
 

2796 
 

 

FLOOD ANALYSIS IN LANGAT RIVER BASIN USING STOCHATIC 
MODEL 

 
 

Yuk Feng Huang, Majid Mirzaei and Wai Kit Yap 

 

1Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Malaysia   
 

 
ABSTRACT: This study analyzed the annual maximum stage readings of three rivers in Langat River Basin for 
flood forecasting using Autoregressive Integrated Moving-average(ARIMA) model. Model identification was 
done by visual inspection on the Autocorrelation Function(ACF) and Partial Autocorrelation Function(PACF). 
The model parameters were computed using the Maximum Likelihood (ML) method. In model verification, the 
chosen criterion for model parsimony was the Akaike Information Criteria Corrected(AICC) and the diagnostic 
checks include residuals’ independence, homoscedasticity and normal distribution. The best ARIMA models for 
the Dengkil, Kg. Lui and Kg. Rinching series were (1,1,0), (1,1,0) and (1,1,1) respectively, with their AICC 
values of 133.736, 55.348 and 42.292. Homoscedasticity was confirmed with the Breusch-Pagan test giving p-
values of 0.145, 0.195 and 0.747 for the Dengkil, Kg. Lui and Kg. Rinching models respectively. Forecast series 
up to a lead time of eight years were generated using the accepted ARIMA models. Model accuracy was checked 
by comparing the synthetic series with the original series. Results show that the ARIMA models for the rivers 
and the forecast series were adequate. In conclusion, the Box-Jenkins approach to ARIMA modelling was found 
to be appropriate and adequate for the rivers. The flood forecast up to a lead time of eight years for the three 
models exhibit a straight line with near constant streamflow values showing that the forecast values were similar 
to the last recorded observation. 
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1. INTRODUCTION 

 
Floods have huge environmental and economic 

impact. According to a study conducted by KTA 
Tenaga in 2002, the total flood affected area in 
Malaysia in 2000 was about 9.04% of the total land 
area in Malaysia. The population in flood affected 
areas in 2000 was 22% of the total population at that 
time and the Annual Average Damage estimated was 
RM 915 million. On the other hand, the design of 
hydraulic structures such as dams and reservoirs also 
depends on the design flood of the particular river. 
An inaccurate design flood can lead to inefficiency 
of those hydraulic structures. Modifications to an 
existing structure are extremely costly and 
troublesome. Therefore, flood analysis is important 
to address these key issues. 

There are two main approaches in performing a 
flood analysis; the rainfall-runoff analysis approach 
and the flood frequency analysis approach. The first 
approach uses rainfall statistics and a catchment 
model to estimate flood. This approach can be 
divided according to their spatial structure (lumped, 
semi-distributed or distributed) and time 
representation(event-based simulations and 
continuous simulations). For event-based 
simulations the rainfall-runoff model is fed by a 
design rainfall of a defined probability [1]. A very 
popular method is the revitalised flood hydrograph 
(ReFH) method [2], which is commonly used in 

England and Wales. In the flood frequency analysis 
approach, only peak flow data is used to make the 
estimation. There are two prevalent methods for 
flood frequency analysis; the annual maximum 
series (AMS) method and the partial duration series 
(PDS) method. However, the AMS method is 
commonly used in frequency analyses compared to 
the PDS method [3]. The AMS method is easier to 
define and the assumption that annual maxima are 
independent is reasonable. In addition, [4] 
comprehended that hydrologic phenomenon behaves 
stochastically. Thus, there is another method called 
stochastic modelling which uses time series that has 
four main components which are the trend 
component, the periodic component, the catastrophic 
component, and the random component. 

The study area is the Langat River Basin which 
spans two states in Malaysia, namely Selangor and 
Negeri Sembilan. The Langat River Basin is shown 
in Fig. 1. It has a catchment area of approximately 
2,348 km2. The Langat River is the main stream 
while other major tributaries include the Semenyih 
River, the Labu River and the Beranang River. Two 
dams are located at the upper region of the river 
basin; the Semenyih dam and the Langat dam. The 
Semenyih dam has a catchment area of 56.7 
km2while the Langat dam has a catchment area of 
41.1km2. 
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Fig. 1: The Langat River Basin 
 
The aim of this study is to mitigate the flood 
problems in Langat River Basin through developing 
stochastic ARIMA models for the study rivers using 
Box-Jenkins approach and afterwards, forecast 
future annual maximum streamflow values in the 
study rivers using the developed ARIMA models. 
 
2. ARIMA MODEL 

 
The ARIMA modelling is actually an approach 

that has the flexibility to fit a model which is 
adapted from the data structure itself. With the help 
of the computed autocorrelation function and partial 
autocorrelation function, the time series’ stochastic 
nature can be modelled and vital information such as 
trend, periodic components, random components and 
serial correlation can be obtained. The Box-Jenkins 
approach to ARIMA modelling is an iterative model 
building process where the best models have to be 
determined through trial and error. However, with 
the advent of computers and statistical software 
packages, this iterative process can be simplified. 
Commonly used software packages include 
Statgraphics, Minitab and Statistica. 

The ARIMA model has three main components, 
namely Autoregressive (AR), Integrated (I) and 
Moving-Average (MA). The AR component 
represents the autocorrelation between current and 
past observations while the MA component 
describes the autocorrelation structure of error. The 
integrated component represents the level of 
differencing required to transform a non-stationary 
series into a stationary series [5]. A non-seasonal 
ARIMA model is usually denoted by (p,d,q).The 
order of the AR component is denoted by p, the 
order of differencing is denoted by d and q is the 
order of the MA component.  

Throughout the years researchers have used the 
ARIMA model for different scientific and technical 
applications. [6] described the random component of 
streamflow time series by examining the stochastic 
structure of the flow data for the Upper Delaware 
River. Forecasting monthly rainfall data using 
various ARIMA models was done by [7], 

whereas[8] carried out streamflow prediction on a 
medium sized basin in Mississippi. The ARIMA 
model was applied to monthly data from Kelkit 
Stream watershed by [9]. [10] reviewed the 
performance of two stochastic models (Thomas-
Fiering and ARIMA) on Yesilirmak River, Turkey.  

There have been a lot of reviews on the 
performance of the ARIMA model.[11] argued that 
the ARIMA model is only suitable for short term 
forecasting. The ARIMA model needs a long input 
series to produce forecasts that are more accurate. 
Therefore, the ARIMA model may not work well for 
short input series. [12] showed that the performance 
of ARIMA is satisfactory in forecasting either a 
linear or non-linear interval series. It is also a good 
forecasting alternative to inter-valued time series.  

 
2.1 Stationarity 

 
The Box-Jenkins approach is a stationary time 

series approach. If a time series is non-stationary, 
differencing is required to make it stationary before 
the Box-Jenkins approach can be carried out. There 
are many ways to determine non-stationarity. The 
common tests used include unit root and trend tests. 

 
2.1.1 ADF Test 

 
The testing for unit root’s presence in a time 

series is a normal starting point of applied work in 
macroeconomics. One of the popular tests for unit 
root is the Augmented Dickey-Fuller (ADF) test. 
This test is based on estimates from an augmented 
autoregression. One of the main issues in the ADF 
test is the choice of lag length k.  

 
2.1.2 KPSS Test 

 
     Another well-known test for stationarity in 
econometrics is the Kwiatkowski-Phillips-Schmidt-
Shin (KPSS) test. It tests for the null hypothesis of 
stationarity as opposed to the ADF test which tests 
for the null hypothesis of non-stationarity. One of 
the important arguments against the use of tests 
withstationarity as the null hypothesis is that it is 
very difficult to control their size when the process 
is stationary andextremely autoregressive [13].  
 
2.1.3 Mann-Kendall Trend Test 

 
     The Mann-Kendall trend test is commonly used 
to test the presence of trend in a time series. It is not 
a parametric test so the data do not have to be 
normally distributed and it has low sensitivity to 
sudden changes due to non-homogeneous time series. 
The Mann-Kendall S Statistic shows the behaviour 
of a trend. A positive S indicates an upward trend 
while a downward trend is indicated by a negative S. 
Another statistic obtained from the test is the 
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Kendall’s tau, which measures the strength of the 
dependence between two variables. A positive value 
of Kendall’s tau shows that the variables’ ranks 
increase together while a negative value shows that 
as one variable’s rank increases, the other variable’s 
rank decrease. 
 
2.2 Independence 
 
     The basic assumption is that the residuals of an 
ARIMA model are white noise. A white noise series 
have uncorrelated random shock with zero mean and 
constant variance. If the residuals are independent, it 
means that there is no more information that could 
be extracted from the series. One of the ways to 
determine the independence is to visually inspect the 
correlogram of the residuals. If the correlogram 
shows values that are close to zero, the residuals are 
uncorrelated and independent.  
 
2.3 Homoscedasticity 
 

Homoscedasticity is the term used to define that 
the variance of the disturbance term in each 
observation is constant. If the residuals are 
homoscedastic, their variances are stable. The 
probability of the disturbance terms reaching a given 
positive or negative value will be the same in all 
observations, which means that they have the same 
dispersion. 
 
2.4 Transformation 
 

Many statistical analyses are done based on the 
assumption that the population being investigated is 
normally distributed with a common variance. In 
situations where the relevant assumptions are 
violated, a few options are available: 
 
i. Ignore the violation of the assumptions and 

continue with the analysis; 
ii. Decide on a correct assumption in place of the 

violated one and proceed with the new 
assumption taken into account; 

iii. Design a new model that retains the important 
aspects of the original model and satisfies the 
assumptions; 

iv. Select a distribution-free method that can be used 
even if the assumptions are violated. 

 
Most researchers have opted for the third option 

which includes applying a transformation to the 
original data. One of the popular transformation 
methods is the Box-Cox transformation. In ARIMA 
modelling, if the normality assumption for the 
residuals is not true, it is usually well satisfied when 
a Box-Cox transformation is done onto the original 
observations [14]. 
 

2.5 Forecasting 
 
    Forecasting can be categorized into short-term 
forecasting and long-term forecasting. Short-term 
forecasting can predict values that are a few time 
periods (a few years) into the future. Long-term 
forecasting on the other hand, can predict values for 
time periods that extend far beyond that. In terms of 
applications, long-term forecasts are used for 
strategic planning while short-term forecasts are 
used for project developments as well as operation 
management. Statistical methods are good for short-
term forecasting because the historical data normally 
exhibit inertia and do not show drastic changes [15]. 
Short-term forecasting is based on identifying, 
modelling and extrapolating the patterns found in the 
data.  
 
3. METHODOLOGY 
 
The general ARIMA (p,d,q) model is: 
 
𝑼𝑼𝒕𝒕 =  𝝓𝝓𝟏𝟏𝑼𝑼𝒕𝒕−𝟏𝟏 + 𝝓𝝓𝟐𝟐𝑼𝑼𝒕𝒕−𝟐𝟐+. . . + 𝝓𝝓𝒑𝒑𝑼𝑼𝒕𝒕−𝒑𝒑 + 𝜺𝜺𝒕𝒕

− 𝜽𝜽𝟏𝟏𝜺𝜺𝒕𝒕−𝟏𝟏 − 𝜽𝜽𝟐𝟐𝜺𝜺𝒕𝒕−𝟐𝟐−. . .−𝜽𝜽𝒒𝒒𝜺𝜺𝒕𝒕−𝒒𝒒 
(1) 

 
       𝑼𝑼𝒕𝒕 = 𝑿𝑿𝒕𝒕 − 𝑿𝑿𝒕𝒕−𝒅𝒅(2) 

𝝓𝝓𝒑𝒑 = autoregressive parameter 
𝜺𝜺𝒕𝒕 = residual 
𝜽𝜽𝒒𝒒 = moving-average parameter 
X = dependent variable  
U = d-th difference of the dependent variable. 
 
3.1 Plotting the Series and Its ACF and PACF 
 

The main tools used for identification of model 
were the visual displays of the series, which 
included the autocorrelation function (ACF) and the 
partial correlation function (PACF). By using the 
annual maximum stage readings as the input time 
series, the autocovariancefunction ( 𝒄𝒄𝒌𝒌 ), the 
autocorrelation coefficients ( 𝒓𝒓𝒌𝒌 ) and the partial 
correlation coefficients (𝝓𝝓𝒌𝒌(𝒌𝒌)) were calculated and 
the series with its ACF and PACF were plotted using 
XLSTAT. The number of lags k should fall between 
N/4 and N, therefore the chosen number of lags in 
this study was sufficient. 
 

𝒄𝒄𝒌𝒌 =
𝟏𝟏
𝑵𝑵
�(𝒙𝒙𝒕𝒕 − 𝒙𝒙�)
𝑵𝑵−𝒌𝒌

𝒕𝒕=𝟏𝟏

(𝒙𝒙𝒕𝒕+𝒌𝒌 − 𝒙𝒙�), 𝟎𝟎 ≤ 𝒌𝒌 ≤ 𝑵𝑵 

(3) 

𝒓𝒓𝒌𝒌 =
𝒄𝒄𝒌𝒌
𝒄𝒄𝟎𝟎

=
∑ (𝒙𝒙𝒕𝒕 − 𝒙𝒙�)𝑵𝑵−𝒌𝒌
𝒕𝒕=𝟏𝟏 (𝒙𝒙𝒕𝒕+𝒌𝒌 − 𝒙𝒙�)

∑ (𝒙𝒙𝒕𝒕 − 𝒙𝒙�)𝟐𝟐𝑵𝑵
𝒕𝒕=𝟏𝟏

 

(4) 

𝝓𝝓�𝒌𝒌+𝟏𝟏(𝒌𝒌+ 𝟏𝟏) = �𝒓𝒓𝒌𝒌+𝟏𝟏 −�𝝓𝝓�𝒌𝒌(𝒋𝒋)𝒓𝒓𝒌𝒌+𝟏𝟏−𝒋𝒋

𝒌𝒌

𝒋𝒋=𝟏𝟏

� / �𝟏𝟏 −�𝝓𝝓�𝒌𝒌(𝒋𝒋)𝒓𝒓𝒋𝒋

𝒌𝒌

𝒋𝒋=𝟏𝟏

� 

(5a) 
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𝝓𝝓�𝒌𝒌+𝟏𝟏(𝒋𝒋) = 𝝓𝝓�𝒌𝒌(𝒋𝒋) − 𝝓𝝓�𝒌𝒌+𝟏𝟏(𝒌𝒌 + 𝟏𝟏)𝝓𝝓�𝒌𝒌(𝒌𝒌 − 𝒋𝒋 + 𝟏𝟏) 

(5b) 
 

The ACF and PACF were then analysed to 
determine behaviour and stationarity of the series. If 
all the ACF and PACF values are insignificant and 
fall within the confidence band, it indicates that the 
observations are independent. In such a case the time 
series is a white noise process and no modelling 
could be performed. A stationary time series has a 
rapidly decaying ACF. If the ACF is slow decaying, 
it indicates that the series may be non-stationary and 
requires differencing. Further tests should be carried 
out to confirm the non-stationarity. 
 
3.2 Stationarity Tests 
 
Unit root tests such as the Augmented Dickey-Fuller 
(ADF) test and the Kwiatkowski-Phillips-Schmidt-
Shin (KPSS) test were carried out to test the 
presence of a unit root while the Mann-Kendall 
trend test was performed to check for the presence of 
a trend. The presence of a unit root or a trend should 
indicate non-stationarity of the series. The 
significance level used was 5%. If the series is non-
stationary, differencing is required to transform it 
into a stationary series. On the other hand, if the 
series is stationary, the series is modelled as an 
ARMA process instead, which requires no 
differencing. 
 
3.3 Differencing 
 
The series was initially differenced once (d = 1) and 
the ACF and PACF of the differenced series were 
plotted and analysed. If the ACF and PACF decay 
rapidly then it indicates stationarity is achieved. 
Another indicator is the standard deviation of the 
differenced series. The optimum differenced series 
should have the lowest standard deviation. The 
differenced series was then differenced again (d = 2) 
to check for under-differencing or over-differencing. 
Similarly, the ACF and PACF were plotted and 
analysed. The lag 1 ACF and PACF of an over-
differenced series will be lower than negative 0.5. If 
the standard deviation of the current series is lower 
than that of the previous series, then the current 
series has the optimum order of differencing. It is 
noteworthy that some researchers argue that the 
effect of over-differencing is much less serious than 
the effect of under-differencing. 
 
3.4 Identifying p and q 
 

Having identified the optimum order of 
differencing (d), the next step was to identify the 
order of the autoregressive and moving-average 
parameters. The ACF (symbolized as 𝝆𝝆𝒌𝒌 ) and the 

PACF for the optimum differenced series were 
analysedto determine the p and q. 
 
3.5 Choosing the Best ARIMA Model 
 
     The previous step gave an indication of the order 
of p and q that should be fitted in the model. 
However, it was recommended to try a few different 
values of p and q to get the best model while 
preserving the parsimony of the parameters. To test 
for the parsimony of parameters, the corrected 
Akaike Information Criteria (AICC) was used. The 
model with the minimum AICC was selected as the 
best model. The XLSTAT software can find the best 
model based on the AICC values calculated for a 
range of p and q. In this study the maximum p 
selected was 3 and the maximum q selected was also 
3. The model with the minimum AICC was then 
subjected to diagnostic checks. 
 
3.6 Diagnostic Checks 
 
     After the best initial model was determined, the 
next step was running the diagnostic checks. Its 
purpose was to verify the proposed model’s validity. 
Before any checking was done onto the residuals, 
the values of the estimated ARIMA parameters first 
have to be in an interval computed using the Hessian 
standard errors. If the values are out of that interval, 
then they are not significant and the ARIMA model 
should not be used. The first checking on the 
residuals was to test for independence so that the 
residuals at any lag will not affect the value of 
residual at the next lag. The next criterion that 
required checking was residuals homoscedasticity, 
which means having a stable set of variances and 
then third checking was done to determine whether 
the residuals’ distributions are approximately normal. 
The residuals have to be approximately normal in 
order to produce a good forecast confidence interval. 
 
3.7 Series Comparison and Forecasting 
 

The best model that passed the diagnostic 
checking will then have its synthetic series 
compared to the original data series. This 
determined the degree of resemblance between the 
synthetic series and the original data series. If the 
pattern of the synthetic series appears similar to the 
pattern of the original series, then the fitted model is 
a good model. The final step was to generate a 
forecast of future values. The ARIMA model can 
predict future values as well as its confidence 
interval using the calculated model parameters. In 
this study the chosen number of forecasted values 
was eight, which means that the values were 
forecasted for the next eight years after the last 
observation. 
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4. RESULTS AND DISCUSSION 
 
The ACF and PACF for Dengkil , Kg. Lui and Kg. 
Rinching station are presented in Fig. 2, Fig. 3 and 
Fig. 4, respectively. 
 

 

 
 
Fig. 2: ACF and PACF of Dengkil Series 
 

 

 
 
Fig. 3: ACF and PACF of Kg.Lui Series 
 

The ACF plots for the Dengkil series, the Kg. 
Lui series and theKg.Rinching series exhibitedslow 
decay, indicating the possibility of non-stationarity. 
Since all the ACF and PACF values are significant 
and do not fall within the confidence band, it 
indicates that the time series are not white noise 
processes and modelling could be performed. 

 

 
 
Fig. 4: ACF and PACF of Kg.Rinching Series 
 
     
4.1 Stationarity Tests 
 
     Stationarity tests were carried out for the 
remaining three series to confirm the initial 
presumption that they were non-stationary. The 
results for the ADF test, KPSS test and Mann-
Kendall trend test are presented in Table 2. 
 
Table 2: Results of Stationarity Tests 

 

Station 

ADF 
test 

KPSS 
test 

Mann-
Kendall 

trend 
test 

Remarks 
 

p-
value 

p-
value p-value 

Dengkil 0.350 0.001 0.438 Non-
stationary 

Kg. Lui 0.138 0.005 0.072 Non-
stationary 

Kg. 
Rinching 0.411 0.030 <0.0001 Non-

stationary 
 

The tests confirmed that all the data series were 
non-stationary. The Augmented Dickey-Fuller test 
and the KPSS test showed that all three series had 
unit roots. The Mann-Kendall test also detected a 
trend in the Kg. Rinching series. A series that has 
either a unit root or a trend was considered as non-
stationary and therefore required differencing. 
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4.2 Differencing the Series 
 

The series were differenced once and twice to 
obtain the optimum d. The standard deviations of the 
original and differenced series are shown in Table 3. 
 
Table 3: Standard Deviations of Original Series and 
Differenced Series 

 

Order, d Dengkil Kg. Lui Kg. 
Rinching 

0 1.035 0.597 0.658 
1 0.903 0.490 0.481 
2 1.521 0.858 0.829 

 
     The ACF and PACF of the once differenced (d = 
1) series decayed rapidly compared to the ACF and 
PACF of the original series. Comparing the standard 
deviations of the series, the minimum standard 
deviations were obtained from the series with d = 1. 
The results also showed that the first lags of the 
twice differenced (d = 2) series were lower than -0.5, 
indicating over-differencing. Therefore, the 
optimum level of differencing for the three series 
was one and the d value used in the ARIMA model 
would be one. 
 
4.3 ARIMA Modelling and Diagnostic Checking 
 

The AICC for ARIMA models were computed 
with p starting from one to three and q starting from 
zero to three. The models tested were (1,1,0), (1,1,1), 
(1,1,2), (1,1,3), (2,1,0), (2,1,1), (2,1,2), (2,1,3), 
(3,1,0), (3,1,1), (3,1,2) and (3,1,3). For each station, 
the model having the minimum AICC was chosen as 
the best model. The best models along with their 
estimated parameter values are tabulated in Table 
4.The results showed that the preliminary models 
determined from the ACF and PACF of the 
differenced series were indeed the best models 
 
Table 4: Best ARIMA Models 

 

 Dengkil Kg. Lui Kg. 
Rinching 

Best model (1,1,0) (1,1,0) (1,1,1) 
AICC 133.736 55.348 42.292 
MSE 0.672 0.169 0.137 

AR(1) -0.395 -0.532 0.241 
MA(1)  - - -1.000 

Constant -0.023 0.044 -0.047 
 

The Hessian standard errors were calculated and 
all the estimated parameters successfully fell within 
the significance interval. The RACF and RPACF for 
the best ARIMA models were plotted. The RACF 
and RPACF for all the three series fell within the 
confidence interval. They were not significant and 
this showed that the residuals were independent, 

therefore satisfying the first residual criterion. The 
next requirement was residuals’ homoscedasticity 
and Table 5 shows the results of Breusch-Pagan test. 
Fig.5 shows the distribution of the standardized 
residuals for the Dengkil series. 
 
Table 5: Results of Breusch-Pagan Test 

 
Station p-value Remarks 
Dengkil 0.145 Homoscedastic 
Kg. Lui 0.195 Homoscedastic 

Kg. Rinching 0.747 Homoscedastic 
 
 

 

 

 
 
Fig. 5: Distribution of Standardized Residuals 
 
     The residuals were homoscedastic which mean 
that they had constant variances. It was important for 
the residuals to be homoscedastic because it 
determined whether the model’s ability to predict 
variable values was consistent. A model with 
heteroscedastic residuals cannot give results that are 
trustworthy and transformation of the data is 
required. The third criterion for diagnostic checking 
was the distribution of the residuals. The residuals 
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were subjected to normality tests and histograms 
were also plotted to give a visual representation of 
their distributions. The results of normality tests are 
presented in Table 6, while the histograms are 
shown in Fig. 6. 
 
Table 6: Results of Normality Tests 

 

Station 
Shapiro-
Wilk test 

Anderson-
Darling test 

Jarque-
Bera test 

p-value p-value p-value 
Dengkil 0.017 0.012 0.007 
Kg. Lui 0.140 0.066 0.064 

Kg. 
Rinching 0.315 0.223 0.331 

 

 

 

 
 
Fig. 6: Histograms of Residuals 

 
     Both the normality tests and histograms showed 
that the Kg. Lui series and the Kg. Rinching series 
had normally distributed residuals. The Dengkil 
series however, failed the normality tests but its 
histograms showed that it was very close to a normal 
distribution, which was good enough. The normality 
of residuals’ distribution was important to produce a 
satisfactory confidence interval for the forecast. 
 

4.4 Comparison of Series and Forecasting 
 
     The synthetic series generated by the ARIMA 
models were compared to the original series to 
check for model accuracy. Forecast series were also 
generated for a lead time of eight years with 95% 
confidence intervals. Fig. 7 shows the original series, 
the synthetic series and the forecast series for the 
three stations. 
 

 

 

 
 
Fig. 7: Original, Synthetic and Forecast Series 
 
5. CONCLUSION 
 
     Statistical modelling was successfully performed 
onto the study rivers using the autoregressive 
integrated moving-average (ARIMA) method. 
Forecast series were also generated by the models to 
give sequences of future stage and streamflow 
values.  The best ARIMA models for the other three 
series, Dengkil, Kg. Lui and Kg. Rinching series 
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were (1,1,0), (1,1,0) and (1,1,1) respectively. The 
ARIMA model is suitable for short term forecasting 
because the ARMA family models can model short 
term persistence very well.  

In conclusion, the Box-Jenkins approach for 
ARIMA modelling was found to be appropriate and 
adequate for the rivers under study in Langat River 
Basin. The flood forecast up to a lead time of eight 
years for the three models exhibited a straight line 
with near constant streamflow values showing that 
the forecast values were similar to the last recorded 
observation. 
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