our
proposed methods briefly.

The figure 2 shows distributed partitioning
queries and how allowing every part to one
processor, following the algorithm of allowing
distributed queries to processors.

Fig. 2 Distributed partitioned queries

We partition Q1 to Q1

1 Q1
2 Q1

3. P1, P2 and P3
are successively processor number one, processor
number two and processor number three. The
number n of distributed queries is Qn.

Algorithm1: allowing distributed queries to
processors:
Sorting (Q1

n); // n =1, 2, 3
For i=1 until i=k; // k is the number of queries

If (Qi
n is given); // n=1, 2, 3

Then free Pn;
Allow (Pn) to Qm; //m!=n and m=1, 2, 3
When Qi

m is given;
Allow (Pn and Pm to Pl); // l !=m and l !=n and
// l =1, 2, 3
When Qi

l is given
Return (Q1)
Free P1, P2 and P3
END

For multiple distributed join queries, we use the

one-to-many algorithm, to assign each processor to
one table (generally, we have at most a join of three
tables).

Algorithm2: One-to-many
1 n: denotes the number of tables
2 Ti: denotes the table number i
3 Pi: denotes the processor number i
4 If (n < 3) then

International Journal of GEOMATE, Nov., 2016, Vol. 11, Issue 27, pp. 2755-2762

2758

5 We assign each processor to one table
6 Else
7 Assign T1 to P1, T2 to P2, T3 to P3,
8 then T4 to P1, T5 to P2 and T6 to P6 and so on.
9 END
5.1. First Partitioned Method

In this proposed method we will use all the last

algorithms, partition our table into 3 parts by range
and the index into 3 parts by range too; the attribute
of index partitioning is the same of table
partitioning attribute like GPI 1 [4]. In this case, the
attribute of index is NoClient. Then we assign each
part to one processor, following the availability; the
range of NoClient(attribute partitioning) the sets
from 1 to 40 is assigned to the processor number
one following the availability, from 41 to 80 are
assigned to processor two, more than 80 are
assigned to processor three. The figure 3 illustrates
processors allocation following the first method.
The processor has finished its part giving a helping
hand to the next who has not yet finished.

To implement an LPI we must be careful.
However, it is not difficult as the global parallel
index (GPI); this is one of the strength points of the
LPI. We explain that the root node is replicated to
the processor 2 and not to all processors; the child
node 32 and their children are not replicated to
processor 2 but to the processor 1.

The child node 67, 70, 76 and 50, 55, 66 and
80, 81, 83 are replicated to the processor 2; the child
node 80, 81, 83 is replicated to processor 3 too,
because 81, 83 are replicated to processor 3 and 80
is replicated to both processor 2 and 3.
The node 85, 87, 88 is replicated to the processor
number 3.

Fig. 3 LPI first method

5.2. Second Method

In this method we will use the same running

table example called CLIENTS for simplicity and
we will partition it into 3 parts by list (attribute
country) like GPI 2[14]. The first partition takes
Morocco and Tunisia following the table 2. The
second takes United Kingdom, Germany, France,
and Croatia as described on table 3. The third

partition takes the rest, the table 4 shows the n-
uplets components of this part; we index and
partition our table following the same attribute of
table partitioning, then we assign each partition to
one processor following the availability, and finally
the processor that finish its work gives help to the
next.

The LPI 2 is based on a Varchar2 attribute
(NAME Varchar2 (30)), so this is different from the
first method; the three lists partitioning (Morocco,
Tunisia) and (United Kingdom, Germany, France,
Croatia) and (USA, Brazil, Canada, Japan, Australia,
India and others) gives the following results:

• The root node 46 is replicated to processor 1
• The Childs node (32) and (1,3,25) and (32, 39,

40) are replicated to processor 1
• The child node (50, 55, 66) is replicated to

both of processor 1 and 2, because 50 and 60
are replicated to processor 1 and 66 is
replicates to processor 2

• The child node (67, 70, 76) is replicated to
both of processor 2 and 3, because 67 and 76
are replicated to 3 and 70 is replicated to
processor 2

• The child node (85, 87, 88) is replicated to
both of processor 2 and 3, because 85 and 87
are replicated to processor 2 and 88 is
replicated to processor 3

• The child node (80, 81, 83) is replicated to
processor 3

Table 2 Lines attributed to CPU1 on the second

method
CPU1

1 Mohamed Marrakech Morocco
3 Ali Casa Morocco

25 Khaled Fas Morocco
32 Salah B. Mellal Morocco
39 Karim Safi Morocco
43 Houdi Essaouira Morocco
46 Omar Sfaqes Tunisia
50 Charif Tetouan Morocco
55 Adam Agadir Morocco

Table 3 Lines attributed to CPU2 on the second

method
CPU2

66 Gill Doncaster U. Kingdom
70 Bernar Munichen Germany
85 Favreau Zagreb Croatia
87 Phillippe Lyon France

Table 4 Lines attributed to CPU3 on the second

method
CPU3

67 Will Arizona USA
76 Mak Curitiba Brazil

International Journal of GEOMATE, Nov., 2016, Vol. 11, Issue 27, pp. 2755-2762

2759

78 Bridge Pointe

Canada
80 Fransis Yamagata Japan
81 Brolin Rockford USA
83 Clark Linz Australia
88 Nakai New Delhi India

Fig. 4 Local parallel Index (LPI) schema Second

method

5.3. competitor access

Concurrent access is among the real problems
in the parallelization index, so we think of
introducing this algorithm to arrange access to
nodes replicated to two processors

Algorithm1: Node-Concurrent-Access

1 if (node is replicated to two processors: p1and

2 p2)

3 prohibit (p2)

4 allow (p1)

5 if the operation is update

6 lock (node)

7 if (p1 has finished)

 8 unlock (node)

 9 end if

10 end if

11 end if

6. MAINTENANCE ALGORITHM OF
PARALLEL B*TREE

Many methods of concurrent operations on

B*Tree and B+Tree have been discussed by Bayer
and Schkolnick, David Taniar and others. The
solution given in the current paper has the
advantage that we use B*Tree and we benefit of
parallelism and collaboration between processors.
In addition, no search through the tree is ever
prevented from reading any node (locks only

prevent multiple update access). These
characteristics do not apply to the previous solution.

6.1 Node Insertion

Node insertion is one of the frequent operations

applied to the B*Tree. Inserting an element can
merge the node if it is full down, or collapsing it if it
is full up. The figure 5, figure 6 and figure 7 bellow
illustrate the steps for one case of node insertion:

Fig. 5 Node insertion step 1

Fig. 6 Node insertion step 2

Fig. 7 Node insertion step 3

6.2 Node deletion

Node deletion also usually called.

International Journal of GEOMATE, Nov., 2016, Vol. 11, Issue 27, pp. 2755-2762

2760

The following schemas: figure 8, figure 9 and figure
10 describe the steps for one case of node deletion:

Fig. 8 Node deletion step 1

Fig. 9 Node deletion step 2

Fig. 10 Node deletion step 3

The following algorithm describes how processors
work together:

Algorithm 2: collaboration between processors
1 (range varray)
2 Find the available processor or processors
3 Establish an array of number of size 3: the
4 numbers of the processors, and order it
5 following the availability of each one
6 Assign each range of index to one processor
7 following the order of array making in last step
8 If the processor that key i is finishing its work,
9 gives help to processor i+1 and so 10 on.

7. EXPERIMENTAL RESULTS AND
ANALYSIS

Fig. 11 Costs of different distributed queries for

the first method

Fig. 12 Costs of different distributed queries for

the second method

There are various methods of partitioning an
index in parallel database systems, but in this paper,
we discuss and improve two most powerful methods
for the reason of avoiding redundancy in this
current.

7.1 Existing analysis

In shared-memory and shared-disk systems, the
major problem for multi-processors machines is the
interference between processors in both memory
and disk. To reduce network traffic and to minimize
latency, each processor is given a large private
cache[16]. Parallelism increases performance, but
shared resources increase interferences and limit
performances. Multi-processor computers often use
many processes to reduce interferences. Partitioning
a shared-memory system creates many interferences
and problems; we find that the performance of
shared memory machines is not cost-effective with
some processors when running database systems.
The shared-disk architecture is not very effective for

International Journal of GEOMATE, Nov., 2016, Vol. 11, Issue 27, pp. 2755-2762

2761

database systems. The processor that want to update
the data must declare its intention to update the data,
once this declaration has been honored and
acknowledged by all other processors, the declared
processor can read the shared data from disk and
updates it. This creates interferences between
processors, and then creates delays.

7.2 Multiple query analysis

When we launch a multiple query in parallel
search processing, generally it proceeds three steps:
processors involvement, index scan and record
(data) loading[4] for everyone. In the first step, the
RDBMS finds the processor or processors selected
by the algorithm of collaboration between
processors. In tree traversal, we can localize the
record in each processor following the range of the
tree or list of name and of course the method used.

The three major methods of table’s access are
as following. The first is Full Table Scan, when the
table is parsed entirely following the order of blocs
in the tablespaces. Secondly, the partitioning
methods made when the query is performed on a
partition of table and not on the table entirely, in
this case the table must be partitioned. Moreover, if
the optimizer does not accept the partitioning
method, we can force it through using HINTs.
Finally, the third method is the Table Access by
RowID, this method allows the access directly of
the RowID in this case the query is based on an
index.

Then let us analyze the three major index
access methods, UNIQUE SCAN, RANGE SCAN
and PARTITION SCAN. Regarding UNIQUE
SCAN, the optimizer chooses to parse the tree to
find a unique record, generally used for the type of
query whose the clause where is an equal like
NoClient= 234. For RANGE SCAN, the optimizer
parses a part of the tree that host the range searched
often used for the type of query of the clause where
is an interval like NoClient between 2.000 and
3.000;. And thirdly, the PARTITION SCAN is used
by index accessing if the index is partitioned, this
method allows the optimizer to parse just the
partition of index that host the key or the range of
keys on the clause where of the query.

Finally, we cite the three major join operations
performing methods. The first is NESTED LOOP;
we suggest that we have two tables. CLIENTS table
and COMMANDES table. CLIENTS is 10 times
bigger than COMMANDES. The NESTED LOOP
parses COMMANDES entirely for each data of the
table CIENTS, generally used for the sub-query.
MERGE JOIN, in this case we use the same tables
but we suggest that the sizes of them are
approximately close, then we sort both of them
following the same criteria for simplify the data
search. The third method is the HASH JOIN that we

construct a hash table following the index key and
then we parse the second table for each value of join
column in the hash table.
7.3 Algorithms analysis

Based on Figure 11 and Figure 12, the first

method (Fig. 11) presents less consistent gets then
less input outputs blocs than the second method
(Fig. 12). We can confirm that first method is more
accepted as an optimized method than the second
method. Following the Figure 4 and Figure 12 they
illustrate the second method, we find more
correlation between processors, since only selected
processors are used and tree traversal and record
loading are locally done. In parallel searching, we
search single values (for exact match) or several
values (for range search). In this type of query, both
of the local parallel index first method and second
method are efficient but the most optimized is local
parallel index first method, because there are no
correlation between processors. Which means only
selected processors by the algorithm are used
(implicated), and data loading are locally done.

When we launch a query in parallel one-index
join processing, we search on the indexed table by
the attribute of index and the record loading is
pointed by RowID. The problem in this processing
(one-index join) is that we search each record on the
non-indexed attribute (on non-indexed table) this
takes a lot of input/output on blocs, which takes a
lot of memory. These constraints increase the
execution time. In parallel one-index join, we search
single values (for exact match) or several values (for
range search) from the indexed table and we search
for all values of join attribute from the non-indexed
table. This processing is not efficient for big tables
(table that contains more than 100.000 tuples, but
not indexed). In this processing, both parts of the
local parallel index are not efficient, but the most
wished one is the local parallel index used in the
first method, because it bears on the same attribute
that uses the join operation in the indexed table.

About parallel two-index join processing, we
search single values (for exact match) or several
values (for range search) from the first table, then
the same processing from the second table and
finally we compare the results done according to
join operation predicate. If the tables involved in the
join operation contain more than 100.000 n-uplets,
this processing is preferred; else, if one of them is
small, this processing is not efficient. In this case
the local parallel index first method is the most
suitable because it is based on the same join
attribute index [4].

8. CONCLUSION AND FUTURE WORK

In this paper, we have presented in first time
two algorithms of tuning parallel databases. The

International Journal of GEOMATE, Nov., 2016, Vol. 11, Issue 27, pp. 2755-2762

2762

first is based on partitioning our table, create and
partitioning a local parallel index by range.
Moreover, the second method is based on
partitioning both of them by list. In both of these
methods, we assign each part of one processor. The
first part is assigned for the processor number one.
The second part is assigned for the processor
number two and the third part is assigned for the
processor number three. Finally, the processor that
finished its work giving a helping hand to the
processor that not yet finished (collaboration
between processors). Following the figures 11 and
12, we are in favor of the first method (partitioning
by range) and their algorithms as the most
optimized algorithm.

In a second time, we have discussed (presented)
three of major methods of query optimization. No-
replicated-index, partially-replicated-index and
fully-replicated-index [14]; all of them are used
with the parallelization and collaboration between
processors. We used each of these three methods
separately with our proposed methods, for
eventually find the most optimal result, according to
the results obtained is the third method (fully
replicated index). Throughout this paper, we discuss
the local parallel index, thanks to these advantages
like the absence of correlations between the index
and table partitioning, contrariwise the global
parallel index.

For our future work, we plan to implement the
collaboration between processors in the background
of a RDBMS like postgreSQL.

9. REFERENCES

1. Navarro, L., Optimisation des Bases de Donnees.

Pearson, 2010.
2. Flora S. Tsai, A.T.K., Database optimization for

novelty mining of business blogs. Expert
Systems with Applications, 2011.

3. Xianhui Li, C.R., Menglong Yue, A Distributed
Real-time Database Index Algorithm Based on
B+ Tree and Consistent Hashing. ELSEVIER,
2011.

4. David Taniar, J.W.R., Global parallel index for
multi-processors database systems. elsevier,
2004.

5. Sergey Berega, H., Wiener indices of balanced
binary trees. Discrete Applied Mathematics,
2007.

6. Alejandro Chacon, J.C.M., Antonio Espinosa,
Porfidio Hernandez, n-step FM-Index for faster
pattern matching. Procedia Computer Science,
2013.

7. HaRim Jung, Y.S.K., Yon Dohn Chung, QR-
tree: An efficient and scalable method for
evaluation of continuous range queries.
Information Sciences, 2014.

8. Yunjun Gao, Q.L., Baihua Zheng, Gang Chen,
On efficient reverse skyline query processing.
Expert Systems with Applications, 2014.

9. Tansel Dokeroglu, M.A.B., Ahmet Cosar,
Robust heuristic algorithms for exploiting the
common tasks ofrelational cloud database
queries. Applied Soft Computing, 2015.

10. G. Giannikis, G.A., D.Kossmann, SharedDB,
SharedDB: killing one thousand queries with
one stone,. Proc. VLDB, 2012. Vol. 5, no. 6.

11. R. Bayer, M.S., Concurrency of Operations on
B-Trees. Acta Informatica, 1977.

12. Lilian Hobbs, S.H., Shilpa Lawande, Pete Smith,
Oracle_10g_Data_Warehousing. Elsevier
Digital Press, 2005.

13. R. Bayer, E.M., Organization and Maintenance
of Large Ordered Indexes. Acta Informatica,
1972.

14. DAVID TANIAR, J.W.R., A Taxonomy of
Indexing Schemes for Parallel Database Systems.
Distributed and Parallel Databases, 2002.

15. Xiaoqing Niu , X.J., Jing Han, Haihong E, and
Xiaosu Zhan, A Cache-Sensitive Hash Indexing
Structure for Main Memory Database. Springer,
2013.

16. David J. DeWitt, J.G., Parallel Database
Systems: The Future of Database Processing or a
Passing Fad? 1991.

International Journal of GEOMATE, Nov., 2016,
Vol. 11, Issue 27, pp. 2755-2762.
MS No. 1322 received on July 7, 2015 and
reviewed under GEOMATE publication policies.
Copyright © 2016, Int. J. of GEOMATE. All
rights reserved, including the making of copies
unless permission is obtained from the copyright
proprietors. Pertinent discussion including
authors’ closure, if any, will be published in Nov.
2017 if the discussion is received by May 2017.
Corresponding Author: Mohamed Chakraoui

	OPTIMIZATION OF LOCAL PARALLEL INDEX (LPI) IN PARALLEL/DISTRIBUTED DATABASE SYSTEMS
	1. Introduction
	2. Related work
	3. Optimizing Index
	4. Global Parallel Index
	5. Local Parallel Index
	5.1. First Partitioned Method
	5.2. Second Method
	5.3. competitor access
	6. MAINTENANCE ALGORITHM OF PARALLEL B*TREE
	7. EXPERIMENTAL RESULTS AND ANALYSIS
	8. CONCLUSION AND FUTURE WORK
	9. REFERENCES

